1
|
Li J, Chen S, Zhang Y, Zhao W, Yang J, Fan Y. A novel PLS-DYW type PPR protein OsASL is essential for chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112134. [PMID: 38810885 DOI: 10.1016/j.plantsci.2024.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Oryza longistaminata (OL), an AA-genome African wild rice which can propagate clonally via rhizome, is an important germplasm for improvement of Asian cultivated rice, however recessive lethal alleles can hitchhike clonal propagation in heterozygous state. Selfing of OL is difficult due to its self-incompatibility, but simple selfing of hybrid progeny between OL and O. sativa is effective to disclose and eliminate recessive lethal alleles. Here, we identified an exhibited albino-lethal phenotype mutant, from an F2 population between OL and O. sativa, named it albino seedling-lethal (asl). The leaves of asl mutant showed abnormal chloroplast development. The albino characteristics of asl were determined to be governed by a set of recessive nuclear genes through genetic analysis. Map-based cloning experiments found that a single nucleotide variation (G to A) was detected in the exon of OsASL in OL, which causes a premature stop codon. OsASL encodes a PLS-type PPR protein with 12 pentratricopeptide repeat domains, and is translocalized to chloroplasts. Complementation and knockout transgenic experiments further confirmed that OsASL is responsible for the albino-lethal phenotype. Loss-of-function OsASL (i.e. osasl) resulted in devoid of intron splicing of chloroplast RNA atpF, ndhA, rpl2 and rps12, and also RNA editing of ndhB, but facilitates the RNA editing of rpl2 in the plastid. Transcriptome sequencing showed that OsASL was mainly involved in chlorophyll synthesis pathway. The expression of Chlorophyll-associated genes were significantly decreased in asl plants, especially PEP (plastid-encoded RNA polymerase)-mediated genes. Our results suggest that OsASL is crucial for RNA editing, RNA splicing of chloroplast RNA group II genes, and plays an essential role in chloroplast development during early leaf development in rice.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shufang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weidong Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Wang K, Li J, Fan Y, Yang J. Temperature Effect on Rhizome Development in Perennial rice. RICE (NEW YORK, N.Y.) 2024; 17:32. [PMID: 38717687 PMCID: PMC11078906 DOI: 10.1186/s12284-024-00710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Traditional agriculture is becoming increasingly not adapted to global climate change. Compared with annual rice, perennial rice has strong environmental adaptation and needs fewer natural resources and labor inputs. Rhizome, a kind of underground stem for rice to achieve perenniallity, can grow underground horizontally and then bend upward, developing into aerial stems. The temperature has a great influence on plant development. To date, the effect of temperature on rhizome development is still unknown. Fine temperature treatment of Oryza longistaminata (OL) proved that compared with higher temperatures (28-30 ℃), lower temperature (17-19 ℃) could promote the sprouting of axillary buds and enhance negative gravitropism of branches, resulting in shorter rhizomes. The upward growth of branches was earlier at low temperature than that at high temperature, leading to a high frequency of shorter rhizomes and smaller branch angles. Comparative transcriptome showed that plant hormones played an essential role in the response of OL to temperature. The expressions of ARF17, ARF25 and FucT were up-regulated at low temperature, resulting in prospectively asymmetric auxin distribution, which subsequently induced asymmetric expression of IAA20 and WOX11 between the upper and lower side of the rhizome, further leading to upward growth of the rhizome. Cytokinin and auxin are phytohormones that can promote and inhibit bud outgrowth, respectively. The auxin biosynthesis gene YUCCA1 and cytokinin oxidase/dehydrogenase gene CKX4 and CKX9 were up-regulated, while cytokinin biosynthesis gene IPT4 was down-regulated at high temperature. Moreover, the D3 and D14 in strigolactones pathways, negatively regulating bud outgrowth, were up-regulated at high temperature. These results indicated that cytokinin, auxins, and strigolactones jointly control bud outgrowth at different temperatures. Our research revealed that the outgrowth of axillary bud and the upward growth of OL rhizome were earlier at lower temperature, providing clues for understanding the rhizome growth habit under different temperatures, which would be helpful for cultivating perennial rice.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Tong S, Ashikari M, Nagai K, Pedersen O. Can the Wild Perennial, Rhizomatous Rice Species Oryza longistaminata be a Candidate for De Novo Domestication? RICE (NEW YORK, N.Y.) 2023; 16:13. [PMID: 36928797 PMCID: PMC10020418 DOI: 10.1186/s12284-023-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
As climate change intensifies, the development of resilient rice that can tolerate abiotic stresses is urgently needed. In nature, many wild plants have evolved a variety of mechanisms to protect themselves from environmental stresses. Wild relatives of rice may have abundant and virtually untapped genetic diversity and are an essential source of germplasm for the improvement of abiotic stress tolerance in cultivated rice. Unfortunately, the barriers of traditional breeding approaches, such as backcrossing and transgenesis, make it challenging and complex to transfer the underlying resilience traits between plants. However, de novo domestication via genome editing is a quick approach to produce rice with high yields from orphans or wild relatives. African wild rice, Oryza longistaminata, which is part of the AA-genome Oryza species has two types of propagation strategies viz. vegetative propagation via rhizome and seed propagation. It also shows tolerance to multiple types of abiotic stress, and therefore O. longistaminata is considered a key candidate of wild rice for heat, drought, and salinity tolerance, and it is also resistant to lodging. Importantly, O. longistaminata is perennial and propagates also via rhizomes both of which are traits that are highly valuable for the sustainable production of rice. Therefore, O. longistaminata may be a good candidate for de novo domestication through genome editing to obtain rice that is more climate resilient than modern elite cultivars of O. sativa.
Collapse
Affiliation(s)
- Shuai Tong
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3Rd Floor, 2100, Copenhagen, Denmark
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center of Nagoya University, Furo-Cho, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Keisuke Nagai
- Bioscience and Biotechnology Center of Nagoya University, Furo-Cho, Chikusa, Nagoya, Aichi, 464-8602, Japan.
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3Rd Floor, 2100, Copenhagen, Denmark.
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
4
|
Zhang L, Xu Y, Liu X, Qin M, Li S, Jiang T, Yang Y, Jiang CZ, Gao J, Hong B, Ma C. The chrysanthemum DEAD-box RNA helicase CmRH56 regulates rhizome outgrowth in response to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5671-5681. [PMID: 35595538 DOI: 10.1093/jxb/erac213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved complex mechanisms to reprogram growth in response to drought stress. In herbaceous perennial plant species, the rhizome, which is normally an organ for propagation and food storage, can also support plant growth in stressful environments, and allows the plant to perennate and survive stress damage. However, the mechanisms that regulate rhizome growth in perennial herbs during abiotic stresses are unknown. Here, we identified a chrysanthemum (Chrysanthemum morifolium) DEAD-box RNA helicase gene, CmRH56, that is specifically expressed in the rhizome shoot apex. Knock down of CmRH56 transcript levels decreased the number of rhizomes and enhanced drought stress tolerance. We determined that CmRH56 represses the expression of a putative gibberellin (GA) catabolic gene, GA2 oxidase6 (CmGA2ox6). Exogenous GA treatment and silencing of CmGA2ox6 resulted in more rhizomes. These results demonstrate that CmRH56 suppresses rhizome outgrowth under drought stress conditions by blocking GA biosynthesis.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yanjie Xu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuening Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Meizhu Qin
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Shenglan Li
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tianhua Jiang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yingjie Yang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, USA
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Yang W, Liu W, Niu K, Ma X, Jia Z, Ma H, Wang Y, Liu M. Transcriptional Regulation of Different Rhizome Parts Reveal the Candidate Genes That Regulate Rhizome Development in Poa pratensis. DNA Cell Biol 2022; 41:151-168. [PMID: 34813368 DOI: 10.1089/dna.2021.0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A strong rhizome can enhance the ability of a plant to resist drought, low temperature, and other stresses, as it can help plants rapidly obtain water and nutrients. Poa pratensis var. anceps Gaud. cv. Qinghai (QH) is a variant of P. pratensis that is widely distributed in natural grasslands above 3000 m above sea level on the Qinghai-Tibet Plateau. It forms turf easily and has strong soil-fixing ability due to its well-developed rhizomes. Understanding the molecular mechanism of rhizome development in this species is essential for cultivating new varieties of rhizome-type pasture for ecological protection. To clarify the transcriptional regulatory changes in different parts of the rhizome, we analyzed three different rhizome parts (rhizome buds, rhizome nodes, and rhizome internodes) of QH and weak-rhizome wild P. pratensis material (SN) using RNA sequencing. A total of 3806 genes were specifically expressed in Q_B, 1104 genes were specifically expressed in Q_N, and 1181 genes were specifically expressed in Q_I. Analysis showed that MYB, B3, NAC, BBR-BPC, AP2 MIKC_MADS, BSE1, and C2H2 may be key transcription factors regulating rhizome development. These genes interacted with multiple functional genes related to carbohydrate, secondary metabolism, and signal transduction, thus ensuring the normal development of the rhizomes. In particular, SUS (sucrose synthase) [EC:2.4.1.13] is specifically expressed in Q_I, which may be an inducing factor for the production of new plants from Q_B and Q_N. Additionally, PYL, PP2C, and SNRK2, which are involved in the abscisic acid signaling pathway, were differentially expressed in Q_N. In addition, genes related to protein modification and degradation, such as CIPKs, MAPKs, E2, and E3 ubiquitin ligases, were also involved in rhizome development. This study laid a foundation for further functional genomics studies on rhizome development in P. pratensis.
Collapse
Affiliation(s)
- Wei Yang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Xiang Ma
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Zhifeng Jia
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Minjie Liu
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, China
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Qinghai University, Xining, People's Republic of China
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| |
Collapse
|
6
|
Rajakani R, Sellamuthu G, Ishikawa T, Ahmed HAI, Bharathan S, Kumari K, Shabala L, Zhou M, Chen ZH, Shabala S, Venkataraman G. Reduced apoplastic barriers in tissues of shoot-proximal rhizomes of Oryza coarctata are associated with Na+ sequestration. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:998-1015. [PMID: 34606587 DOI: 10.1093/jxb/erab440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Oryza coarctata is the only wild rice species with significant salinity tolerance. The present work examines the role of the substantial rhizomatous tissues of O. coarctata in conferring salinity tolerance. Transition to an erect phenotype (shoot emergence) from prostrate growth of rhizome tissues is characterized by marked lignification and suberization of supporting sclerenchymatous tissue, epidermis, and bundle sheath cells in aerial shoot-proximal nodes and internodes in O. coarctata. With salinity, however, aerial shoot-proximal internodal tissues show reductions in lignification and suberization, most probably related to re-direction of carbon flux towards synthesis of the osmporotectant proline. Concurrent with hypolignification and reduced suberization, the aerial rhizomatous biomass of O. coarctata appears to have evolved mechanisms to store Na+ in these specific tissues under salinity. This was confirmed by histochemical staining, quantitative real-time reverse transcription-PCR expression patterns of genes involved in lignification/suberization, Na+ and K+ contents of internodal tissues, as well as non-invasive microelectrode ion flux measurements of NaCl-induced net Na+, K+, and H+ flux profiles of aerial nodes were determined. In O. coarctata, aerial proximal internodes appear to act as 'traffic controllers', sending required amounts of Na+ and K+ into developing leaves for osmotic adjustment and turgor-driven growth, while more deeply positioned internodes assume a Na+ buffering/storage role.
Collapse
Affiliation(s)
- Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
- Forest Molecular Entomology Laboratory, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague-16500, Czech Republic
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said 42522, Egypt
| | - Subhashree Bharathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thirumalaisamudram, Thanjavur-613401, Tamil Nadu, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600 113, India
| |
Collapse
|
7
|
Xie J, Wang X, Xu J, Xie H, Cai Y, Liu Y, Ding X. Strategies and Structure Feature of the Aboveground and Belowground Microbial Community Respond to Drought in Wild Rice (Oryza longistaminata). RICE (NEW YORK, N.Y.) 2021; 14:79. [PMID: 34495440 PMCID: PMC8426455 DOI: 10.1186/s12284-021-00522-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Drought is global environmental stress that limits crop yields. Plant-associated microbiomes play a crucial role in determining plant fitness in response to drought, yet the fundamental mechanisms for maintaining microbial community stability under drought disturbances in wild rice are poorly understood. We make explicit comparisons of leaf, stem, root and rhizosphere microbiomes from the drought-tolerant wild rice (Oryza longistaminata) in response to drought stress. RESULTS We find that the response of the wild rice microbiome to drought was divided into aboveground-underground patterns. Drought reduced the leaf and stem microbial community diversity and networks stability, but not that of the roots and rhizospheres. Contrary to the aboveground microbial networks, the drought-negative response taxa exhibited much closer interconnections than the drought-positive response taxa and were the dominant network hubs of belowground co-occurrence networks, which may contribute to the stability of the belowground network. Notably, drought induces enrichment of Actinobacteria in belowground compartments, but not the aboveground compartment. Additionally, the rhizosphere microbiome exhibited a higher proportion of generalists and broader habitat niche breadth than the microbiome at other compartments, and drought enhanced the proportion of specialists in all compartments. Null model analysis revealed that both the aboveground and belowground-community were governed primarily by the stochastic assembly process, moreover, drought decreased 'dispersal limitation', and enhanced 'drift'. CONCLUSIONS Our results provide new insight into the different strategies and assembly mechanisms of the above and belowground microbial community in response to drought, including enrichment of taxonomic groups, and highlight the important role of the stochastic assembly process in shaping microbial community under drought stress.
Collapse
Affiliation(s)
- Jian Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaoqing Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jiawang Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Yizheng Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xia Ding
- School of Life Sciences, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
8
|
Meng L, Zhang X, Wang L, Liu H, Zhao Y, Yi K, Cui G, Yin X. Transcriptome profiling unveils the mechanism of phenylpropane biosynthesis in rhizome development of Caucasian clover. PLoS One 2021; 16:e0254669. [PMID: 34255805 PMCID: PMC8277049 DOI: 10.1371/journal.pone.0254669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
Caucasian clover is the only perennial herb of the genus Leguminous clover with underground rhizomes. However, we know very little about its development process and mechanism. Transcriptome studies were conducted on the roots of Caucasian clover without a rhizome (NR) at the young seedling stage and the fully developed rhizome, including the root neck (R1), main root (R2), horizontal root (R3), and rhizome bud (R4), of the tissues in the mature phase. Compared with the rhizome in the mature phase, NR had 893 upregulated differentially expressed genes (DEGs), most of which were enriched in 'phenylpropanoid biosynthesis', 'phenylalanine metabolism', 'DNA replication' and 'biosynthesis of amino acids'. A higher number of transcription factors (AP2/ERF, C2H2 and FAR1) were found in NR. There were highly expressed genes for R4, such as auxin response factor SAUR, galacturonosyltransferase (GAUT), and sucrose synthase (SUS). Phenylpropanoids are very important for the entire process of rhizome development. We drew a cluster heat map of genes related to the phenylpropanoid biosynthesis pathway, in which the largest number of genes belonged to COMT, and most of them were upregulated in R4.
Collapse
Affiliation(s)
- Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lina Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Haoyue Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Gruner P, Miedaner T. Perennial Rye: Genetics of Perenniality and Limited Fertility. PLANTS 2021; 10:plants10061210. [PMID: 34198672 PMCID: PMC8232189 DOI: 10.3390/plants10061210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Perenniality, the ability of plants to regrow after seed set, could be introgressed into cultivated rye by crossing with the wild relative and perennial Secale strictum. However, studies in the past showed that Secale cereale × Secale strictum-derived cultivars were also characterized by reduced fertility what was related to so called chromosomal multivalents, bulks of chromosomes that paired together in metaphase I of pollen mother cells instead of only two chromosomes (bivalents). Those multivalents could be caused by ancient translocations that occurred between both species. Genetic studies on perennial rye are quite old and especially the advent of molecular markers and genome sequencing paved the way for new insights and more comprehensive studies. After a brief review of the past research, we used a basic QTL mapping approach to analyze the genetic status of perennial rye. We could show that for the trait perennation 0.74 of the genetic variance in our population was explained by additively inherited QTLs on chromosome 2R, 3R, 4R, 5R and 7R. Fertility on the other hand was with 0.64 of explained genetic variance mainly attributed to a locus on chromosome 5R, what was most probably the self-incompatibility locus S5. Additionally, we could trace the Z locus on chromosome 2R by high segregation distortion of markers. Indications for chromosomal co-segregation, like multivalents, could not be found. This study opens new possibilities to use perennial rye as genetic resource and for alternative breeding methods, as well as a valuable resource for comparative studies of perennation across different species.
Collapse
|
10
|
Ma Z, Chen S, Wang Z, Liu J, Zhang B. Proteome analysis of bermudagrass stolons and rhizomes provides new insights into the adaptation of plant stems to aboveground and underground growth. J Proteomics 2021; 241:104245. [PMID: 33901681 DOI: 10.1016/j.jprot.2021.104245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
As an important perennial warm-season turfgrass species, bermudagrass (Cynodon dactylon L.) forms underground-growing rhizomes and aboveground-growing stolons simultaneously, making it a fast propagating clonal plant with strong regeneration ability. In the current study, we compared the internode proteomes of rhizomes and stolons at the same developmental stage in the bermudagrass cultivar Yangjiang using iTRAQ. The results indicated that 228 protein species were differentially accumulated in the two specialized stems. In agreement with the different contents of starch, chlorophyll, anthocyanin and H2O2 in the two types of stems, photosynthesis and flavonoid biosynthesis were enriched with differentially accumulated protein species (DAPs) in stolons, whereas starch and sucrose metabolism, glycolysis, and H2O2 metabolism were enriched with DAPs in rhizomes. Burying stolons in the soil resulted in the gradual degradation of chlorophyll and anthocyanin, accumulation of starch, and increment of H2O2, which is similar to the physiological characteristics of rhizomes. These results collectively revealed that stolons and rhizomes of bermudagrass have significant differences at the proteome level and light might play important regulatory roles in the discrepancy of the proteome profiles and specialization of the two stems, providing new insights into the adaptation of plant stems to aboveground and underground growth. BIOLOGICAL SIGNIFICANCE: As two types of specialized stems that grow underground and aboveground respectively, rhizomes and stolons play important roles in overwintering and ecological invasion of many perennial and clonal plants. However, because rhizomes and stolons rarely coexist in single plant species, the differences between the two stems remain unclear at the molecular level. In this study, through an iTRAQ comparative proteomic analysis, we reported the identification of 228 differentially accumulated protein species (DAPs) in rhizomes and stolons of bermudagrass for the first time. We found that the 228 DAPs were interconnected to form protein networks in regulating diverse cellular activities and biochemical reactions. We also observed that stolons growing underground showed similar physiological activities and DAP expression as those of underground-growing rhizomes, suggesting that light might play important regulatory roles in the specialization of stolons and rhizomes. These results expanded our understanding of the mysterious adaption of plant stems to different growth conditions.
Collapse
Affiliation(s)
- Ziyan Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Si Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhizhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Peng X, Xie J, Li W, Xie H, Cai Y, Ding X. Comparison of wild rice (Oryza longistaminata) tissues identifies rhizome-specific bacterial and archaeal endophytic microbiomes communities and network structures. PLoS One 2021; 16:e0246687. [PMID: 33556120 PMCID: PMC7870070 DOI: 10.1371/journal.pone.0246687] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Compared with root-associated habitats, little is known about the role of microbiota inside other rice organs, especially the rhizome of perennial wild rice, and this information may be of importance for agriculture. Oryza longistaminata is perennial wild rice with various agronomically valuable traits, including large biomass on poor soils, high nitrogen use efficiency, and resistance to insect pests and disease. Here, we compared the endophytic bacterial and archaeal communities and network structures of the rhizome to other compartments of O. longistaminata using 16S rRNA gene sequencing. Diverse microbiota and significant variation in community structure were identified among different compartments of O. longistaminata. The rhizome microbial community showed low taxonomic and phylogenetic diversity as well as the lowest network complexity among four compartments. Rhizomes exhibited less phylogenetic clustering than roots and leaves, but similar phylogenetic clustering with stems. Streptococcus, Bacillus, and Methylobacteriaceae were the major genera in the rhizome. ASVs belonging to the Enhydrobacter, YS2, and Roseburia are specifically present in the rhizome. The relative abundance of Methylobacteriaceae in the rhizome and stem was significantly higher than that in leaf and root. Noteworthy type II methanotrophs were observed across all compartments, including the dominant Methylobacteriaceae, which potentially benefits the host by facilitating CH4-dependent N2 fixation under nitrogen nutrient-poor conditions. Our data offers a robust knowledge of host and microbiome interactions across various compartments and lends guidelines to the investigation of adaptation mechanisms of O. longistaminata in nutrient-poor environments for biofertilizer development in agriculture.
Collapse
Affiliation(s)
- Xiaojue Peng
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial People’s Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Wenzhuo Li
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Hongwei Xie
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Yaohui Cai
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xia Ding
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial People’s Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Fan Z, Wang K, Rao J, Cai Z, Tao LZ, Fan Y, Yang J. Interactions Among Multiple Quantitative Trait Loci Underlie Rhizome Development of Perennial Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:591157. [PMID: 33281851 PMCID: PMC7689344 DOI: 10.3389/fpls.2020.591157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Perennial crops have some advantages over annuals in soil erosion prevention, lower labor and water requirements, carbon sequestration, and maintenance of thriving soil ecosystems. Rhizome, a kind of root-like underground stem, is a critical component of perenniality, which allows many grass species to survive through harsh environment. Identification of rhizome-regulating genes will contribute to the development of perennial crops. There have been no reports on the cloning of such genes until now, which bring urgency for identification of genes controlling rhizomatousness. Using rhizomatous Oryza longistaminata and rhizome-free cultivated rice as male and female parents, respectively, genetic populations were developed to identify genes regulating rhizome. Both entire population genotyping and selective genotyping mapping methods were adopted to detect rhizome-regulating quantitative trait loci (QTL) in 4 years. Results showed that multiple genes regulated development of rhizomes, with over 10 loci related to rhizome growth. At last, five major-effect loci were identified including qRED1.2, qRED3.1, qRED3.3, qRED4.1, and qRED4.2. It has been found that the individual plant with well-developed rhizomes carried at least three major-effect loci and a certain number of minor-effect loci. Both major-effect and minor-effect loci worked together to control rhizome growth, while no one could work alone. These results will provide new understanding of genetic regulation on rhizome growth and reference to the subsequent gene isolation in rice. And the related research methods and results in this study will contribute to the research on rhizome of other species.
Collapse
Affiliation(s)
- Zhiquan Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Kai Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jianglei Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhongquan Cai
- College of Agriculture, Guangxi University, Nanning, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Yin X, Yi K, Zhao Y, Hu Y, Li X, He T, Liu J, Cui G. Revealing the full-length transcriptome of caucasian clover rhizome development. BMC PLANT BIOLOGY 2020; 20:429. [PMID: 32938399 PMCID: PMC7493993 DOI: 10.1186/s12870-020-02637-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Caucasian clover (Trifolium ambiguum M. Bieb.) is a strongly rhizomatous, low-crowned perennial leguminous and ground-covering grass. The species may be used as an ornamental plant and is resistant to cold, arid temperatures and grazing due to a well-developed underground rhizome system and a strong clonal reproduction capacity. However, the posttranscriptional mechanism of the development of the rhizome system in caucasian clover has not been comprehensively studied. Additionally, a reference genome for this species has not yet been published, which limits further exploration of many important biological processes in this plant. RESULT We adopted PacBio sequencing and Illumina sequencing to identify differentially expressed genes (DEGs) in five tissues, including taproot (T1), horizontal rhizome (T2), swelling of taproot (T3), rhizome bud (T4) and rhizome bud tip (T5) tissues, in the caucasian clover rhizome. In total, we obtained 19.82 GB clean data and 80,654 nonredundant transcripts were analysed. Additionally, we identified 78,209 open reading frames (ORFs), 65,227 coding sequences (CDSs), 58,276 simple sequence repeats (SSRs), 6821 alternative splicing (AS) events, 2429 long noncoding RNAs (lncRNAs) and 4501 putative transcription factors (TFs) from 64 different families. Compared with other tissues, T5 exhibited more DEGs, and co-upregulated genes in T5 are mainly annotated as involved in phenylpropanoid biosynthesis. We also identified betaine aldehyde dehydrogenase (BADH) as a highly expressed gene-specific to T5. A weighted gene co-expression network analysis (WGCNA) of transcription factors and physiological indicators were combined to reveal 11 hub genes (MEgreen-GA3), three of which belong to the HB-KNOX family, that are up-regulated in T3. We analysed 276 DEGs involved in hormone signalling and transduction, and the largest number of genes are associated with the auxin (IAA) signalling pathway, with significant up-regulation in T2 and T5. CONCLUSIONS This study contributes to our understanding of gene expression across five different tissues and provides preliminary insight into rhizome growth and development in caucasian clover.
Collapse
Affiliation(s)
- Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yao Hu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Li
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Taotao He
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jiaxue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
14
|
Ma X, Yu J, Zhuang L, Shi Y, Meyer W, Huang B. Differential regulatory pathways associated with drought-inhibition and post-drought recuperation of rhizome development in perennial grass. ANNALS OF BOTANY 2020; 126:481-497. [PMID: 32445476 PMCID: PMC7424744 DOI: 10.1093/aob/mcaa099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Rhizomes are key organs for the establishment of perennial grass stands and adaptation to environmental stress. However, mechanisms regulating rhizome initiation and elongation under drought stress and during post-drought recovery remain unclear. The objective of this study is to investigate molecular factors and metabolic processes involved in drought effects and post-drought recovery in rhizome growth in perennial grass species by comparative transcriptomic and proteomic profiling. METHODS Tall fescue (Festuca arundinacea) (B-type rhizome genotype, 'BR') plants were exposed to drought stress and re-watering in growth chambers. The number and length of rhizomes were measured following drought stress and re-watering. Hormone and sugar contents were analysed, and transcriptomic and proteomic analyses were performed to identify metabolic factors, genes and proteins associated with rhizome development. KEY RESULTS Rhizome initiation and elongation were inhibited by drought stress, and were associated with increases in the contents of abscisic acid (ABA) and soluble sugars, but declines in the contents of indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin (GA4). Genes involved in multiple metabolic processes and stress defence systems related to rhizome initiation exhibited different responses to drought stress, including ABA signalling, energy metabolism and stress protection. Drought-inhibition of rhizome elongation could be mainly associated with the alteration of GA4 and antioxidants contents, energy metabolism and stress response proteins. Upon re-watering, new rhizomes were regenerated from rhizome nodes previously exposed to drought stress, which was accompanied by the decline in ABA content and increases in IAA, ZR and GA4, as well as genes and proteins for auxin, lipids, lignin and nitrogen metabolism. CONCLUSIONS Drought-inhibition of rhizome initiation and elongation in tall fescue was mainly associated with adjustments in hormone metabolism, carbohydrate metabolism and stress-defence systems. Rhizome regeneration in response to re-watering involved reactivation of hormone and lipid metabolism, secondary cell-wall development, and nitrogen remobilization and cycling.
Collapse
Affiliation(s)
- Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, PR China
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Jingjin Yu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Lili Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, PR China
| | - Yi Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, PR China
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - William Meyer
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- For correspondence. E-mail
| |
Collapse
|
15
|
Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Sci Rep 2020; 10:13291. [PMID: 32764594 PMCID: PMC7413523 DOI: 10.1038/s41598-020-69941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/03/2020] [Indexed: 11/24/2022] Open
Abstract
The rhizome is a plant organ that develops from a shoot apical meristem but penetrates into belowground environments. To characterize the gene expression profile of rhizomes, we compared the rhizome transcriptome with those of the leaves, shoots and roots of a rhizomatous Brassicaceae plant, Cardamine leucantha. Overall, rhizome transcriptomes were characterized by the absence of genes that show rhizome-specific expression and expression profiles intermediate between those of shoots and roots. Our results suggest that both endogenous developmental factors and external environmental factors are important for controlling the rhizome transcriptome. Genes that showed relatively high expression in the rhizome compared to shoots and roots included those related to belowground defense, control of reactive oxygen species and cell elongation under dark conditions. A comparison of transcriptomes further allowed us to identify the presence of an ER body, a defense-related belowground organelle, in epidermal cells of the C. leucantha rhizome, which is the first report of ER bodies in rhizome tissue.
Collapse
|
16
|
Brownstein KJ, Tushingham S, Damitio WJ, Nguyen T, Gang DR. An Ancient Residue Metabolomics-Based Method to Distinguish Use of Closely Related Plant Species in Ancient Pipes. Front Mol Biosci 2020; 7:133. [PMID: 32671097 PMCID: PMC7332879 DOI: 10.3389/fmolb.2020.00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Residues from ancient artifacts can help identify which plant species were used for their psychoactive properties, providing important information regarding the deep-time co-evolutionary relationship between plants and humans. However, relying on the presence or absence of one or several biomarkers has limited the ability to confidently connect residues to particular plants. We describe a comprehensive metabolomics-based approach that can distinguish closely related species and provide greater confidence in species use determinations. An ~1430-year-old pipe from central Washington State not only contained nicotine, but also had strong evidence for the smoking of Nicotiana quadrivalvis and Rhus glabra, as opposed to several other species in this pre-contact pipe. Analysis of a post-contact pipe suggested use of different plants, including the introduced trade tobacco, Nicotiana rustica. Ancient residue metabolomics provides a new frontier in archaeo-chemistry, with greater precision to investigate the evolution of drug use and similar plant-human co-evolutionary dynamics.
Collapse
Affiliation(s)
- Korey J. Brownstein
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Shannon Tushingham
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - William J. Damitio
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Tung Nguyen
- Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Kaur A, Neelam K, Kaur K, Kitazumi A, de Los Reyes BG, Singh K. Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 2020; 10:6571. [PMID: 32313086 PMCID: PMC7170842 DOI: 10.1038/s41598-020-62649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran, a by-product after milling, is a rich source of phytonutrients like oryzanols, tocopherols, tocotrienols, phytosterols, and dietary fibers. Moreover, exceptional properties of the rice bran oil make it unparalleled to other vegetable oils. However, a lipolytic enzyme Phospholipase D alpha1 (OsPLDα1) causes rancidity and ‘stale flavor’ in the oil, and thus limits the rice bran usage for human consumption. To improve the rice bran quality, sequence based allele mining at OsPLDα1 locus (3.6 Kb) was performed across 48 accessions representing 11 wild Oryza species, 8 accessions of African cultivated rice, and 7 Oryza sativa cultivars. From comparative sequence analysis, 216 SNPs and 30 InDels were detected at the OsPLDα1 locus. Phylogenetic analysis revealed 20 OsPLDα1 cDNA variants which further translated into 12 protein variants. The O. officinalis protein variant, when compared to Nipponbare, showed maximum variability comprising 22 amino acid substitutions and absence of two peptides and two β-sheets. Further, expression profiling indicated significant differences in transcript abundance within as well as between the OsPLDα1 variants. Also, a new OsPLDα1 transcript variant having third exon missing in it, Os01t0172400-06, has been revealed. An O. officinalis accession (IRGC101152) had lowest gene expression which suggests the presence of novel allele, named as OsPLDα1-1a (GenBank accession no. MF966931). The identified novel allele could be further deployed in the breeding programs to overcome rice bran rancidity in elite cultivars.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.,School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ai Kitazumi
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Benildo G de Los Reyes
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India. .,ICAR- National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
18
|
Thein HW, Yamagata Y, Van Mai T, Yasui H. Four resistance alleles derived from Oryza longistaminata (A. Chev. & Roehrich) against green rice leafhopper, Nephotettix cincticeps (Uhler) identified using novel introgression lines. BREEDING SCIENCE 2019; 69:573-584. [PMID: 31988621 PMCID: PMC6977446 DOI: 10.1270/jsbbs.19060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/30/2019] [Indexed: 05/19/2023]
Abstract
The green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is a serious insect pest of rice (Oryza sativa L.) in temperate regions of Asia. Wild Oryza species are the main source of resistance to insects. The W1413 accession of African wild rice (O. longistaminata A. Chev. & Roehrich) is resistant to GRH. To analyze its resistance, we developed 28 BC3F3 introgression lines carrying W1413 segments in the genetic background of Nipponbare, a susceptible rice cultivar, and evaluated their GRH resistance. Five BC3F3 populations were used for quantitative trait locus (QTL) analysis and seven BC3F4 populations for QTL validation. Four significant QTLs on the long arm of chromosome 2 (qGRH2), short arm of chromosome 4 (qGRH4), short arm of chromosome 5 (qGRH5), and long arm of chromosome 11 (qGRH11) were identified. The contribution of the W1413 allele at qGRH11 was the largest among the four QTLs; the other QTLs also contributed to GRH resistance. Chromosomal locations suggested that qGRH11 corresponds to the previously reported GRH resistance gene Grh2, qGRH4 to Grh6, and qGRH5 to Grh1. qGRH2 is a novel QTL for resistance to GRH. Thus, resistance of O. longistaminata to GRH can be explained by at least four QTLs.
Collapse
Affiliation(s)
- Hnin Wah Thein
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Yoshiyuki Yamagata
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Tan Van Mai
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka 819-0395,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
19
|
Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species. Commun Biol 2018; 1:162. [PMID: 30320230 PMCID: PMC6173730 DOI: 10.1038/s42003-018-0171-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 09/13/2018] [Indexed: 01/30/2023] Open
Abstract
The African wild rice species Oryza longistaminata has several beneficial traits compared to cultivated rice species, such as resistance to biotic stresses, clonal propagation via rhizomes, and increased biomass production. To facilitate breeding efforts and functional genomics studies, we de-novo assembled a high-quality, haploid-phased genome. Here, we present our assembly, with a total length of 351 Mb, of which 92.2% was anchored onto 12 chromosomes. We detected 34,389 genes and 38.1% of the genome consisted of repetitive content. We validated our assembly by a comparative linkage analysis and by examining well-characterized gene families. This genome assembly will be a useful resource to exploit beneficial alleles found in O. longistaminata. Our results also show that it is possible to generate a high-quality, functionally complete rice genome assembly from moderate SMRT read coverage by exploiting synteny in a closely related Oryza species. Stefan Reuscher et al. assembled the genome of an African wild rice species to facilitate breeding efforts and functional genomic studies. They used SMRT sequencing, chromosomal synteny between rice species, and a linkage map to assemble the 351 Mb genome into 12 chromosomes.
Collapse
|
20
|
Gichuhi E, Himi E, Takahashi H, Zhu S, Doi K, Tsugane K, Maekawa M. Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying Oryza longistaminata chromosome segments and Norin 18 in rice. BREEDING SCIENCE 2016; 66:720-733. [PMID: 28163588 PMCID: PMC5282759 DOI: 10.1270/jsbbs.16083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/01/2016] [Indexed: 05/04/2023]
Abstract
To improve rice yield, a wide genetic pool is necessary. It is therefore important to explore wild rice relatives. Oryza longistaminata is a distantly related wild rice relative that carries the AA genome. Its potential for improving agronomic traits is not well studied. Introgression line (pLIA-1) that carries Oryza longistaminata's chromosome segments, showed high performance in yield-related traits under non-fertilized conditions. Therefore, to illustrate Oryza longistaminata's potential for improving yield-related traits, RILs from the F1 of a cross between pLIA-1 and Norin 18 were developed and QTL analysis was done using the RAD-Seq method. In total, 36 QTLs for yield-related traits were identified on chromosomes 1, 2, 3, 5, 6, 7, 8, 10, and 11. Clusters of QTLs for strongly correlated traits were also identified on chromosomes 1, 3, 6, and 8. Phenotypic data from recombinant plants for chromosomes 1 and 8 QTL clusters revealed that the pLIA-1 genotype on chromosome 1 region was more important for panicle-related traits and a combination of pLIA-1 genotypes on chromosomes 1 and 8 showed a favorable phenotype under non-fertilized conditions. These results suggest that Oryza longistaminata's chromosome segments carry important alleles that can be used to improve yield-related traits of rice.
Collapse
Affiliation(s)
- Emily Gichuhi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University , Kurashiki, Okayama 710-0046 , Japan
| | - Hidekazu Takahashi
- Graduate School of Bioresource Sciences, Akita Prefectural University , Akita 010-0195 , Japan
| | - Sinhao Zhu
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Aichi 464-8601 , Japan
| | - Kazuyuki Doi
- Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya, Aichi 464-8601 , Japan
| | - Kazuo Tsugane
- National Institute for Basic Biology , Okazaki, Aichi 444-8585 , Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University , Kurashiki, Okayama 710-0046 , Japan
| |
Collapse
|
21
|
Yoshida A, Terada Y, Toriba T, Kose K, Ashikari M, Kyozuka J. Analysis of Rhizome Development in Oryza longistaminata, a Wild Rice Species. PLANT & CELL PHYSIOLOGY 2016; 57:2213-2220. [PMID: 27516415 DOI: 10.1093/pcp/pcw138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/30/2016] [Indexed: 05/17/2023]
Abstract
Vegetative reproduction is a form of asexual propagation in plants. A wide range of plants develop rhizomes, modified stems that grow underground horizontally, as a means of vegetative reproduction. In rhizomatous species, despite their distinct developmental patterns, both rhizomes and aerial shoots derive from axillary buds. Therefore, it is of interest to understand the basis of rhizome initiation and development. Oryza longistaminata, a wild rice species, develops rhizomes. We analyzed bud initiation and growth of O. longistaminata rhizomes using various methods of morphological observation. We show that, unlike aerial shoot buds that contain a few leaves only, rhizome buds initiate several leaves and bend to grow at right angles to the original rhizome. Rhizomes are maintained in the juvenile phase irrespective of the developmental phase of the aerial shoot. Stem elongation and reproductive transition are tightly linked in the aerial shoots, but are uncoupled in the rhizome. Our findings indicate that developmental programs operate independently in the rhizomes and aerial shoots. Temporal modification of the developmental pathways that are common to rhizomes and aerial shoots may be the source of developmental plasticity. Furthermore, the creation of new developmental systems appears to be necessary for rhizome development.
Collapse
Affiliation(s)
- Akiko Yoshida
- CREST, Strategic Basic Research Program, JST, Tokyo, 102-0076 Japan
- Tohoku University, Graduate School of Life Sciences, Sendai, 980-8577 Japan
- present address: RIKEN, Center for Sustainable Resource Science, Yokohama 230-0045 Japan
| | - Yasuhiko Terada
- University of Tsukuba, Institute of Applied Physics, Tsukuba, 305-8573 Japan
| | - Taiyo Toriba
- CREST, Strategic Basic Research Program, JST, Tokyo, 102-0076 Japan
- Tohoku University, Graduate School of Life Sciences, Sendai, 980-8577 Japan
| | - Katsumi Kose
- University of Tsukuba, Institute of Applied Physics, Tsukuba, 305-8573 Japan
| | - Motoyuki Ashikari
- CREST, Strategic Basic Research Program, JST, Tokyo, 102-0076 Japan
- Nagoya University, Bioscience and Biotechnology Center, Nagoya, 464-8601 Japan
| | - Junko Kyozuka
- CREST, Strategic Basic Research Program, JST, Tokyo, 102-0076 Japan
- Tohoku University, Graduate School of Life Sciences, Sendai, 980-8577 Japan
| |
Collapse
|
22
|
Ma X, Xu Q, Meyer WA, Huang B. Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism. ANNALS OF BOTANY 2016; 118:481-94. [PMID: 27443301 PMCID: PMC4998981 DOI: 10.1093/aob/mcw120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. METHODS A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue.
Collapse
Affiliation(s)
- Xiqing Ma
- College of Agro-grassland Science Nanjing Agricultural University, Nanjing 210095, PR China Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Qian Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China
| | - William A Meyer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
23
|
Ma X, Huang B. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species. FRONTIERS IN PLANT SCIENCE 2016; 7:905. [PMID: 27446135 PMCID: PMC4917561 DOI: 10.3389/fpls.2016.00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 05/10/2023]
Abstract
Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; 'BR') and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; 'Baron') were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth.
Collapse
Affiliation(s)
- Xiqing Ma
- College of Agro-grassland Science, Nanjing Agricultural University, NanjingChina
- Department of Plant Biology and Pathology, State University of New Jersey, New Brunswick, NJUSA
| | - Bingru Huang
- Department of Plant Biology and Pathology, State University of New Jersey, New Brunswick, NJUSA
| |
Collapse
|
24
|
Zhao H, Dong L, Sun H, Li L, Lou Y, Wang L, Li Z, Gao Z. Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis. Sci Rep 2016; 6:27640. [PMID: 27325361 PMCID: PMC4914925 DOI: 10.1038/srep27640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022] Open
Abstract
GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lili Dong
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Huayu Sun
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lichao Li
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yongfeng Lou
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lili Wang
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zuyao Li
- Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhimin Gao
- State Forestry Administration Key Open Laboratory on the Science and Technology of Bamboo and Rattan, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
25
|
Zhang Y, Zhang S, Liu H, Fu B, Li L, Xie M, Song Y, Li X, Cai J, Wan W, Kui L, Huang H, Lyu J, Dong Y, Wang W, Huang L, Zhang J, Yang Q, Shan Q, Li Q, Huang W, Tao D, Wang M, Chen M, Yu Y, Wing RA, Wang W, Hu F. Genome and Comparative Transcriptomics of African Wild Rice Oryza longistaminata Provide Insights into Molecular Mechanism of Rhizomatousness and Self-Incompatibility. MOLECULAR PLANT 2015; 8:1683-6. [PMID: 26358679 DOI: 10.1016/j.molp.2015.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 05/20/2023]
Affiliation(s)
- Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shilai Zhang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Hui Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lijuan Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Min Xie
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Cai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenting Wan
- Laboratory of Applied Genomics and Synthetic Biology, College of Life Science, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Ling Kui
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Huang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jun Lyu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yang Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Laboratory of Applied Genomics and Synthetic Biology, College of Life Science, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liyu Huang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jing Zhang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qinzhong Yang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qinli Shan
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qiong Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Wangqi Huang
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Muhua Wang
- Arizona Genomics of Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeisoo Yu
- Arizona Genomics of Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Rod A Wing
- Arizona Genomics of Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Fengyi Hu
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| |
Collapse
|
26
|
Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4551-66. [PMID: 26022256 PMCID: PMC4507760 DOI: 10.1093/jxb/erv217] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - F Omar Holguin
- College of Agricultural, Consumer and Environmental Sciences, New Mexico State University, 1780 E. University Ave, Las Cruces, NM 88003, USA
| | - Min-Jeong Kim
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Hongxia Wang
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Current address: National Center of Biomedical Analysis, 27 Taiping Road, Beijing, 100850, China
| | - Rahul R Deshpande
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI 48864, USA
| | - Leslie M Hicks
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27516, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
27
|
Salvato F, Balbuena TS, Nelson W, Rao RSP, He R, Soderlund CA, Gang DR, Thelen JJ. Comparative proteomic analysis of developing rhizomes of the ancient vascular plant Equisetum hyemale and different monocot species. J Proteome Res 2015; 14:1779-91. [PMID: 25716083 DOI: 10.1021/pr501157w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rhizome is responsible for the invasiveness and competitiveness of many plants with great economic and agricultural impact worldwide. Besides its value as an invasive organ, the rhizome plays a role in the establishment and massive growth of forage, providing biomass for biofuel production. Despite these features, little is known about the molecular mechanisms that contribute to rhizome growth, development, and function in plants. In this work, we characterized the proteome of rhizome apical tips and elongation zones from different species using a GeLC-MS/MS (one-dimensional electrophoresis in combination with liquid chromatography coupled online with tandem mass spectrometry) spectral-counting proteomics strategy. Five rhizomatous grasses and an ancient species were compared to study the protein regulation in rhizomes. An average of 2200 rhizome proteins per species were confidently identified and quantified. Rhizome-characteristic proteins showed similar functional distributions across all species analyzed. The over-representation of proteins associated with central roles in cellular, metabolic, and developmental processes indicated accelerated metabolism in growing rhizomes. Moreover, 61 rhizome-characteristic proteins appeared to be regulated similarly among analyzed plants. In addition, 36 showed conserved regulation between rhizome apical tips and elongation zones across species. These proteins were preferentially expressed in rhizome tissues regardless of the species analyzed, making them interesting candidates for more detailed investigative studies about their roles in rhizome development.
Collapse
Affiliation(s)
- Fernanda Salvato
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Tiago S Balbuena
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - William Nelson
- ‡BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - R Shyama Prasad Rao
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Ruifeng He
- §Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Carol A Soderlund
- ‡BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - David R Gang
- §Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jay J Thelen
- †Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
28
|
Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR. The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:611-24. [PMID: 25515814 DOI: 10.1111/tpj.12747] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Drastic alteration in macronutrients causes large changes in gene expression in the photosynthetic unicellular alga Chlamydomonas reinhardtii. Preliminary data suggested that cells follow a biphasic response to this change hinging on the initiation of lipid accumulation, and we hypothesized that drastic repatterning of metabolism also followed this biphasic modality. To test this hypothesis, transcriptomic, proteomic, and metabolite changes that occur under nitrogen (N) deprivation were analyzed. Eight sampling times were selected covering the progressive slowing of growth and induction of oil synthesis between 4 and 6 h after N deprivation. Results of the combined, systems-level investigation indicated that C. reinhardtii cells sense and respond on a large scale within 30 min to a switch to N-deprived conditions turning on a largely gluconeogenic metabolic state, which then transitions to a glycolytic stage between 4 and 6 h after N depletion. This nitrogen-sensing system is transduced to carbon- and nitrogen-responsive pathways, leading to down-regulation of carbon assimilation and chlorophyll biosynthesis, and an increase in nitrogen metabolism and lipid biosynthesis. For example, the expression of nearly all the enzymes for assimilating nitrogen from ammonium, nitrate, nitrite, urea, formamide/acetamide, purines, pyrimidines, polyamines, amino acids and proteins increased significantly. Although arginine biosynthesis enzymes were also rapidly up-regulated, arginine pool size changes and isotopic labeling results indicated no increased flux through this pathway.
Collapse
Affiliation(s)
- Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK. Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 2014; 9:1480-92. [PMID: 25349922 DOI: 10.1002/biot.201400063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 12/30/2022]
Abstract
The transcript pool of a plant part, under any given condition, is a collection of mRNAs that will pave the way for a biochemical reaction of the plant to stimuli. Over the past decades, transcriptome study has advanced from Northern blotting to RNA sequencing (RNA-seq), through other techniques, of which real-time quantitative polymerase chain reaction (PCR) and microarray are the most significant ones. The questions being addressed by such studies have also matured from a solitary process to expression atlas and marker-assisted genetic enhancement. Not only genes and their networks involved in various developmental processes of plant parts have been elucidated, but also stress tolerant genes have been highlighted. The transcriptome of a plant with altered expression of a target gene has given information about the downstream genes. Marker information has been used for breeding improved varieties. Fortunately, the data generated by transcriptome analysis has been made freely available for ample utilization and comparison. The review discusses this wide variety of transcriptome data being generated in plants, which includes developmental stages, abiotic and biotic stress, effect of altered gene expression, as well as comparative transcriptomics, with a special emphasis on microarray and RNA-seq. Such data can be used to determine the regulatory gene networks, which can subsequently be utilized for generating improved plant varieties.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|