1
|
Cozma A, Sitar-Tăuț AV, Orășan OH, Briciu V, Leucuța D, Sporiș ND, Lazăr AL, Mălinescu TV, Ganea AM, Sporiș BM, Vlad CV, Lupșe M, Țâru MG, Procopciuc LM. VEGF Polymorphisms ( VEGF-936 C/T, VEGF-634 G/C and VEGF-2578 C/A) and Cardiovascular Implications in Long COVID Patients. Int J Mol Sci 2024; 25:8667. [PMID: 39201353 PMCID: PMC11354396 DOI: 10.3390/ijms25168667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The COVID-19 pandemic has raised awareness of the virus's long-term non-pulmonary consequences. This study examined the relationship between genetic polymorphisms of VEGF and cardiac dysfunction and subclinical atherosclerosis in patients recovering from COVID-19. This study included 67 patients previously diagnosed with COVID-19. VEGF-936C/T, VEGF-634G/C, and VEGF-2578C/A statuses were determined. Conventional echocardiography and arterial parameters assessments were performed at inclusion and at six months after the first assessment. For VEGF-936C/T, dominant and over-dominant models showed a significant increase in ejection fraction at six months after COVID (p = 0.044 and 0.048) and was also a predictive independent factor for the augmentation index (β = 3.07; p = 0.024). The dominant model showed a rise in RV-RA gradient (3.702 mmHg) (p = 0.028 95% CI: 0.040-7.363), with the over-dominant model indicating a greater difference (4.254 mmHg) (p = 0.025 95% CI: 0.624-7.884). The findings for VEGF-634G/C were not statistically significant, except for a difference in TAPSE during initial evaluation, using the codominant model. For VEGF-2578C/A, a difference in ventricular filling pressure (E/E'ratio) was best described under the recessive model. Our research suggests that the VEG-936C/T genotype may impact the baseline level and subsequent changes in cardiac function and subclinical atherosclerosis. These findings offer valuable insights into the complex correlation between genetic polymorphisms and cardiovascular disfunction in long COVID patients.
Collapse
Affiliation(s)
- Angela Cozma
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adela Viviana Sitar-Tăuț
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Olga Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Violeta Briciu
- Department of Infectious Diseases and Epidemiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400348 Cluj-Napoca, Romania
| | - Daniel Leucuța
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Nicolae-Dan Sporiș
- Department of Medical Oncology, Prof. Dr. I. Chiricuța Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Andrada-Luciana Lazăr
- Department of Dermatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Toma-Vlad Mălinescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea-Maria Ganea
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Mihaela Sporiș
- Department of Gastroenterology, Regional Institute of Gastroenterology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
| | - Călin Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Lupșe
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mădălina-Gabriela Țâru
- Department of Gastroenterology, Regional Institute of Gastroenterology “Prof. Dr. Octavian Fodor”, 400394 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Rengarajan A, Goldblatt HE, Beebe DJ, Virumbrales-Muñoz M, Boeldt DS. Immune cells and inflammatory mediators cause endothelial dysfunction in a vascular microphysiological system. LAB ON A CHIP 2024; 24:1808-1820. [PMID: 38363157 PMCID: PMC11022267 DOI: 10.1039/d3lc00824j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured via endothelial permeability and Ca2+ signaling. We evaluated the effect of a mixture of factors associated with inflammation and cardiovascular disease (TNFα, VEGF-A, IL-6 at 10 ng ml-1 each) on vascular MPS and inferred that inflammatory mediators contribute to endothelial dysfunction by disrupting the endothelial barrier over a 48 hour treatment and by diminishing coordinated Ca2+ activity over a 1 hour treatment. We also evaluated the effect of peripheral blood mononuclear cells (PBMCs) on endothelial permeability and Ca2+ signaling in the HUVEC MPS. HUVECs were co-cultured with PBMCs either directly wherein PBMCs passed through the lumen or indirectly with PBMCs embedded in the supporting collagen hydrogel. We revealed that phytohemagglutinin (PHA)-M activated PBMCs cause endothelial dysfunction in MPS both through increased permeability and decreased coordinated Ca2+ activity compared to non-activated PBMCs. Our MPS has potential applications in modeling cardiovascular disorders and screening for potential treatments using measures of endothelial function.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - Hannah E Goldblatt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - María Virumbrales-Muñoz
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Derek S Boeldt
- Department of Obstetrics & Gynecology, University of Wisconsin-Madison, School of Medicine and Public Health, USA.
- Perinatal Research Laboratories, UnityPoint Health-Meriter Hospital, 202 South Park St. 7E, Madison, WI, 53715, USA
| |
Collapse
|
3
|
Peker Y, Celik Y, Behboudi A, Redline S, Lyu J, Wei Y, Gottlieb DJ, Jelic S. CPAP may promote an endothelial inflammatory milieu in sleep apnoea after coronary revascularization. EBioMedicine 2024; 101:105015. [PMID: 38403558 PMCID: PMC10944158 DOI: 10.1016/j.ebiom.2024.105015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) has failed to reduce cardiovascular risk in obstructive sleep apnoea (OSA) in randomized trials. CPAP increases angiopoietin-2, a lung distension-responsive endothelial proinflammatory marker associated with increased cardiovascular risk. We investigated whether CPAP has unanticipated proinflammatory effects in patients with OSA and cardiovascular disease. METHODS Patients with OSA (apnoea-hypopnea index [AHI] ≥15 events/h without excessive sleepiness) in the Randomized Intervention with CPAP in Coronary Artery Disease and OSA study were randomized to CPAP or usual care following coronary revascularization. Changes in plasma levels of biomarkers of endothelial (angiopoietin-2, Tie-2, E-selectin, vascular endothelial growth factor [VEGF-A]) and lung epithelial (soluble receptor of advanced glycation end-products [sRAGE]) function from baseline to 12-month follow-up were compared across groups and associations with cardiovascular morbidity and mortality assessed. FINDINGS Patients with OSA (n = 189; 84% men; age 66 ± 8 years, BMI 28 ± 3.5 kg/m2, AHI 41 ± 23 events/h) and 91 patients without OSA participated. Angiopoietin-2 remained elevated whereas VEGF-A declined significantly over 12 months in the CPAP group (n = 91). In contrast, angiopoietin-2 significantly declined whereas VEGF-A remained elevated in the usual care (n = 98) and OSA-free groups. The changes in angiopoietin-2 and VEGF-A were significantly different between CPAP and usual care, whereas Tie-2, sRAGE and E-selectin were similar. Greater 12-month levels of angiopoietin-2 were associated with greater mortality. Greater CPAP levels were associated with worse cardiovascular outcomes. INTERPRETATION Greater CPAP levels increase proinflammatory, lung distension-responsive angiopoietin-2 and reduce cardioprotective angiogenic factor VEGF-A compared to usual care, which may counteract the expected cardiovascular benefits of treating OSA. FUNDING National Institutes of Health/National Heart, Lung, and Blood Institute; Swedish Research Council; Swedish Heart-Lung Foundation; ResMed Foundation.
Collapse
Affiliation(s)
- Yuksel Peker
- Koç University School of Medicine, Istanbul, Turkey; University of Gothenburg, Gothenburg, Sweden; Brigham & Women's Hospital, Boston, MA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lund University, Lund, Sweden
| | - Yeliz Celik
- Koç University School of Medicine, Istanbul, Turkey; Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | | | - Jing Lyu
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ying Wei
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Daniel J Gottlieb
- Brigham & Women's Hospital, Boston, MA, USA; VA Boston Healthcare System, Boston, MA, USA.
| | - Sanja Jelic
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Chou YI, Chang HY, Lin MY, Tseng CH, Wang TJ, Lin IC. Risk analysis for patients with arterial thromboembolic events after intravitreal ranibizumab or aflibercept injections. Sci Rep 2023; 13:7597. [PMID: 37165045 PMCID: PMC10172364 DOI: 10.1038/s41598-023-34128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Intravitreal anti-vascular endothelial growth factor (anti-VEGF) agents have been increasingly applied in the treatment of retinal neovascular diseases. Concerns have arisen that these intravitreal agents may be associated with a potential risk of arterial thromboembolic (ATE) events. We conducted a retrospective, nationwide population-based cohort study to analyze the risks for ATE events in patients receiving intravitreal ranibizumab (IVR) or intravitreal aflibercept (IVA). Data (2011-2018) were obtained from Taiwan's National Health Insurance Research Database. Cox proportional-hazards model was used to identify the risk factors for ATEs. Of the total 3,469 patients, 1393 and 2076 patients received IVR and IVA, respectively. In our result, 38 ATEs occurred within 6 months after IVR or IVA. The risk of ATEs was lower in patients receiving IVR than in those receiving IVA (adjusted hazard ratio [aHR], 0.27; 95% confidence interval [CI], 0.11-0.66). Patients with coronary artery disease (CAD) exhibited a higher risk of ATEs than did those without CAD (aHR, 3.47; 95% CI, 1.41-8.53). The risk of ATEs was higher in patients with an event of acute myocardial infarction (AMI) or ischemic stroke (IS) within 6 months prior to index IVI than in those without recent AMI/IS events (aHR, 23.8; 95% CI, 7.35-77.2 and IS: aHR, 290.2; 95% CI, 103.1-816.4). In conclusion, compared with IVA, IVR was associated with a lower risk of ATEs. When strategies for anti-VEGF agents are devised, risk factors, such as CAD and a history of AMI or IS within 6 months should be considered. Further large-scale studies are warranted to elucidate the safety of anti-VEGF injections.
Collapse
Affiliation(s)
- Yun-I Chou
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hao-Yun Chang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Yin Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Han Tseng
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - I-Chan Lin
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
6
|
Gene Expression Profiling of Markers of Inflammation, Angiogenesis, Coagulation and Fibrinolysis in Patients with Coronary Artery Disease with Very High Lipoprotein(a) Levels Treated with PCSK9 Inhibitors. J Cardiovasc Dev Dis 2022; 9:jcdd9070211. [PMID: 35877573 PMCID: PMC9324258 DOI: 10.3390/jcdd9070211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Besides lipids, inflammation, angiogenesis, coagulation and fibrinolysis play very important roles in coronary artery disease (CAD). We measured gene expression of the inflammatory markers interleukin (IL)-1β (IL1B) and interferon (IFN)-γ (IFNG), vascular endothelial growth factor-A (VEGF-A) (VEGFA), and coagulation and fibrinolysis markers tissue factor (TF) (F3) and plasminogen activator inhibitor-1 (PAI-1) (SERPINE) in healthy controls and CAD patients with high lipoprotein(a) (Lp(a)). The aim of our study was to identify, first, if there is a difference in these markers between controls and patients; secondly, if these markers are associated with lipids; and third, what the influence of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors is on these markers. We included 124 subjects, 27 controls and 97 patients with CAD (30 in placebo and 67 in the PCSK9 group). Blood samples were collected for lipid and gene measurement. The results showed higher expression of IL1B (p < 0.0001), VEGFA (p < 0.0001), and F3 (p = 0.018) in controls in comparison with patients. Significant correlations were observed between IL1B and lipids. Treatment with PCSK9 inhibitors increased VEGFA (p < 0.0001) and F3 (p = 0.001), and decreased SERPINE (p = 0.043). The results of our study underpin the importance of IL-1β, VEGF-A and TF in CAD as well as the effect of PCSK9 treatment on these markers.
Collapse
|
7
|
Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y. A Review of Pharmacology, Toxicity and Pharmacokinetics of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside. Front Pharmacol 2022; 12:791214. [PMID: 35069206 PMCID: PMC8769241 DOI: 10.3389/fphar.2021.791214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Palmer BR, Paterson MA, Frampton CM, Pilbrow AP, Skelton L, Pemberton CJ, Doughty RN, Ellis CJ, Troughton RW, Richards AM, Cameron VA. Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS One 2021; 16:e0254206. [PMID: 34260629 PMCID: PMC8279389 DOI: 10.1371/journal.pone.0254206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Development of a competent collateral circulation in established coronary artery disease is cardio-protective. The vascular endothelial growth factor (VEGF) system plays a key role in this process. We investigated the prognostic performance of circulating VEGF-A and three genetic variants in the VEGFA gene in a clinical coronary cohort. METHODS AND RESULTS The Coronary Disease Cohort Study (CDCS) recruited 2,140 patients, with a diagnosis of acute coronary syndrome (ACS), after admission to Christchurch or Auckland City Hospitals between July 2002 and January 2009. We present data for 1927 patients from the cohort genotyped for three SNPs in the VEGF-A gene, rs699947 (C-2578A), rs2010963 (C405G) and rs3025039 (C936T). Plasma VEGF-A concentrations were assayed in a subgroup (n = 550) of CDCS patients (geometric mean 36.6 [34.7-38.5] pg/ml). VEGF-A levels correlated with patient heart rate at baseline (p = 0.034). None of rs699947, rs3025039, nor rs2010963 genotypes were significantly associated with VEGF-A levels, but rs3025039 genotype was positively associated with collateral vessels perfusion according to the Rentrop classification (p = 0.01) and baseline natriuretic peptide levels (p<0.05). Survival in the CDCS cohort was independently associated with baseline VEGF-A levels and (in males) with rs699947 genotype. CONCLUSIONS This study is strongly suggestive that VEGF-A levels have value as a prognostic biomarker in coronary heart disease patients and SNPs in VEGF-A deserve further investigation as prognostic markers and indicators of angiogenic potential influencing the formation of collateral circulation.
Collapse
Affiliation(s)
- Barry R. Palmer
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
- School of Health Sciences, College of Health, Massey University, Wellington, New Zealand
| | - Melinda A. Paterson
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Chris. M. Frampton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Anna P. Pilbrow
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Lorraine Skelton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Chris J. Pemberton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - Robert N. Doughty
- Faculty of Medicine and Health Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Chris J. Ellis
- Faculty of Medicine and Health Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Richard W. Troughton
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| | - A. Mark Richards
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore, Singapore
| | - Vicky A. Cameron
- Department of Medicine, Christchurch Heart Institute, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
9
|
Youssef ME, El-Mas MM, Abdelrazek HM, El-Azab MF. α7-nAChRs-mediated therapeutic angiogenesis accounts for the advantageous effect of low nicotine doses against myocardial infarction in rats. Eur J Pharmacol 2021; 898:173996. [PMID: 33684450 DOI: 10.1016/j.ejphar.2021.173996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Angiogenesis accelerates tissue regeneration in a variety of ischemic conditions including myocardial infarction (MI). Here we tested the hypothesis that angiogenesis induced by α7-nicotinic acetylcholine receptors (α7-nAChRs) mitigates histopathological, electrocardiographic, and molecular consequences of MI in rats. These profiles were evaluated in the isoprenaline (85 mg/kg/day i. p. For 2 days) MI rat model treated with or without nicotine or PHA-543613 (PHA, selective α7-nAChR agonist). Isoprenaline-insulted rats showed (i) ECG signs of MI such as significant ST-segment elevations and prolonged QT-intervals, (ii) deteriorated left ventricular histopathological scoring and elevated inflammatory cell infiltration, (iii) reduced immunohistochemical expression of cardiac CD34, a surrogate marker of capillary density, (iv) decreased cardiac expression of iNOS and α7-nAChRs, and (v) adaptive increases in cardiac HO-1 expression and plasma angiogenic markers such as vascular endothelial growth factor (VEGF) and nitric oxide (NO). These effects of isoprenaline, except cardiac iNOS and α7-nAChRs downregulation, were ameliorated in rats treated with a low dose (20 μg/kg/day s. c. For 16 days) of nicotine or PHA. We also show that concurrent α7-nAChR blockade by methyllycaconitine (MLA, 40 μg/kg/day, for 16 days) reversed the ECG, histopathological, and capillary density effects of nicotine, thereby reinforcing the advantageous cardioprotective and anti-ischemic roles of α7-nAChRs in this setting. The observed results showed promising effects on isoprenaline induced myocardial damage. In conclusion, the activation of α7-nAChRs by doses of nicotine or PHA in the microgram scale promotes neovascularization and offers a promising therapeutic strategy for MI. CATEGORY: Cardiovascular Pharmacology.
Collapse
Affiliation(s)
- Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Heba M Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
10
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
11
|
Pauli N, Kuligowska A, Krzystolik A, Dziedziejko V, Safranow K, Rać M, Chlubek D, Rać ME. The circulating vascular endothelial growth factor is only marginally associated with an increased risk for atherosclerosis. Minerva Cardioangiol 2020; 68:332-338. [PMID: 32326675 DOI: 10.23736/s0026-4725.20.04995-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Vascular endothelial growth factor-A (VEGF-A) is a protein that plays a role in the formation and function of blood vessels, promotes increased vascular permeability or migration of monocytes through endothelial layers. We have tested the hypothesis that plasma levels of VEGF-A may be associated with biochemical and radiological parameters as a marker of cardiovascular risk in Caucasian patients with early-onset CAD. METHODS The study group included 100 patients: 75 men not older than 50 years and 25 women not older than 55 years at the moment of CAD diagnosis. The control group (patients without CAD) comprised 50 healthy cases. ELISA test was used to measure plasma concentrations of VEGF. Doppler ultrasound of carotid and peripheral arteries was carried out in each patient. Serum glucose, complete lipid profile, ApoA1, ApoB, Lp(a) and blood count were measured in each case. RESULTS Only very weak correlations of plasma VEGF levels with biochemical cardiovascular risk factors in the CAD subjects have been demonstrated. In the study group, VEGF concentration was significantly positively correlated with the same blood parameters as white blood cells, platelets, plateletcrit, apolipoprotein B, total and LDL cholesterol fraction. The plaque of common carotid arteries and bifurcation was present in 39% of CAD patients, however, there was no significant association between VEGF plasma concentration and any measured parameters in Doppler ultrasound of carotid and peripheral arteries. CONCLUSIONS The circulating VEGF is only marginally associated with an increased risk for atherosclerosis.
Collapse
Affiliation(s)
- Natalia Pauli
- Department of Cardiology, Regional Hospital, Gorzów Wielkopolski, Poland
| | - Agnieszka Kuligowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | | | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Michał Rać
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Monika E Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland -
| |
Collapse
|
12
|
Figueira L, González JC. Effect of resveratrol on seric vascular endothelial growth factor concentrations during atherosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 30:209-216. [PMID: 30253861 DOI: 10.1016/j.arteri.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Although it is known that resveratrol has anti-inflammatory and anti-atherogenic actions, its effect on vascular endothelial growth factor (VEGF) in atherosclerosis is unknown. OBJECTIVE To evaluate the effect of resveratrol on serum concentrations of VEGF during the progression and evolution of atherosclerosis, as well as and its evolution over time in rabbits fed with a cholesterol diet. MATERIALS AND METHODS A total of 48 New Zealand white male rabbits were randomly divided into four groups of 12 rabbits: group1 (control): standard diet (commercial rabbit food); group2: cholesterol diet (0.5% cholesterol); group3 (control resveratrol): standard diet (commercial rabbit food) and resveratrol (2mg/Kg); group4: cholesterol diet (0.5% cholesterol) and resveratrol (2mg/Kg), for 12weeks. Blood samples of overnight-fasted rabbits were collected at baseline and the sixth and twelfth weeks, and the lipid profile, VEGF, and C-reactive protein (CRP) levels were determined. Half of the animals were sacrificed on the sixth or twelfth week, and the aorta was dissected for histological studies. RESULTS VEGF and CRP levels were significantly higher in groups2 and 4 than in groups1 and 3, respectively, from the 6th week (p<0.001). VEGF and CRP were significantly lower in group4 than in group2 on 12th week (p<0.004). Supplementation of resveratrol reduced the formation of atherosclerotic lesions. CONCLUSIONS Serum VEGF and CRP levels are early markers of atherosclerosis. Oral supplementation of resveratrol exerts anti-inflammatory and anti-atherosclerotic effects, decreasing serum concentrations of VEGF and CRP and the formation and evolution of atherosclerotic lesions.
Collapse
Affiliation(s)
- Leticia Figueira
- Escuela de Bioanálisis, Laboratorio de Investigación y Postgrado de la Escuela de Bioanálisis (LIPEB), Facultad de Ciencias de la Salud, Universidad de Carabobo, Naguanagua, Carabobo, Venezuela.
| | - Julio César González
- Escuela de Bioanálisis, Laboratorio de Investigación y Postgrado de la Escuela de Bioanálisis (LIPEB), Facultad de Ciencias de la Salud, Universidad de Carabobo, Naguanagua, Carabobo, Venezuela; Laboratorio Clínico Julio César González, Valencia, Carabobo, Venezuela
| |
Collapse
|
13
|
Shoeibi S, Mozdziak P, Mohammadi S. Important signals regulating coronary artery angiogenesis. Microvasc Res 2017; 117:1-9. [PMID: 29247718 DOI: 10.1016/j.mvr.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a complex process of budding, the formation of new blood vessels from pre-existing microvessels, via migration, proliferation and survival. Vascular angiogenesis factors include different classes of molecules that have a fundamental role in blood vessel formation. Numerous inducers of angiogenesis, such as the members of the vascular endothelial growth factor (VEGF) family, basic fibroblast growth factor (bFGF), angiopoietin (Ang), hepatocyte growth factor (HGF), and hypoxia inducible factor-1 (HIF-1), have an important role in angiogenesis. However, VEGF, platelet-derived growth factor (PDGF), and transforming growth factor β (TGF-β) expression appear to be important in intraplaque angiogenesis. Interaction and combined effects between growth factors is essential in endothelial cell migration, proliferation, differentiation, and endothelial cell-cell communication that ultimately lead to the microvessel formation. Since VEGF has a key role during angiogenesis; it may be considered as a good therapeutic target in the clinic. The essential function of several angiogenic factors involved in coronary angiogenesis and intraplaque angiogenesis in atherosclerosis are carefully considered along with the use of angiogenic factors in clinical practice.
Collapse
Affiliation(s)
- Sara Shoeibi
- Cellular and Molecular research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC
| | - Shabnam Mohammadi
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
14
|
Leenders GJ, Smeets MB, van den Boomen M, Berben M, Nabben M, van Strijp D, Strijkers GJ, Prompers JJ, Arslan F, Nicolay K, Vandoorne K. Statins Promote Cardiac Infarct Healing by Modulating Endothelial Barrier Function Revealed by Contrast-Enhanced Magnetic Resonance Imaging. Arterioscler Thromb Vasc Biol 2017; 38:186-194. [PMID: 29146749 DOI: 10.1161/atvbaha.117.310339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The endothelium has a crucial role in wound healing, acting as a barrier to control transit of leukocytes. Endothelial barrier function is impaired in atherosclerosis preceding myocardial infarction (MI). Besides lowering lipids, statins modulate endothelial function. Here, we noninvasively tested whether statins affect permeability at the inflammatory (day 3) and the reparative (day 7) phase of infarct healing post-MI using contrast-enhanced cardiac magnetic resonance imaging (MRI). APPROACH AND RESULTS Noninvasive permeability mapping by MRI after MI in C57BL/6, atherosclerotic ApoE-/-, and statin-treated ApoE-/- mice was correlated to subsequent left ventricular outcome by structural and functional cardiac MRI. Ex vivo histology, flow cytometry, and quantitative polymerase chain reaction were performed on infarct regions. Increased vascular permeability at ApoE-/- infarcts was observed compared with C57BL/6 infarcts, predicting enhanced left ventricular dilation at day 21 post-MI by MRI volumetry. Statin treatment improved vascular barrier function at ApoE-/- infarcts, indicated by reduced permeability. The infarcted tissue of ApoE-/- mice 3 days post-MI displayed an unbalanced Vegfa(vascular endothelial growth factor A)/Angpt1 (angiopoetin-1) expression ratio (explaining leakage-prone vessels), associated with higher amounts of CD45+ leukocytes and inflammatory LY6Chi monocytes. Statins reversed the unbalanced Vegfa/Angpt1 expression, normalizing endothelial barrier function at the infarct and blocking the augmented recruitment of inflammatory leukocytes in statin-treated ApoE-/- mice. CONCLUSIONS Statins lowered permeability and reduced the transit of unfavorable inflammatory leukocytes into the infarcted tissue, consequently improving left ventricular outcome.
Collapse
Affiliation(s)
- Geert J Leenders
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Mirjam B Smeets
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Maaike van den Boomen
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Monique Berben
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Miranda Nabben
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Dianne van Strijp
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Gustav J Strijkers
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Jeanine J Prompers
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Fatih Arslan
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Klaas Nicolay
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.)
| | - Katrien Vandoorne
- From the Department of Biomedical Engineering, Biomedical NMR, Eindhoven University of Technology, The Netherlands (G.J.L., M.v.d.B., M.N., G.J.S., J.J.P., K.N., K.V.); Laboratory of Experimental Cardiology (M.B.S.) and Department of Cardiology (F.A.), University Medical Center Utrecht, The Netherlands; Department Precision and Decentralized Diagnostics, Philips Research Eindhoven, The Netherlands (M.B., D.v.S.); Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands (G.J.S.); and Department of Cardiology, St. Antonius Hospital Nieuwegein, The Netherlands (F.A.).
| |
Collapse
|
15
|
Merlo S, Starčević JN, Mankoč S, Šantl Letonja M, Cokan Vujkovac A, Zorc M, Petrovič D. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963) and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559), and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2016; 2016:1482194. [PMID: 26881237 PMCID: PMC4736196 DOI: 10.1155/2016/1482194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/24/2015] [Accepted: 11/01/2015] [Indexed: 12/01/2022] Open
Abstract
Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF) gene (rs2010963) and its receptor, kinase insert domain-containing receptor (KDR) gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559) was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559) were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963) and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM.
Collapse
Affiliation(s)
- Sebastjan Merlo
- Institute of Oncology Ljubljana, Zaloška 2, Sl-1000 Ljubljana, Slovenia
| | - Jovana Nikolajević Starčević
- Institute of Histology and Embryology, Faculty of Medicine, University in Ljubljana, Vrazov trg 2, Sl-1000 Ljubljana, Slovenia
| | - Sara Mankoč
- Institute of Histology and Embryology, Faculty of Medicine, University in Ljubljana, Vrazov trg 2, Sl-1000 Ljubljana, Slovenia
| | | | | | - Marjeta Zorc
- Institute of Histology and Embryology, Faculty of Medicine, University in Ljubljana, Vrazov trg 2, Sl-1000 Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University in Ljubljana, Vrazov trg 2, Sl-1000 Ljubljana, Slovenia
- *Daniel Petrovič:
| |
Collapse
|