1
|
Zhou F, Zhang H, Chen S, Fan C. Transcriptome analysis of the transition from primary to secondary growth of vertical stem in Eucalyptus grandis. BMC PLANT BIOLOGY 2024; 24:96. [PMID: 38331783 PMCID: PMC10851593 DOI: 10.1186/s12870-024-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Eucalyptus was one of the most cultivated hardwood species worldwide, with rapid growth, good wood properties and a wide range of adaptability. Eucalyptus stem undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. In order to better understand the genetic regulation of secondary growth in Eucalyptus grandis, Transcriptome analyses in stem segments along a developmental gradient from the third internode to the eleventh internode of E. grandis that spanned primary to secondary growth were carried out. 5,149 genes that were differentially expressed during stem development were identified. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 70 differentially expressed genes (DEGs) selected from 868 DEGs with high connectivity were found to be closely correlated with secondary growth. Results revealed that the differential expression of these DEGs suggests that they may involve in the primary growth or secondary growth. AP1, YAB2 TFs and EXP genes are highly expressed in the IN3, whereas NAC, MYB TFs are likely to be important for secondary growth. These results will expand our understanding of the complex molecular and cellular events of secondary growth and provide a foundation for future studies on wood formation in Eucalyptus.
Collapse
Affiliation(s)
- Fangping Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of State Forestry Administration On Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Haonan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of State Forestry Administration On Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shanshan Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of State Forestry Administration On Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
- State Key Laboratory of Tree Genetics Breeding, Northeast Forestry University, Harbin, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration On Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
- Yuelushan Laboratory, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Nascimento LC, Salazar MM, Lepikson-Neto J, Camargo ELO, Parreiras LS, Pereira GAG, Carazzolle MF. EUCANEXT: an integrated database for the exploration of genomic and transcriptomic data from Eucalyptus species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4564812. [PMID: 29220468 PMCID: PMC5737058 DOI: 10.1093/database/bax079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 12/05/2022]
Abstract
Tree species of the genus Eucalyptus are the most valuable and widely planted hardwoods in the world. Given the economic importance of Eucalyptus trees, much effort has been made towards the generation of specimens with superior forestry properties that can deliver high-quality feedstocks, customized to the industrýs needs for both cellulosic (paper) and lignocellulosic biomass production. In line with these efforts, large sets of molecular data have been generated by several scientific groups, providing invaluable information that can be applied in the development of improved specimens. In order to fully explore the potential of available datasets, the development of a public database that provides integrated access to genomic and transcriptomic data from Eucalyptus is needed. EUCANEXT is a database that analyses and integrates publicly available Eucalyptus molecular data, such as the E. grandis genome assembly and predicted genes, ESTs from several species and digital gene expression from 26 RNA-Seq libraries. The database has been implemented in a Fedora Linux machine running MySQL and Apache, while Perl CGI was used for the web interfaces. EUCANEXT provides a user-friendly web interface for easy access and analysis of publicly available molecular data from Eucalyptus species. This integrated database allows for complex searches by gene name, keyword or sequence similarity and is publicly accessible at http://www.lge.ibi.unicamp.br/eucalyptusdb. Through EUCANEXT, users can perform complex analysis to identify genes related traits of interest using RNA-Seq libraries and tools for differential expression analysis. Moreover, all the bioinformatics pipeline here described, including the database schema and PERL scripts, are readily available and can be applied to any genomic and transcriptomic project, regardless of the organism. Database URL:http://www.lge.ibi.unicamp.br/eucalyptusdb
Collapse
Affiliation(s)
- Leandro Costa Nascimento
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Laboratório Central de Tecnologias de Alto Desempenho (LaCTAD), Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Marcela Mendes Salazar
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Jorge Lepikson-Neto
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Eduardo Leal Oliveira Camargo
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Lucas Salera Parreiras
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD), Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
3
|
Pascual MB, Llebrés M, Craven‐Bartle B, Cañas RA, Cánovas FM, Ávila C. PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1094-1104. [PMID: 29055073 PMCID: PMC5902770 DOI: 10.1111/pbi.12854] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/13/2017] [Accepted: 10/16/2017] [Indexed: 05/14/2023]
Abstract
The transcriptional regulation of phenylalanine metabolism is particularly important in conifers, long-lived species that use large amounts of carbon in wood. Here, we show that the Pinus pinaster transcription factor, PpNAC1, is a main regulator of phenylalanine biosynthesis and utilization. A phylogenetic analysis classified PpNAC1 in the NST proteins group and was selected for functional characterization. PpNAC1 is predominantly expressed in the secondary xylem and compression wood of adult trees. Silencing of PpNAC1 in P. pinaster results in the alteration of stem vascular radial patterning and the down-regulation of several genes associated with cell wall biogenesis and secondary metabolism. Furthermore, transactivation and EMSA analyses showed that PpNAC1 is able to activate its own expression and PpMyb4 promoter, while PpMyb4 is able to activate PpMyb8, a transcriptional regulator of phenylalanine and lignin biosynthesis in maritime pine. Together, these results suggest that PpNAC1 is a functional ortholog of the ArabidopsisSND1 and NST1 genes and support the idea that key regulators governing secondary cell wall formation could be conserved between gymnosperms and angiosperms. Understanding the molecular switches controlling wood formation is of paramount importance for fundamental tree biology and paves the way for applications in conifer biotechnology.
Collapse
Affiliation(s)
- María Belén Pascual
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| | - María‐Teresa Llebrés
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| | - Blanca Craven‐Bartle
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| | - Rafael A. Cañas
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| | - Concepción Ávila
- Departamento de Biología Molecular y BioquímicaFacultad de CienciasUniversidad de MálagaCampus Universitario de TeatinosMálagaSpain
| |
Collapse
|
4
|
Abstract
New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.
Collapse
|
5
|
Ohtani M, Morisaki K, Sawada Y, Sano R, Uy ALT, Yamamoto A, Kurata T, Nakano Y, Suzuki S, Matsuda M, Hasunuma T, Hirai MY, Demura T. Primary Metabolism during Biosynthesis of Secondary Wall Polymers of Protoxylem Vessel Elements. PLANT PHYSIOLOGY 2016; 172:1612-1624. [PMID: 27600813 PMCID: PMC5100780 DOI: 10.1104/pp.16.01230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 05/02/2023]
Abstract
Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell's metabolic activity for the biosynthesis of secondary wall polymers.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Keiko Morisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Yuji Sawada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Ryosuke Sano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Abigail Loren Tung Uy
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Atsushi Yamamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Shiro Suzuki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Mami Matsuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Tomohisa Hasunuma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Masami Yokota Hirai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.)
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.)
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.)
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (M.O., K.M., R.S., A.L.T.U., A.Y., T.K., Y.N., T.D.);
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan (T.K.);
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan (Y.N.);
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan (S.S.);
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada, Kobe 657-8501, Japan (M.M., T.H.); and
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan (M.O., Y.S., M.Y.H., T.D.)
| |
Collapse
|
6
|
Ribeiro T, Barrela RM, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes. FRONTIERS IN PLANT SCIENCE 2016; 7:510. [PMID: 27148332 PMCID: PMC4840385 DOI: 10.3389/fpls.2016.00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/30/2023]
Abstract
The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.
Collapse
Affiliation(s)
- Teresa Ribeiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Ricardo M. Barrela
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomiques VégétalesCastanet-Tolosan, France
| | - Cristina Marques
- RAIZ, Instituto de Investigação da Floresta e PapelAveiro, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Jorge A. P. Paiva
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Department of Integrative Plant Biology, Instytut Genetyki Roślin, Polskiej Akademii NaukPoznań, Poland
| |
Collapse
|
7
|
Meng Y, Li J, Liu J, Hu H, Li W, Liu W, Chen S. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize. BMC PLANT BIOLOGY 2016; 16:50. [PMID: 26911156 PMCID: PMC4766647 DOI: 10.1186/s12870-016-0742-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/18/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Doubled haploid (DH) lines produced via in vivo haploid induction have become indispensable in maize research and practical breeding, so it is important to understand traits characteristics in DH and its corresponding haploids which derived from each DH lines. In this study, a DH population derived from Zheng58 × Chang7-2 and a haploid population, were developed, genotyped and evaluated to investigate genetic architecture of eight stalk traits, especially rind penetrometer resistance (RPR) and in vitro dry matter digestion (IVDMD), which affecting maize stalk lodging-resistance and feeding values, respectively. RESULTS Phenotypic correlation coefficients ranged from 0.38 to 0.69 between the two populations for eight stalk traits. Heritability values of all stalk traits ranged from 0.49 to 0.81 in the DH population, and 0.58 to 0.89 in the haploid population. Quantitative trait loci (QTL) mapping study showed that a total of 47 QTL for all traits accounting for genetic variations ranging from 1.6 to 36.5% were detected in two populations. One or more QTL sharing common region for each trait were detected between two different ploidy populations. Potential candidate genes predicated from the four QTL support intervals for RPR and IVDMD were indirectly or directly involved with cellulose and lignin biosynthesis, which participated in cell wall formation. The increased expression levels of lignin and cellulose synthesis key genes in the haploid situation illustrated that dosage compensation may account for genome dosage effect in our study. CONCLUSIONS The current investigation extended understanding about the genetic basis of stalk traits and correlations between DH and its haploid populations, which showed consistence and difference between them in phenotype, QTL characters, and gene expression. The higher heritabilities and partly higher QTL detection power were presented in haploid population than in DH population. All of which described above could lay a preliminary foundation for genetic architecture study with haploid population and may benefit selection in haploid-stage to reduce cost in DH breeding.
Collapse
Affiliation(s)
- Yujie Meng
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Junhui Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jianju Liu
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Haixiao Hu
- Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Wei Li
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Wenxin Liu
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| | - Shaojiang Chen
- National Maize Improvement Center of China, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy, China Agricultural University (West Campus), 2# Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
8
|
Barrière Y, Courtial A, Chateigner-Boutin AL, Denoue D, Grima-Pettenati J. Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:310-329. [PMID: 26566848 DOI: 10.1016/j.plantsci.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/04/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The knowledge of the gene families mostly impacting cell wall digestibility variations would significantly increase the efficiency of marker-assisted selection when breeding maize and grass varieties with improved silage feeding value and/or with better straw fermentability into alcohol or methane. The maize genome sequence of the B73 inbred line was released at the end of 2009, opening up new avenues to identify the genetic determinants of quantitative traits. Colocalizations between a large set of candidate genes putatively involved in secondary cell wall assembly and QTLs for cell wall digestibility (IVNDFD) were then investigated, considering physical positions of both genes and QTLs. Based on available data from six RIL progenies, 59 QTLs corresponding to 38 non-overlapping positions were matched up with a list of 442 genes distributed all over the genome. Altogether, 176 genes colocalized with IVNDFD QTLs and most often, several candidate genes colocalized at each QTL position. Frequent QTL colocalizations were found firstly with genes encoding ZmMYB and ZmNAC transcription factors, and secondly with genes encoding zinc finger, bHLH, and xylogen regulation factors. In contrast, close colocalizations were less frequent with genes involved in monolignol biosynthesis, and found only with the C4H2, CCoAOMT5, and CCR1 genes. Close colocalizations were also infrequent with genes involved in cell wall feruloylation and cross-linkages. Altogether, investigated colocalizations between candidate genes and cell wall digestibility QTLs suggested a prevalent role of regulation factors over constitutive cell wall genes on digestibility variations.
Collapse
Affiliation(s)
- Yves Barrière
- INRA, UR889, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France.
| | - Audrey Courtial
- LRSV, Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Paul Sabatier Toulouse III / CNRS, Auzeville, BP 42617, 31326 Castanet-Tolosan, France; INRA, US1258, Centre National de Ressources Génomiques Végétales, CS 52627, 31326 Castanet-Tolosan, France
| | | | - Dominique Denoue
- INRA, UR889, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France
| | - Jacqueline Grima-Pettenati
- LRSV, Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Paul Sabatier Toulouse III / CNRS, Auzeville, BP 42617, 31326 Castanet-Tolosan, France
| |
Collapse
|
9
|
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. FRONTIERS IN PLANT SCIENCE 2015; 6:288. [PMID: 25999964 PMCID: PMC4419676 DOI: 10.3389/fpls.2015.00288] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/09/2015] [Indexed: 05/08/2023]
Abstract
Plant cells biosynthesize primary cell walls (PCW) in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.
Collapse
Affiliation(s)
- Yoshimi Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Masatoshi Yamaguchi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama UniversitySaitama, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology AgencyKawaguchi, Japan
| | - Hitoshi Endo
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
| | - Nur Ardiyana Rejab
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyIkoma, Japan
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
10
|
Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One 2015; 10:e0116528. [PMID: 25602379 PMCID: PMC4300219 DOI: 10.1371/journal.pone.0116528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
- * E-mail:
| | - Veeramuthu Dharanishanthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
| | - Ishangi Agarwal
- Genotypic Technology Private Limited, #2/13, Balaji Complex, Poojari Layout, 80, Feet Road, R. M. V. 2nd Stage, Bangalore-560094, India
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Büsgen Institute, Georg August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, United States of America
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
11
|
Sumathi M, Yasodha R. Microsatellite resources of Eucalyptus: current status and future perspectives. BOTANICAL STUDIES 2014; 55:73. [PMID: 28510953 PMCID: PMC5430318 DOI: 10.1186/s40529-014-0073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 06/07/2023]
Abstract
Eucalyptus is the premier paper pulp, short rotation plantation species grown all over the world. Genetic improvement programs integrating molecular marker tools are in progress in many parts of the globe to increase the productivity. Whole genome sequence and expressed sequence tags (ESTs) of the eucalypts paved way for introduction of molecular genetics and breeding in this genus. Different molecular characterization approaches have been used simultaneously in eucalypts, however, microsatellites or simple sequence repeats (SSRs) with their prolific characteristics could occupy a special niche in Eucalyptus genetic improvement. Further, highly informative SSRs were used for the clonal identity, genetic fidelity and in certification of breeder's rights. Eucalyptus genetic linkage maps generated with microsatellite loci were used successfully to identify quantitative trait loci (QTLs) for various economically important traits. Progressively more numbers of microsatellites are being linked to genes associated with adaptive and functional variations, therefore making their utility broader in genetic applications. Availability of common SSR markers across the species provides an opportunity to validate the expression of QTLs across variable genetic backgrounds and accurately compare the position of QTLs in other species. Recent evidences suggest that the presence of SSRs in micro RNAs of plant species play a role in the quantitative trait expression. Similar studies in eucalypts may provide new insights into the genetic architecture of transcript-level variations and post transcriptional gene regulation. This review on eucalypts microsatellites, highlights the availability and characteristics of genomic and eSSRs and their potential in genetic analysis of natural and breeding populations and also discusses the future prospects in population genetics and marker assisted selection.
Collapse
Affiliation(s)
- Murugan Sumathi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| | - Ramasamy Yasodha
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, Coimbatore, 641 002 India
| |
Collapse
|
12
|
Lepikson-Neto J, Nascimento LC, Salazar MM, Camargo ELO, Cairo JPF, Teixeira PJ, Marques WL, Squina FM, Mieczkowski P, Deckmann AC, Pereira GAG. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis. BMC PLANT BIOLOGY 2014; 14:301. [PMID: 25407319 PMCID: PMC4248463 DOI: 10.1186/s12870-014-0301-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/22/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. RESULTS In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. CONCLUSIONS Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.
Collapse
Affiliation(s)
- Jorge Lepikson-Neto
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Leandro C Nascimento
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Marcela M Salazar
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Eduardo LO Camargo
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - João PF Cairo
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo Brazil
| | - Paulo J Teixeira
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Wesley L Marques
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Fabio M Squina
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo Brazil
| | - Piotr Mieczkowski
- />Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC USA
| | - Ana C Deckmann
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Gonçalo AG Pereira
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| |
Collapse
|
13
|
Camargo ELO, Nascimento LC, Soler M, Salazar MM, Lepikson-Neto J, Marques WL, Alves A, Teixeira PJPL, Mieczkowski P, Carazzolle MF, Martinez Y, Deckmann AC, Rodrigues JC, Grima-Pettenati J, Pereira GAG. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC PLANT BIOLOGY 2014; 14:256. [PMID: 25260963 PMCID: PMC4189757 DOI: 10.1186/s12870-014-0256-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/20/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E. grandis) with a special focus on xylem secondary cell walls and global gene expression patterns. RESULTS Histological observations of the xylem secondary cell walls further confirmed by chemical analyses showed that lignin was reduced by luxuriant fertilization, whereas a consistent lignin deposition was observed in trees grown in N-limiting conditions. Also, the syringyl/guaiacyl (S/G) ratio was significantly lower in luxuriant nitrogen samples. Deep sequencing RNAseq analyses allowed us to identify a high number of differentially expressed genes (1,469) between contrasting N treatments. This number is dramatically higher than those obtained in similar studies performed in poplar but using microarrays. Remarkably, all the genes involved the general phenylpropanoid metabolism and lignin pathway were found to be down-regulated in response to high N availability. These findings further confirmed by RT-qPCR are in agreement with the reduced amount of lignin in xylem secondary cell walls of these plants. CONCLUSIONS This work enabled us to identify, at the whole genome level, xylem genes differentially regulated by N availability, some of which are involved in the environmental control of xylogenesis. It further illustrates that N fertilization can be used to alter the quantity and quality of lignocellulosic biomass in Eucalyptus, offering exciting prospects for the pulp and paper industry and for the use of short coppices plantations to produce second generation biofuels.
Collapse
Affiliation(s)
- Eduardo Leal Oliveira Camargo
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Leandro Costa Nascimento
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Marçal Soler
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Marcela Mendes Salazar
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Jorge Lepikson-Neto
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Wesley Leoricy Marques
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Ana Alves
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Paulo José Pereira Lima Teixeira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | | | - Marcelo Falsarella Carazzolle
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - Yves Martinez
- />Fédération de Recherche “Agrobiosciences, Interactions et Biodiversité”, 24 Chemin de borde rouge, BP 42617, 31326 Castanet-Tolosan, France
| | - Ana Carolina Deckmann
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| | - José Carlos Rodrigues
- />Tropical Research Institute of Portugal (IICT), Forestry and Forest Products Group, Tapada da Ajuda, Lisboa, Portugal
- />Centro de Estudos Florestais, Tapada da Ajuda, Lisboa, Portugal
| | - Jacqueline Grima-Pettenati
- />Laboratoire de Recherche en Sciences Végétales, UMR 5546: CNRS - Université de Toulouse III (UPS), Auzeville, BP 42617, F-31326 Castanet-Tolosan, France
| | - Gonçalo Amarante Guimarães Pereira
- />Universidade Estadual de Campinas; UNICAMP; Instituto de Biologia; Departamento de Genética, Evolução e Bioagentes; Laboratório de Genômica e Expressão, Campinas, Brazil
| |
Collapse
|
14
|
Naidoo S, Külheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, Wilken FE, Mamni TB, Myburg AA. Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. TREE PHYSIOLOGY 2014; 34:931-43. [PMID: 25261123 DOI: 10.1093/treephys/tpu075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus, such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered.
Collapse
Affiliation(s)
- Sanushka Naidoo
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa;
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lizahn Zwart
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Ronishree Mangwanda
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Caryn N Oates
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Erik A Visser
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Febé E Wilken
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Thandekile B Mamni
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
15
|
Guerriero G, Sergeant K, Hausman JF. Wood biosynthesis and typologies: a molecular rhapsody. TREE PHYSIOLOGY 2014; 34:839-55. [PMID: 24876292 DOI: 10.1093/treephys/tpu031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wood represents one of the most important renewable commodities for humanity and plays a crucial role in terrestrial ecosystem carbon-cycling. Wood formation is the result of a multitude of events that require the concerted action of endogenous and exogenous factors under the influence of photoperiod, for instance genes and plant growth regulators. Beyond providing mechanical support and being responsible for the increase in stem radial diameter, woody tissues constitute the vascular system of trees and are capable of reacting to environmental stimuli, and as such are therefore quite plastic and responsive. Despite the ecological and economic importance of wood, not all aspects of its formation have been unveiled. Many gaps in our knowledge are still present, which hinder the maximal exploitation of this precious bioresource. This review aims at surveying the current knowledge of wood formation and the available molecular data addressing the relationship between wood production and environmental factors, which have crucial influences on the rhythmic regulation of cambial activity and exert profound effects on tree stem growth, wood yield and properties. We will here go beyond wood sensu stricto, i.e., secondary xylem, and extend our survey to other tissues, namely vascular cambium, phloem and fibres. The purpose is to provide the reader with an overview of the complexity of the topic and to highlight the importance of progressing in the future towards an integrated knowledge on the subject.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg;
| |
Collapse
|
16
|
Sengupta S, Majumder AL. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature. FRONTIERS IN PLANT SCIENCE 2014; 5:224. [PMID: 24904619 PMCID: PMC4035604 DOI: 10.3389/fpls.2014.00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/05/2014] [Indexed: 05/13/2023]
Abstract
Some areas in plant abiotic stress research are not frequently addressed by genomic and molecular tools. One such area is the cross reaction of gravitational force with upward capillary pull of water and the mechanical-functional trade-off in plant vasculature. Although frost, drought and flooding stress greatly impact these physiological processes and consequently plant performance, the genomic and molecular basis of such trade-off is only sporadically addressed and so is its adaptive value. Embolism resistance is an important multiple stress- opposition trait and do offer scopes for critical insight to unravel and modify the input of living cells in the process and their biotechnological intervention may be of great importance. Vascular plants employ different physiological strategies to cope with embolism and variation is observed across the kingdom. The genomic resources in this area have started to emerge and open up possibilities of synthesis, validation and utilization of the new knowledge-base. This review article assesses the research till date on this issue and discusses new possibilities for bridging physiology and genomics of a plant, and foresees its implementation in crop science.
Collapse
Affiliation(s)
- Sonali Sengupta
- Division of Plant Biology, Acharya J C Bose Biotechnology Innovation Centre, Bose InstituteKolkata, India
| | | |
Collapse
|
17
|
Courtial A, Thomas J, Reymond M, Méchin V, Grima-Pettenati J, Barrière Y. Targeted linkage map densification to improve cell wall related QTL detection and interpretation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1151-65. [PMID: 23358861 DOI: 10.1007/s00122-013-2043-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/09/2013] [Indexed: 05/09/2023]
Abstract
Several QTLs for cell wall degradability and lignin content were previously detected in the F288 × F271 maize RIL progeny, including a set of major QTLs located in bin 6.06. Unexpectedly, allelic sequencing of genes located around the bin 6.06 QTL positions revealed a monomorphous region, suggesting that these QTLs were likely "ghost" QTLs. Refining the positions of all QTLs detected in this population was thus considered, based on a linkage map densification in most important QTL regions, and in several large still unmarked regions. Re-analysis of data with an improved genetic map (173 markers instead of 108) showed that ghost QTLs located in bin 6.06 were then fractionated over two QTL positions located upstream and downstream of the monomorphic region. The area located upstream of bin 6.06 position carried the major QTLs, which explained from 37 to 59 % of the phenotypic variation for per se values and extended on only 6 cM, corresponding to a physical distance of 2.2 Mbp. Among the 92 genes present in the corresponding area of the B73 maize reference genome, nine could putatively be considered as involved in the formation of the secondary cell wall [bHLH, FKBP, laccase, fasciclin, zinc finger C2H2-type and C3HC4-type (two genes), NF-YB, and WRKY]. In addition, based on the currently improved genetic map, eight QTLs were detected in bin 4.09, while only one QTL was highlighted in the initial investigation. Moreover, significant epistatic interaction effects were shown for all traits between these QTLs located in bin 4.09 and the major QTLs located in bin 6.05. Three genes related to secondary cell wall assembly (ZmMYB42, COV1-like, PAL-like) underlay QTL support intervals in this newly identified bin 4.09 region. The current investigations, even if they were based only on one RIL progeny, illustrated the interest of a targeted marker mapping on a genetic map to improve QTL position.
Collapse
Affiliation(s)
- Audrey Courtial
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, 86600 Lusignan, France
| | | | | | | | | | | |
Collapse
|
18
|
Cassan-Wang H, Goué N, Saidi MN, Legay S, Sivadon P, Goffner D, Grima-Pettenati J. Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:189. [PMID: 23781226 PMCID: PMC3677987 DOI: 10.3389/fpls.2013.00189] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 05/17/2023]
Abstract
The presence of lignin in secondary cell walls (SCW) is a major factor preventing hydrolytic enzymes from gaining access to cellulose, thereby limiting the saccharification potential of plant biomass. To understand how lignification is regulated is a prerequisite for selecting plant biomass better adapted to bioethanol production. Because transcriptional regulation is a major mechanism controlling the expression of genes involved in lignin biosynthesis, our aim was to identify novel transcription factors (TFs) dictating lignin profiles in the model plant Arabidopsis. To this end, we have developed a post-genomic approach by combining four independent in-house SCW-related transcriptome datasets obtained from (1) the fiber cell wall-deficient wat1 Arabidopsis mutant, (2) Arabidopsis lines over-expressing either the master regulatory activator EgMYB2 or (3) the repressor EgMYB1 and finally (4) Arabidopsis orthologs of Eucalyptus xylem-expressed genes. This allowed us to identify 502 up- or down-regulated TFs. We preferentially selected those present in more than one dataset and further analyzed their in silico expression patterns as an additional selection criteria. This selection process led to 80 candidates. Notably, 16 of them were already proven to regulate SCW formation, thereby validating the overall strategy. Then, we phenotyped 43 corresponding mutant lines focusing on histological observations of xylem and interfascicular fibers. This phenotypic screen revealed six mutant lines exhibiting altered lignification patterns. Two of them [Bel-like HomeoBox6 (blh6) and a zinc finger TF] presented hypolignified SCW. Three others (myb52, myb-like TF, hb5) showed hyperlignified SCW whereas the last one (hb15) showed ectopic lignification. In addition, our meta-analyses highlighted a reservoir of new potential regulators adding to the gene network regulating SCW but also opening new avenues to ultimately improve SCW composition for biofuel production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jacqueline Grima-Pettenati
- *Correspondence: Jacqueline Grima-Pettenati, Laboratoire de Recherche en Sciences Végétales, UMR5546, Centre National de la Recherche Scientifique, Université Toulouse III, UPS, 24 Chemin de Borde Rouge, BP 42617 Auzeville, 31326 Castanet-Tolosan, Toulouse, France e-mail:
| |
Collapse
|
19
|
Cassan-Wang H, Soler M, Yu H, Camargo ELO, Carocha V, Ladouce N, Savelli B, Paiva JAP, Leplé JC, Grima-Pettenati J. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions. PLANT & CELL PHYSIOLOGY 2012; 53:2101-16. [PMID: 23161857 DOI: 10.1093/pcp/pcs152] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.
Collapse
Affiliation(s)
- Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, 31326 Castanet Tolosan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ramos P, Le Provost G, Gantz C, Plomion C, Herrera R. Transcriptional analysis of differentially expressed genes in response to stem inclination in young seedlings of pine. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:923-33. [PMID: 22646487 DOI: 10.1111/j.1438-8677.2012.00572.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The gravitropic response in trees is a widely studied phenomenon, however understanding of the molecular mechanism involved remains unclear. The purpose of this work was to identify differentially expressed genes in response to inclination using a comparative approach for two conifer species. Young seedlings were subjected to inclination and samples were collected at four different times points. First, suppression subtractive hybridisation (SSH) was used to identify differentially regulated genes in radiata pine (Pinus radiata D. Don). cDNA libraries were constructed from the upper and lower part of inclined stems in a time course experiment, ranging from 2.5 h to 1 month. From a total of 3092 sequences obtained, 2203 elements were assembled, displaying homology to a public database. A total of 942 unigene elements were identified using bioinformatic tools after redundancy analysis. Of these, 614 corresponded to known function genes and 328 to unknown function genes, including hypothetical proteins. Comparative analysis between radiata pine and maritime pine (Pinus pinaster Ait.) was performed to validate the differential expression of relevant candidate genes using qPCR. Selected genes were involved in several functional categories: hormone regulation, phenylpropanoid pathway and signal transduction. This comparative approach for the two conifer species helped determine the molecular gene pattern generated by inclination, providing a set of Pinus gene signatures that may be involved in the gravitropic stress response. These genes may also represent relevant candidate genes involved in the gravitropic response and potentially in wood formation.
Collapse
Affiliation(s)
- P Ramos
- Instituto Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | |
Collapse
|
21
|
Why assembling plant genome sequences is so challenging. BIOLOGY 2012; 1:439-59. [PMID: 24832233 PMCID: PMC4009782 DOI: 10.3390/biology1020439] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.
Collapse
|
22
|
de Oliveira LA, Breton MC, Bastolla FM, Camargo SDS, Margis R, Frazzon J, Pasquali G. Reference genes for the normalization of gene expression in eucalyptus species. PLANT & CELL PHYSIOLOGY 2012; 53:405-22. [PMID: 22197885 PMCID: PMC7107212 DOI: 10.1093/pcp/pcr187] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/18/2011] [Indexed: 05/23/2023]
Abstract
Gene expression analysis is increasingly important in biological research, with reverse transcription-quantitative PCR (RT-qPCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Considering the increased sensitivity, reproducibility and large dynamic range of this method, the requirements for proper internal reference gene(s) for relative expression normalization have become much more stringent. Given the increasing interest in the functional genomics of Eucalyptus, we sought to identify and experimentally verify suitable reference genes for the normalization of gene expression associated with the flower, leaf and xylem of six species of the genus. We selected 50 genes that exhibited the least variation in microarrays of E. grandis leaves and xylem, and E. globulus xylem. We further performed the experimental analysis using RT-qPCR for six Eucalyptus species and three different organs/tissues. Employing algorithms geNorm and NormFinder, we assessed the gene expression stability of eight candidate new reference genes. Classic housekeeping genes were also included in the analysis. The stability profiles of candidate genes were in very good agreement. PCR results proved that the expression of novel Eucons04, Eucons08 and Eucons21 genes was the most stable in all Eucalyptus organs/tissues and species studied. We showed that the combination of these genes as references when measuring the expression of a test gene results in more reliable patterns of expression than traditional housekeeping genes. Hence, novel Eucons04, Eucons08 and Eucons21 genes are the best suitable references for the normalization of expression studies in the Eucalyptus genus.
Collapse
Affiliation(s)
- Luisa Abruzzi de Oliveira
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Michèle Claire Breton
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Fernanda Macedo Bastolla
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- These authors contributed equally to this work
| | - Sandro da Silva Camargo
- Universidade Federal do Pampa, Campus Bagé, Travessa 45, 1.650, sala 2.107, Bairro Malafaia, Bagé, RS, 96.413-170, Brazil
| | - Rogério Margis
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| | - Jeverson Frazzon
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91.501-970, Brazil
| |
Collapse
|
23
|
Britto D, Pirovani C, Gonzalez E, Silva J, Gesteira A, Cascardo J. Oxidative stress proteins as an indicator of a low quality of eucalyptus clones for the pulp and paper industry. GENETICS AND MOLECULAR RESEARCH 2012; 11:3798-813. [DOI: 10.4238/2012.august.17.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Chavigneau H, Goué N, Delaunay S, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y. QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of <i>Arabidopsis thaliana</i> and search for candidate genes involved in cell wall biosynthesis and degradability. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojgen.2012.21002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion JM. RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus. BMC Genomics 2011; 12:538. [PMID: 22047139 PMCID: PMC3248028 DOI: 10.1186/1471-2164-12-538] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/02/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. RESULTS Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. CONCLUSIONS For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.
Collapse
Affiliation(s)
- Emilie Villar
- CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398 Montpellier Cedex 5, France
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France
- CRDPI, BP1291, Pointe Noire, République du Congo
| | - Christophe Klopp
- Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France
| | - Céline Noirot
- Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France
| | - Evandro Novaes
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA
- Universidade Federal de Goiás, Caixa Postal 131, CEP 74690-900, Goiânia, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, USA
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR1202 BIOGECO, F-33610 Cestas, France
| | - Jean-Marc Gion
- CIRAD, UMR AGAP, Campus de Baillarguet TA 10C, F-34398 Montpellier Cedex 5, France
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France
| |
Collapse
|
26
|
Computational identification and analysis of single-nucleotide polymorphisms and insertions/deletions in expressed sequence tag data of Eucalyptus. J Genet 2011. [DOI: 10.1007/s12041-011-0052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T. A NAC domain protein family contributing to the regulation of wood formation in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:499-512. [PMID: 21649762 DOI: 10.1111/j.1365-313x.2011.04614.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wood harvested from trees is one of the most widely utilized natural materials on our planet. Recent environmental issues have prompted an increase in the demand for wood, especially as a cost-effective and renewable resource for industry and energy, so it is important to understand the process of wood formation. In the present study, we focused on poplar (Populus trichocarpa) NAC domain protein genes which are homologous to well-known Arabidopsis transcription factors regulating the differentiation of xylem vessels and fiber cells. From phylogenetic analysis, we isolated 16 poplar NAC domain protein genes, and named them PtVNS (VND-, NST/SND- and SMB-related proteins) genes. Expression analysis revealed that 12 PtVNS (also called PtrWND) genes including both VND and NST groups were expressed in developing xylem tissue and phloem fiber, whereas in primary xylem vessels, only PtVNS/PtrWND genes of the VND group were expressed. By using the post-translational induction system of Arabidopsis VND7, a master regulator of xylem vessel element differentiation, many poplar genes functioning in xylem vessel differentiation downstream from NAC domain protein genes were identified. Transient expression assays showed the variation in PtVNS/PtrWND transactivation activity toward downstream genes, even between duplicate gene pairs. Furthermore, overexpression of PtVNS/PtrWND genes induced ectopic secondary wall thickening in poplar leaves as well as in Arabidopsis seedlings with different levels of induction efficiency according to the gene. These results suggest that wood formation in poplar is regulated by cooperative functions of the NAC domain proteins.
Collapse
Affiliation(s)
- Misato Ohtani
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goulao LF, Vieira-Silva S, Jackson PA. Association of hemicellulose- and pectin-modifying gene expression with Eucalyptus globulus secondary growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:873-81. [PMID: 21429757 DOI: 10.1016/j.plaphy.2011.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/22/2011] [Indexed: 05/02/2023]
Abstract
Wood properties are ultimately related to the morphology and biophysical properties of the xylem cell wall. Although the cellulose and lignin biosynthetic pathways have been extensively studied, modifications of other wall matrix components during secondary growth have attracted relatively less attention. In this work, thirty-eight new Eucalyptus cDNAs encoding cell wall-modifying proteins from nine candidate families that act on the cellulose-hemicellulose and pectin networks were cloned and their gene expression was investigated throughout the developing stem. Semi-quantitative RT-PCR revealed distinct, gene-specific transcription patterns for each clone, allowing the identification of genes up-regulated in xylem or phloem of stem regions undergoing secondary growth. Some genes, namely an endo-1,4-beta-glucanase, one mannan-hydrolase and three pectin methylesterases showed transcription in juvenile and also in mature stages of wood development. The patterns of gene expression using samples from tension and opposite wood disclosed a general trend for up-regulation in tension wood and/or down-regulation in opposite wood. Localised gene expression of two selected representative clones, EGl-XTH1 and EGl-XTH4, obtained through in situ hybridization confirms the RT-PCR results and association with secondary xylem formation. Likewise, immunolocalisation studies with the anti-pectin antibody (JIM5) also supported the idea that the development of tissue-specific pectin characteristics is important during secondary growth. These results emphasize an involvement of hemicellulose and pectin biochemistry in wood formation, suggesting that the controlled and localised modification of these polysaccharides may define cell properties and architecture and thus, contribute to determining different biophysical characteristics of Eucalyptus wood.
Collapse
Affiliation(s)
- Luis F Goulao
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
29
|
Fernández-Pozo N, Canales J, Guerrero-Fernández D, Villalobos DP, Díaz-Moreno SM, Bautista R, Flores-Monterroso A, Guevara MÁ, Perdiguero P, Collada C, Cervera MT, Soto A, Ordás R, Cantón FR, Avila C, Cánovas FM, Claros MG. EuroPineDB: a high-coverage web database for maritime pine transcriptome. BMC Genomics 2011; 12:366. [PMID: 21762488 PMCID: PMC3152544 DOI: 10.1186/1471-2164-12-366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/15/2011] [Indexed: 11/30/2022] Open
Abstract
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome.
Collapse
Affiliation(s)
- Noé Fernández-Pozo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paiva JAP, Prat E, Vautrin S, Santos MD, San-Clemente H, Brommonschenkel S, Fonseca PGS, Grattapaglia D, Song X, Ammiraju JSS, Kudrna D, Wing RA, Freitas AT, Bergès H, Grima-Pettenati J. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics 2011; 12:137. [PMID: 21375742 PMCID: PMC3060884 DOI: 10.1186/1471-2164-12-137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 03/04/2011] [Indexed: 11/10/2022] Open
Abstract
Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC) libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1) digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb) to 157 Kb (Eg_Ba), very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×), contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae, including genome sequencing, gene isolation, functional and comparative genomics. Because they have been constructed using the same tree (E. grandis BRASUZ1) whose full genome is being sequenced, they should prove instrumental for assembly and gap filling of the upcoming Eucalyptus reference genome sequence.
Collapse
Affiliation(s)
- Jorge A P Paiva
- Instituto de Investigação Científica Tropical, Centro de Florestas e dos Produtos Florestais, Tapada da Ajuda, 1349-018 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 2010; 11:681. [PMID: 21122097 PMCID: PMC3053591 DOI: 10.1186/1471-2164-11-681] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 12/01/2010] [Indexed: 12/03/2022] Open
Abstract
Background De novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs. Results We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions. Conclusions De novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants.
Collapse
Affiliation(s)
- Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | | | | | | | | |
Collapse
|
32
|
Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J. EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. THE NEW PHYTOLOGIST 2010; 188:774-86. [PMID: 20955415 DOI: 10.1111/j.1469-8137.2010.03432.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• The eucalyptus R2R3 transcription factor, EgMYB1 contains an active repressor motif in the regulatory domain of the predicted protein. It is preferentially expressed in differentiating xylem and is capable of repressing the transcription of two key lignin genes in vivo. • In order to investigate in planta the role of this putative transcriptional repressor of the lignin biosynthetic pathway, we overexpressed the EgMYB1 gene in Arabidopsis and poplar. • Expression of EgMYB1 produced similar phenotypes in both species, with stronger effects in transgenic Arabidopsis plants than in poplar. Vascular development was altered in overexpressors showing fewer lignified fibres (in phloem and interfascicular zones in poplar and Arabidopsis, respectively) and reduced secondary wall thickening. Klason lignin content was moderately but significantly reduced in both species. Decreased transcript accumulation was observed for genes involved in the biosynthesis of lignins, cellulose and xylan, the three main polymers of secondary cell walls. Transcriptomic profiles of transgenic poplars were reminiscent of those reported when lignin biosynthetic genes are disrupted. • Together, these results strongly suggest that EgMYB1 is a repressor of secondary wall formation and provide new opportunities to dissect the transcriptional regulation of secondary wall biosynthesis.
Collapse
Affiliation(s)
- Sylvain Legay
- UMR 5546, CNRS-UPS Surfaces Cellulaires et Signalisation chez les Végétaux, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|