1
|
Nobles A, Wendel JF, Yoo MJ. Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae). PLANTS (BASEL, SWITZERLAND) 2025; 14:502. [PMID: 40006762 PMCID: PMC11859044 DOI: 10.3390/plants14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis.
Collapse
Affiliation(s)
- Alexander Nobles
- Chemistry & Biomolecular Science Department, Clarkson University, Potsdam, NY 13699, USA;
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;
| | - Mi-Jeong Yoo
- Biology Department, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
2
|
Wen Y, Liu H, Meng H, Qiao L, Zhang G, Cheng Z. In vitro Induction and Phenotypic Variations of Autotetraploid Garlic ( Allium sativum L.) With Dwarfism. FRONTIERS IN PLANT SCIENCE 2022; 13:917910. [PMID: 35812906 PMCID: PMC9258943 DOI: 10.3389/fpls.2022.917910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Garlic (Allium sativum L.) is a compelling horticultural crop with high culinary and therapeutic values. Commercial garlic varieties are male-sterile and propagated asexually from individual cloves or bulbils. Consequently, its main breeding strategy has been confined to the time-consuming and inefficient selection approach from the existing germplasm. Polyploidy, meanwhile, plays a prominent role in conferring plants various changes in morphological, physiological, and ecological properties. Artificial polyploidy induction has gained pivotal attention to generate new genotype for further crop improvement as a mutational breeding method. In our study, efficient and reliable in vitro induction protocols of autotetraploid garlic were established by applying different antimitotic agents based on high-frequency direct shoot organogenesis initiated from inflorescence explant. The explants were cultured on solid medium containing various concentrations of colchicine or oryzalin for different duration days. Afterward, the ploidy levels of regenerated plantlets with stable and distinguished characters were confirmed by flow cytometry and chromosome counting. The colchicine concentration at 0.2% (w/v) combined with culture duration for 20 days was most efficient (the autotetraploid induction rate was 21.8%) compared to the induction rate of 4.3% using oryzalin at 60 μmol L-1 for 20 days. No polymorphic bands were detected by simple sequence repeat analysis between tetraploid and diploid plantlets. The tetraploids exhibited a stable and remarkable dwarfness effect rarely reported in artificial polyploidization among wide range of phenotypic variations. There are both morphological and cytological changes including extremely reduced plant height, thickening and broadening of leaves, disappearance of pseudostem, density reduction, and augmented width of stomatal. Furthermore, the level of phytohormones, including, indole propionic acid, gibberellin, brassinolide, zeatin, dihydrozeatin, and methyl jasmonate, was significantly lower in tetraploids than those in diploid controls, except indole acetic acid and abscisic acid, which could partly explain the dwarfness in hormonal regulation aspect. Moreover, as the typical secondary metabolites of garlic, organosulfur compounds including allicin, diallyl disulfide, and diallyl trisulfide accumulated a higher content significantly in tetraploids. The obtained dwarf genotype of autotetraploid garlic could bring new perspectives for the artificial polyploids breeding and be implemented as a new germplasm to facilitate investigation into whole-genome doubling consequences.
Collapse
Affiliation(s)
- Yanbin Wen
- College of Horticulture, Northwest A&F University, Xianyang, China
- Development Center of Fruit Vegetable and Herbal Tea, Datong, China
| | - Hongjiu Liu
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Guoqing Zhang
- Business School, Shanxi Datong University, Datong, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Chandrakanth R, Sunil L, Sadashivaiah L, Devaki NS. In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. J Genet Eng Biotechnol 2020; 18:75. [PMID: 33237489 PMCID: PMC7688789 DOI: 10.1186/s43141-020-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins. RESULTS Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions. CONCLUSIONS From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Collapse
Affiliation(s)
- R Chandrakanth
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - L Sunil
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - L Sadashivaiah
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - N S Devaki
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
4
|
Bian W, Liu X, Zhang Z, Zhang H. Transcriptome analysis of diploid and triploid Populus tomentosa. PeerJ 2020; 8:e10204. [PMID: 33194408 PMCID: PMC7602689 DOI: 10.7717/peerj.10204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.
Collapse
Affiliation(s)
- Wen Bian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Shan S, Boatwright JL, Liu X, Chanderbali AS, Fu C, Soltis PS, Soltis DE. Transcriptome Dynamics of the Inflorescence in Reciprocally Formed Allopolyploid Tragopogon miscellus (Asteraceae). Front Genet 2020; 11:888. [PMID: 32849847 PMCID: PMC7423994 DOI: 10.3389/fgene.2020.00888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Polyploidy is an important evolutionary mechanism and is prevalent among land plants. Most polyploid species examined have multiple origins, which provide genetic diversity and may enhance the success of polyploids. In some polyploids, recurrent origins can result from reciprocal crosses between the same diploid progenitors. Although great progress has been made in understanding the genetic consequences of polyploidy, the genetic implications of reciprocal polyploidization remain poorly understood, especially in natural polyploids. Tragopogon (Asteraceae) has become an evolutionary model system for studies of recent and recurrent polyploidy. Allotetraploid T. miscellus has formed reciprocally in nature with resultant distinctive floral and inflorescence morphologies (i.e., short- vs. long-liguled forms). In this study, we performed comparative inflorescence transcriptome analyses of reciprocally formed T. miscellus and its diploid parents, T. dubius and T. pratensis. In both forms of T. miscellus, homeolog expression of ∼70% of the loci showed vertical transmission of the parental expression patterns (i.e., parental legacy), and ∼20% of the loci showed biased homeolog expression, which was unbalanced toward T. pratensis. However, 17.9% of orthologous pairs showed different homeolog expression patterns between the two forms of T. miscellus. No clear effect of cytonuclear interaction on biased expression of the maternal homeolog was found. In terms of the total expression level of the homeologs studied, 22.6% and 16.2% of the loci displayed non-additive expression in short- and long-liguled T. miscellus, respectively. Unbalanced expression level dominance toward T. pratensis was observed in both forms of T. miscellus. Significantly, genes annotated as being involved in pectin catabolic processes were highly expressed in long-liguled T. miscellus relative to the short-liguled form, and the majority of these differentially expressed genes were transgressively down-regulated in short-liguled T. miscellus. Given the known role of these genes in cell expansion, they may play a role in the differing floral and inflorescence morphologies of the two forms. In summary, the overall inflorescence transcriptome profiles are highly similar between reciprocal origins of T. miscellus. However, the dynamic homeolog-specific expression and non-additive expression patterns observed in T. miscellus emphasize the importance of reciprocal origins in promoting the genetic diversity of polyploids.
Collapse
Affiliation(s)
- Shengchen Shan
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - J Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC, United States
| | - Xiaoxian Liu
- Department of Biology, University of Florida, Gainesville, FL, United States.,Environmental Genomics and Systems Biology (EGSB), Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Andre S Chanderbali
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
| | - Chaonan Fu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Pamela S Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Douglas E Soltis
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States.,Florida Museum of Natural History, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Florida, Gainesville, FL, United States.,Biodiversity Institute, University of Florida, Gainesville, FL, United States.,Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Kryvokhyzha D, Milesi P, Duan T, Orsucci M, Wright SI, Glémin S, Lascoux M. Towards the new normal: Transcriptomic convergence and genomic legacy of the two subgenomes of an allopolyploid weed (Capsella bursa-pastoris). PLoS Genet 2019; 15:e1008131. [PMID: 31083657 PMCID: PMC6532933 DOI: 10.1371/journal.pgen.1008131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/23/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Allopolyploidy has played a major role in plant evolution but its impact on genome diversity and expression patterns remains to be understood. Some studies found important genomic and transcriptomic changes in allopolyploids, whereas others detected a strong parental legacy and more subtle changes. The allotetraploid C. bursa-pastoris originated around 100,000 years ago and one could expect the genetic polymorphism of the two subgenomes to follow similar trajectories and their transcriptomes to start functioning together. To test this hypothesis, we sequenced the genomes and the transcriptomes (three tissues) of allotetraploid C. bursa-pastoris and its parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Comparison of the divergence in expression between subgenomes, on the one hand, and divergence in expression between the parental species, on the other hand, indicated a strong parental legacy with a majority of genes exhibiting a conserved pattern and cis-regulation. However, a large proportion of the genes that were differentially expressed between the two subgenomes, were also under trans-regulation reflecting the establishment of a new regulatory pattern. Parental dominance varied among tissues: expression in flowers was closer to that of C. orientalis and expression in root and leaf to that of C. grandiflora. Since deleterious mutations accumulated preferentially on the C. orientalis subgenome, the bias in expression towards C. orientalis observed in flowers indicates that expression changes could be adaptive and related to the selfing syndrome, while biases in the roots and leaves towards the C. grandiflora subgenome may be reflective of the differential genetic load. Most plant species have a polyploid at some stage of their ancestry. Polyploidy, genome doubling through either multiple copies of a single species or through genomes of different species coming into the same nucleus, is therefore a crucial step in plant evolution. Understanding its impact on basic biological functions is thus a matter of interest. Shepherd’s purse (Capsella bursa-pastoris) is a major weed that appeared about 100,000 years ago through hybridization of two diploid species of the same genus. In the present project, we measured genetic diversity and analyzed gene expression patterns in flowers, roots, and leaves of C. bursa-pastoris individuals as well as in its two parental species, the outcrossing C. grandiflora and the self-fertilizing C. orientalis. Our data shows that, after 100,000 generations of evolution, the origin of the two subgenomes can still be seen: the genome inherited from C. grandiflora still differs from the one inherited from self-fertilizing C. orientalis. However, there are also signs that the two genomes have started to work together and are jointly regulated, and the way expression pattern varied across the three tissues indicates that the evolution of gene expression was adaptive.
Collapse
Affiliation(s)
- Dmytro Kryvokhyzha
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tianlin Duan
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marion Orsucci
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sylvain Glémin
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- CNRS, Univ. Rennes, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
7
|
Hu G, Wendel JF. Cis-trans controls and regulatory novelty accompanying allopolyploidization. THE NEW PHYTOLOGIST 2019; 221:1691-1700. [PMID: 30290011 DOI: 10.1111/nph.15515] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/30/2018] [Indexed: 05/20/2023]
Abstract
Allopolyploidy is a prevalent process in plants, having important physiological, ecological and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression-level dominance and revamping of co-expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis-trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele-specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher-order effects that impact gene expression. Finally, we suggest that the extended cis-trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome-wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Visger CJ, Wong GKS, Zhang Y, Soltis PS, Soltis DE. Divergent gene expression levels between diploid and autotetraploid Tolmiea relative to the total transcriptome, the cell, and biomass. AMERICAN JOURNAL OF BOTANY 2019; 106:280-291. [PMID: 30779448 DOI: 10.1002/ajb2.1239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 05/28/2023]
Abstract
PREMISE OF THE STUDY Studies of gene expression and polyploidy are typically restricted to characterizing differences in transcript concentration. Using diploid and autotetraploid Tolmiea, we present an integrated approach for cross-ploidy comparisons that account for differences in transcriptome size and cell density and make multiple comparisons of transcript abundance. METHODS We use RNA spike-in standards in concert with cell size and density to identify and correct for differences in transcriptome size and compare levels of gene expression across multiple scales: per transcriptome, per cell, and per biomass. KEY RESULTS In total, ~17% of all loci were identified as differentially expressed (DEGs) between the diploid and autopolyploid species. The per-transcriptome normalization, the method researchers typically use, captured the fewest DEGs (58% of total DEGs) and failed to detect any DEGs not found by the alternative normalizations. When transcript abundance was normalized per biomass and per cell, ~66% and ~82% of the total DEGs were recovered, respectively. The discrepancy between per-transcriptome and per-cell recovery of DEGs occurs because per-transcriptome normalizations are concentration-based and therefore blind to differences in transcriptome size. CONCLUSIONS While each normalization enables valid comparisons at biologically relevant scales, a holistic comparison of multiple normalizations provides additional explanatory power not available from any single approach. Notably, autotetraploid loci tend to conserve diploid-like transcript abundance per biomass through increased gene expression per cell, and these loci are enriched for photosynthesis-related functions.
Collapse
Affiliation(s)
- Clayton J Visger
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, 95819, USA
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Yong Zhang
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Shenzhen Hua Han Gene Co. Ltd., 7F Jian An Shan Hai Building, No. 8000, Shennan Road, Futian District, Shenzhen, 518040, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids. Genetics 2018; 210:883-894. [PMID: 30213855 DOI: 10.1534/genetics.118.301564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Polyploidy has played a pivotal and recurring role in angiosperm evolution. Allotetraploids arise from hybridization between species and possess duplicated gene copies (homeologs) that serve redundant roles immediately after polyploidization. Although polyploidization is a major contributor to plant evolution, it remains poorly understood. We describe an analytical approach for assessing homeolog-specific expression that begins with de novo assembly of parental transcriptomes and effectively (i) reduces redundancy in de novo assemblies, (ii) identifies putative orthologs, (iii) isolates common regions between orthologs, and (iv) assesses homeolog-specific expression using a robust Bayesian Poisson-Gamma model to account for sequence bias when mapping polyploid reads back to parental references. Using this novel methodology, we examine differential homeolog contributions to the transcriptome in the recently formed allopolyploids Tragopogon mirus and T. miscellus (Compositae). Notably, we assess a larger Tragopogon gene set than previous studies of this system. Using carefully identified orthologous regions and filtering biased orthologs, we find in both allopolyploids largely balanced expression with no strong parental bias. These new methods can be used to examine homeolog expression in any tetrapolyploid system without requiring a reference genome.
Collapse
|
10
|
Nardeli SM, Artico S, Aoyagi GM, de Moura SM, da Franca Silva T, Grossi-de-Sa MF, Romanel E, Alves-Ferreira M. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:169-184. [PMID: 29604523 DOI: 10.1016/j.plaphy.2018.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/27/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species.
Collapse
Affiliation(s)
- Sarah Muniz Nardeli
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Sinara Artico
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Gustavo Mitsunori Aoyagi
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | - Stéfanie Menezes de Moura
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| | - Tatiane da Franca Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | | | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo (EEL-USP), CEP 12602-810, Lorena, SP, Brazil.
| | - Marcio Alves-Ferreira
- Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), CEP 21941-617, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Qi X, Wang H, Song A, Jiang J, Chen S, Chen F. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense× Tanacetum vulgare hybrid and allopolyploid (Asteraceae). HORTICULTURE RESEARCH 2018; 5:5. [PMID: 29423235 PMCID: PMC5802763 DOI: 10.1038/s41438-017-0003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 05/05/2023]
Abstract
Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense×T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.
Collapse
Affiliation(s)
- Xiangyu Qi
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Haibin Wang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| |
Collapse
|
12
|
Differential transcript profiling alters regulatory gene expression during the development of Gossypium arboreum, G.stocksii and somatic hybrids. Sci Rep 2017; 7:3120. [PMID: 28600526 PMCID: PMC5466607 DOI: 10.1038/s41598-017-03431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
Polyploidy or genome doubling (i.e., the presence of two or more diploid parental genome sets within an organism) are very important in higher plants. Of particular interest are the mechanisms in the new microenvironment of the common nucleus, where doubled regulatory networks interact to generate a viable genetic system capable of regulating growth, development and responses to the environment. To determine the effects of whole genome merging and doubling on the global gene expression architecture of a new polyploid, derived from protoplast fusion of the A1A1 genome of Gossypium arboreum and the E1E1 genome of Gossypium stocksii, we monitored gene expression through cDNA-AFLP in the somatic hybrids (G. arboreum + G. stocksii). The genomic expression patterns of the somatic hybrids revealed that changes in expression levels mainly involved regulatory genes (31.8% of the gene expression profiles), and the AA and EE genomes contributed equally to genome-wide expression in the newly formed AAEE genome from additivity and dominance effects. These results provide a novel perspective on polyploid gene regulation and hint at the underlying genetic basis of allopolyploid adaption in the new microenvironmental nucleus.
Collapse
|
13
|
Jung HJ, Kayum MA, Thamilarasan SK, Nath UK, Park JI, Chung MY, Hur Y, Nou IS. Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:739-750. [PMID: 32480603 DOI: 10.1071/fp16437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/28/2017] [Indexed: 06/11/2023]
Abstract
Calcium signals act as a second messenger in plant responses to various abiotic stresses, which regulate a range of physiological processes. Calcium-binding proteins, like calcineurin B-like (CBL) proteins, belong to a unique group of calcium sensors that play a role in calcium signalling. However, their identities and functions are unknown in Chinese cabbage. In this study, 17 CBL genes were identified from the Brassica rapa L. (Chinese cabbage) database and Br135K microarray datasets. They were used to construct a phylogenetic tree with known CBL proteins of other species. Analysis of genomic distribution and evolution revealed different gene duplication in Chinese cabbage compared to Arabidopsis. The microarray expression analysis showed differential expression of BrCBL genes at various temperatures. Organ-specific expression was observed by RT-PCR, and qRT-PCR analyses revealed responsiveness of BrCBL genes to cold, drought and salt stresses. Our findings confirm that CBL genes are involved in calcium signalling and regulate responses to environmental stimuli, suggesting this family gene have crucial role to play in plant responses to abiotic stresses. The results facilitate selection of candidate genes for further functional characterisation. In addition, abiotic stress-responsive genes reported in this study might be exploited for marker-aided backcrossing of Chinese cabbage.
Collapse
Affiliation(s)
- Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Senthil Kumar Thamilarasan
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| | - Yoonkang Hur
- Department of Biology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922, South Korea
| |
Collapse
|
14
|
Soltis DE, Visger CJ, Marchant DB, Soltis PS. Polyploidy: Pitfalls and paths to a paradigm. AMERICAN JOURNAL OF BOTANY 2016; 103:1146-66. [PMID: 27234228 DOI: 10.3732/ajb.1500501] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
Investigators have long searched for a polyploidy paradigm-rules or principles that might be common following polyploidization (whole-genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best-known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10-20 yr to fill the gaps in our knowledge of well-studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison-systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.
Collapse
Affiliation(s)
- Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Department of Biology, University of Florida, Gainesville, Florida 32611 USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA Genetics Institute, University of Florida, Gainesville, Florida 32608 USA
| |
Collapse
|
15
|
Fasano C, Diretto G, Aversano R, D'Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. THE NEW PHYTOLOGIST 2016; 210:1382-94. [PMID: 26915816 DOI: 10.1111/nph.13878] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/06/2015] [Indexed: 05/19/2023]
Abstract
Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species.
Collapse
Affiliation(s)
- Carlo Fasano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Nunzio D'Agostino
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di ricerca per l'orticoltura (CRA-ORT), via dei Cavalleggeri 25, Pontecagnano, Salerno, 84098, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, Rome, 00123, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| |
Collapse
|
16
|
Cheng S, Yang J, Liao T, Zhu X, Suo Y, Zhang P, Wang J, Kang X. Transcriptomic changes following synthesis of a Populus full-sib diploid and allotriploid population with different heterozygosities driven by three types of 2n female gamete. PLANT MOLECULAR BIOLOGY 2015; 89:493-510. [PMID: 26419948 DOI: 10.1007/s11103-015-0384-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Diploid gametes are usually applied to produce triploids of Populus [originating from first-division restitution (FDR), second-division restitution (SDR), and postmeiotic restitution (PMR) 2n eggs]. Three types of 2n gametes transmitted different parental heterozygosities in Populus. Failed spindle formation and no chromosomal separation to opposite poles during meiosis I mean that FDR 2n gametes carry nonsister chromatids that are potentially heterozygous. By contrast, SDR 2n gametes result from failed sister chromatid separation in meiosis II, and therefore, they carry sister chromatid that are potentially homozygous. Completely homozygous 2n gametes can arise from the PMR mechanism. The alteration of gene expression resulting from allopolyploidization is a prominent feature in plants. We compared gene expression in the full-sib progeny of three allotriploid Populus populations (triploid-F, triploid-S, and triploid-P) with that in its parent species, and their full-sib diploid F1 hybrid. Genome-wide expression level dominance was biased toward the maternal in the diploid F1 hybrid and three allotriploid populations, whereas our data indicated important, but different, effects of the transmission of different heterozygosity by 2n female gametes in the expression patterns of allopolyploids. Because of the higher level of heterozygosity, the triploids had higher rates of non-additive and transgressive expression patterns in the triploid-F than in triploid-S and triploid-P. Compared with diploid F1, about 30-fold more genes (251) were differently expressed in the triploid-F than in the triploid-S (9) and triploid-P (8), respectively. These findings indicate that hybridization and polyploidization have immediate and distinct effects on the large-scale patterns of gene expression, and different effects on the transmission of heterozygosity by three 2n female gametes.
Collapse
Affiliation(s)
- Shiping Cheng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Pingdingshan University, Pingdingshan, 467000, Henan Province, People's Republic of China
| | - Jun Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Ting Liao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiaohu Zhu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- College of Forestry and Horticulture, Xinjiang Agricultural University, No. 311, East Nongda Road, Urumqi, 830052, People's Republic of China
| | - Yujing Suo
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Pingdong Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xiangyang Kang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida 32611-8525; , ,
| | | | | | | | | |
Collapse
|
18
|
Chen D, Wu Y, Zhang X, Li F. Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe)2] Trispecific Hybrid and Selected Characteristics. PLoS One 2015; 10:e0127023. [PMID: 26035817 PMCID: PMC4452708 DOI: 10.1371/journal.pone.0127023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
Speciation is always a contentious and challenging issue following with the presence of gene flow. In Gossypium, there are many valuable resources and wild diploid cotton especially C and B genome species possess some excellent traits which cultivated cotton always lacks. In order to explore character transferring rule from wild cotton to upland tetraploid cotton, the [G. capitis-viridis × (G. hirsutum × G. australe)2] triple hybrid was synthesized by interspecies hybridization and chromosome doubling. Morphology comparisons were measured among this hybrid and its parents. It showed that trispecific hybrid F1 had some intermediate morphological characters like leaf style between its parents and some different characters from its parents, like crawl growth characteristics and two kind flower color. It is highly resistant to insects comparing with other cotton species by four year field investigation. By cytogenetic analysis, triple hybrid was further confirmed by meiosis behavior of pollen mother cells. Comparing with regular meiosis of its three parents, it was distinguished by the occurrence of polyads with various numbers of unbalanced microspores and finally generating various abnormal pollen grains. All this phenomenon results in the sterility of this hybrid. This hybrid was further identified by SSR marker from DNA molecular level. It showed that 98 selected polymorphism primers amplified effective bands in this hybrids and its parents. The genetic proportion of three parents in this hybrid is 47.8% from G. hirsutum, 14.3% from G. australe, 7.0% from G. capitis-viridis, and 30.9% recombination bands respectively. It was testified that wild genetic material has been transferred into cultivated cotton and this new germplasm can be incorporated into cotton breeding program.
Collapse
Affiliation(s)
- Di Chen
- Cotton Research Institute, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Yuxiang Wu
- Department of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiling Zhang
- Cotton Research Institute, Chinese Academy of Agricultural Science, Anyang, Henan, China
| | - Fuguang Li
- Cotton Research Institute, Chinese Academy of Agricultural Science, Anyang, Henan, China
| |
Collapse
|
19
|
Page JT, Udall JA. Methods for mapping and categorization of DNA sequence reads from allopolyploid organisms. BMC Genet 2015; 16 Suppl 2:S4. [PMID: 25951770 PMCID: PMC4423573 DOI: 10.1186/1471-2156-16-s2-s4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genome read categorization determines the genome of origin for sequence reads from an allopolyploid organism. Different techniques have been used to perform read categorization, mostly based on homoeo-SNPs identified between extant diploid relatives of allopolyploids. We present a novel technique for read categorization implemented by the software PolyDog. We demonstrate its accuracy and improved categorization relative to other methods. We discuss the situations in which one method or another might be most appropriate.
Collapse
|
20
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 PMCID: PMC4245742 DOI: 10.1186/s12870-014-0312-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
Affiliation(s)
- Olga P Yurchenko
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Sunjung Park
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Daniel C Ilut
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Jay J Inmon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Jon C Millhollon
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| | - Zach Liechty
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Justin T Page
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Matthew A Jenks
- />Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 2650 USA
| | - Kent D Chapman
- />Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX 76203 USA
| | - Joshua A Udall
- />Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Michael A Gore
- />Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - John M Dyer
- />USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138 USA
| |
Collapse
|
21
|
Yurchenko OP, Park S, Ilut DC, Inmon JJ, Millhollon JC, Liechty Z, Page JT, Jenks MA, Chapman KD, Udall JA, Gore MA, Dyer JM. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC PLANT BIOLOGY 2014; 14:312. [PMID: 25403726 DOI: 10.1186/s12870-014-0312-315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/28/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. RESULTS Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. CONCLUSIONS The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. Collectively, these data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.
Collapse
|
22
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
23
|
Renny-Byfield S, Wendel JF. Doubling down on genomes: polyploidy and crop plants. AMERICAN JOURNAL OF BOTANY 2014; 101:1711-25. [PMID: 25090999 DOI: 10.3732/ajb.1400119] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyploidy, or whole genome multiplication, is ubiquitous among angiosperms. Many crop species are relatively recent allopolyploids, resulting from interspecific hybridization and polyploidy. Thus, an appreciation of the evolutionary consequences of (allo)polyploidy is central to our understanding of crop plant domestication, agricultural improvement, and the evolution of angiosperms in general. Indeed, many recent insights into plant biology have been gleaned from polyploid crops, including, but not limited to wheat, tobacco, sugarcane, apple, and cotton. A multitude of evolutionary processes affect polyploid genomes, including rapid and substantial genome reorganization, transgressive gene expression alterations, gene fractionation, gene conversion, genome downsizing, and sub- and neofunctionalization of duplicate genes. Often these genomic changes are accompanied by heterosis, robustness, and the improvement of crop yield, relative to closely related diploids. Historically, however, the genome-wide analysis of polyploid crops has lagged behind those of diploid crops and other model organisms. This lag is partly due to the difficulties in genome assembly, resulting from the genomic complexities induced by combining two or more evolutionarily diverged genomes into a single nucleus and by the significant size of polyploid genomes. In this review, we explore the role of polyploidy in angiosperm evolution, the domestication process and crop improvement. We focus on the potential of modern technologies, particularly next-generation sequencing, to inform us on the patterns and processes governing polyploid crop improvement and phenotypic change subsequent to domestication.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| | - Jonathan F Wendel
- Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
24
|
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. Polyploidy and novelty: Gottlieb's legacy. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130351. [PMID: 24958924 PMCID: PMC4071524 DOI: 10.1098/rstb.2013.0351] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nearly four decades ago, Roose & Gottlieb (Roose & Gottlieb 1976 Evolution 30, 818-830. (doi:10.2307/2407821)) showed that the recently derived allotetraploids Tragopogon mirus and T. miscellus combined the allozyme profiles of their diploid parents (T. dubius and T. porrifolius, and T. dubius and T. pratensis, respectively). This classic paper addressed the link between genotype and biochemical phenotype and documented enzyme additivity in allopolyploids. Perhaps more important than their model of additivity, however, was their demonstration of novelty at the biochemical level. Enzyme multiplicity-the production of novel enzyme forms in the allopolyploids-can provide an extensive array of polymorphism for a polyploid individual and may explain, for example, the expanded ranges of polyploids relative to their diploid progenitors. In this paper, we extend the concept of evolutionary novelty in allopolyploids to a range of genetic and ecological features. We observe that the dynamic nature of polyploid genomes-with alterations in gene content, gene number, gene arrangement, gene expression and transposon activity-may generate sufficient novelty that every individual in a polyploid population or species may be unique. Whereas certain combinations of these features will undoubtedly be maladaptive, some unique combinations of newly generated variation may provide tremendous evolutionary potential and adaptive capabilities.
Collapse
Affiliation(s)
- Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoxian Liu
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - D Blaine Marchant
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Clayton J Visger
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Renny-Byfield S, Gallagher JP, Grover CE, Szadkowski E, Page JT, Udall JA, Wang X, Paterson AH, Wendel JF. Ancient gene duplicates in Gossypium (cotton) exhibit near-complete expression divergence. Genome Biol Evol 2014; 6:559-71. [PMID: 24558256 PMCID: PMC3971588 DOI: 10.1093/gbe/evu037] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 12/25/2022] Open
Abstract
Whole genome duplication (WGD) is widespread in flowering plants and is a driving force in angiosperm diversification. The redundancy introduced by WGD allows the evolution of novel gene interactions and functions, although the patterns and processes of diversification are poorly understood. We identified ∼ 2,000 pairs of paralogous genes in Gossypium raimondii (cotton) resulting from an approximately 60 My old 5- to 6-fold ploidy increase. Gene expression analyses revealed that, in G. raimondii, 99.4% of the gene pairs exhibit differential expression in at least one of the three tissues (petal, leaf, and seed), with 93% to 94% exhibiting differential expression on a per-tissue basis. For 1,666 (85%) pairs, differential expression was observed in all tissues. These observations were mirrored in a time series of G. raimondii seed, and separately in leaf, petal, and seed of G. arboreum, indicating expression level diversification before species divergence. A generalized linear model revealed 92.4% of the paralog pairs exhibited expression divergence, with most exhibiting significant gene and tissue interactions indicating complementary expression patterns in different tissues. These data indicate massive, near-complete expression level neo- and/or subfunctionalization among ancient gene duplicates, suggesting these processes are essential in their maintenance over ∼ 60 Ma.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Joseph P. Gallagher
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Emmanuel Szadkowski
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| | - Justin T. Page
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, Utah
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia
| | | | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa
| |
Collapse
|
26
|
Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 2014; 10:e1004073. [PMID: 24391525 PMCID: PMC3879233 DOI: 10.1371/journal.pgen.1004073] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023] Open
Abstract
The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ∼5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution. Ever since Darwin biologists have recognized that comparative study of crop plants and their wild relatives offers a powerful framework for generating insights into the mechanisms that underlie evolutionary change. Here, we study the domestication process in cotton, Gossypium hirsutum, an allopolyploid species (containing two different genomes) which initially was domesticated approximately 5000 years ago, and which primarily is grown for its single-celled seed fibers. Strong directional selection over the millennia was accompanied by transformation of the short, coarse, and brown fibers of wild plants into the long, strong, and fine white fibers of the modern cotton crop plant. To explore the evolutionary genetics of cotton domestication, we conducted transcriptome profiling of developing cotton fibers from multiple accessions of wild and domesticated cottons. Comparative analysis revealed that the domestication process dramatically rewired the transcriptome, affecting more than 5,000 genes, and with a more evenly balanced usage of the duplicated copies arising from genome doubling. We identify many different biological processes that were involved in this transformation, including those leading to a prolongation of fiber elongation and a reallocation of resources toward increased fiber growth in modern forms. The data provide a rich resource for future functional analyses targeting crop improvement and evolutionary objectives.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|