1
|
Stefanaki I, D’Ecclesiis O, Vignati S, Gaeta A, Kypreou K, Caini S, Gandini S, Nagore E, Sera F, Botta F, Newton-Bishop J, Polsky D, Lazovich D, Kanetsky PA, Puig S, Gruis NA, Landi MT, Fargnoli MC, Stratigos A, Guida G, Ghiorzo P, Menin C, García-Borrón JC, Little J, Nan H, Raimondi S. Association of MC1R variants with melanoma risk and interaction with sun exposure: An M-SKIP project. J Eur Acad Dermatol Venereol 2024:10.1111/jdv.20380. [PMID: 39425518 PMCID: PMC12008258 DOI: 10.1111/jdv.20380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Grants
- CR UK C588/A19167, C8216/A6129 and C588/A10721 and NIH CA83115
- MFAG 11831 The Italian Association for Cancer Research
- R01 CA083115 NCI NIH HHS
- "Fundación Científica de la Asociación Española Contra el Cáncer" GCB15152978SOEN, Spain, and CERCA Programme / Generalitat de Catalunya
- European Commission under the 6th Framework Programme, Contract No. LSHC-CT-2006-018702 (GenoMEL) and by the European Commission under the 7th Framework Programme, Diagnoptics
- CA75434 Division of Cancer Prevention, National Cancer Institute
- CA83115 The National Cancer Institute
- CA80700 Division of Cancer Prevention, National Cancer Institute
- PI18/00419 Spanish Fondo de Investigaciones Sanitarias
- K07 CA080700 NCI NIH HHS
- PI18/01077 Spanish Fondo de Investigaciones Sanitarias
- AGAUR 2017_SGR_1134 of the Catalan Government, Spain
- Fundació La Marató de TV3" 201331-30, Catalonia, Spain
- PI15/00716 Spanish Fondo de Investigaciones Sanitarias
- IRCCS Ospedale Policlinico San Martino
- CA092428 Division of Cancer Prevention, National Cancer Institute
- R01 CA092428 NCI NIH HHS
- PI15/00956 Spanish Fondo de Investigaciones Sanitarias
- CIBER de Enfermedades Raras of the Instituto de Salud Carlos III, Spain, co-financed by European Development Regional Fund "A way to achieve Europe" ERDF
Collapse
Affiliation(s)
- Irene Stefanaki
- 1st Clinic of Dermatological and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Greece
| | - Oriana D’Ecclesiis
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| | - Silvano Vignati
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| | - Aurora Gaeta
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| | - Katerina Kypreou
- 1st Clinic of Dermatological and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Greece
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Gandini
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Francesca Botta
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| | | | - David Polsky
- New York University School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - DeAnn Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, MN, USA
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Spain & CIBER de Enfermedades Raras, Barcelona, Spain
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, The Netherlands
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, USA
| | - Maria Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alexander Stratigos
- 1st Clinic of Dermatological and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, Andreas Sygros Hospital, Greece
| | - Gabriella Guida
- Department of Traslational Biomedicine and Neuroscience (DiBraiN),University of Bari "A. Moro", Bari, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Cancer Genetics, Genoa, Italy
| | - Chiara Menin
- Diagnostic Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - José C. García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Sara Raimondi
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca 8, Italy
| |
Collapse
|
2
|
Primiero CA, Maas EJ, Wallingford CK, Soyer HP, McInerney-Leo AM. Genetic testing for familial melanoma. Ital J Dermatol Venerol 2024; 159:34-42. [PMID: 38287743 DOI: 10.23736/s2784-8671.23.07761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
While the average lifetime risk of melanoma worldwide is approximately 3%, those with inherited high-penetrance mutations face an increased lifetime risk of 52-84%. In countries of low melanoma incidence, such as in Southern Europe, familial melanoma genetic testing may be warranted when there are two first degree relatives with a melanoma diagnosis. Testing criteria for high incidence countries such as USA, or with very-high incidence, such as Australia and New Zealand, would require a threshold of 3 to 4 affected family members. A mutation in the most common gene associated with familial melanoma, CDKN2A, is identified in approximately 10-40% of those meeting testing criteria. However, the use of multi-gene panels covering additional less common risk genes can significantly increase the diagnostic yield. Currently, genetic testing for familial melanoma is typically conducted by qualified genetic counsellors, however with increasing demand on testing services and high incidence rate in certain countries, a mainstream model should be considered. With appropriate training, dermatologists are well placed to identify high risk individuals and offer melanoma genetic test in dermatology clinics. Genetic testing should be given in conjunction with pre- and post-test consultation. Informed patient consent should cover possible results, the limitations and implications of testing including inconclusive results, and potential for genetic discrimination. Previous studies reporting on participant outcomes of genetic testing for familial melanoma have found significant improvements in both sun protective behavior and screening frequency in mutation carriers.
Collapse
Affiliation(s)
- Clare A Primiero
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
- Department of Dermatology, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica - August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ellie J Maas
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - Courtney K Wallingford
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| | - H Peter Soyer
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia -
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Aideen M McInerney-Leo
- Frazer Institute, Dermatology Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Sera F, Gasparrini A. Extended two-stage designs for environmental research. Environ Health 2022; 21:41. [PMID: 35436963 PMCID: PMC9017054 DOI: 10.1186/s12940-022-00853-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The two-stage design has become a standard tool in environmental epidemiology to model multi-location data. However, its standard form is rather inflexible and poses important limitations for modelling complex risks associated with environmental factors. In this contribution, we illustrate multiple design extensions of the classical two-stage method, all implemented within a unified analytic framework. METHODS We extended standard two-stage meta-analytic models along the lines of linear mixed-effects models, by allowing location-specific estimates to be pooled through flexible fixed and random-effects structures. This permits the analysis of associations characterised by combinations of multivariate outcomes, hierarchical geographical structures, repeated measures, and/or longitudinal settings. The analytic framework and inferential procedures are implemented in the R package mixmeta. RESULTS The design extensions are illustrated in examples using multi-city time series data collected as part of the National Morbidity, Mortality and Air Pollution Study (NMMAPS). Specifically, four case studies demonstrate applications for modelling complex associations with air pollution and temperature, including non-linear exposure-response relationships, effects clustered at multiple geographical levels, differential risks by age, and effect modification by air conditioning in a longitudinal analysis. CONCLUSIONS The definition of several design extensions of the classical two-stage design within a unified framework, along with its implementation in freely-available software, will provide researchers with a flexible tool to address novel research questions in two-stage analyses of environmental health risks.
Collapse
Affiliation(s)
- Francesco Sera
- Department of Statistics, Computer Science and Applications “G. Parenti”, University of Florence, Florence, Italy
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
- Centre On Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Centre for Statistical Modelling, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Pellegrini C, Raimondi S, Di Nardo L, Ghiorzo P, Menin C, Manganoni MA, Palmieri G, Guida G, Quaglino P, Stanganelli I, Massi D, Pastorino L, Elefanti L, Tosti G, Queirolo P, Leva A, Maurichi A, Rodolfo M, Fargnoli MC. Melanoma in children and adolescents: analysis of susceptibility genes in 123 Italian patients. J Eur Acad Dermatol Venereol 2022; 36:213-221. [PMID: 34664323 DOI: 10.1111/jdv.17735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND A polygenic inheritance involving high, medium and low penetrance genes has been suggested for melanoma susceptibility in adults, but genetic information is scarce for paediatric patients. OBJECTIVE We aim to analyse the major high and intermediate melanoma risk genes, CDKN2A, CDK4, POT1, MITF and MC1R, in a large multicentre cohort of Italian children and adolescents in order to explore the genetic context of paediatric melanoma and to reveal potential differences in heritability between children and adolescents. METHODS One-hundred-twenty-three patients (<21 years) from nine Italian centres were analysed for the CDKN2A, CDK4, POT1, MITF, and MC1R melanoma predisposing genes. The rate of gene variants was compared between sporadic, familial and multiple melanoma patients and between children and adolescents, and their association with clinico-pathological characteristics was evaluated. RESULTS Most patients carried MC1R variants (67%), while CDKN2A pathogenic variants were found in 9% of the cases, the MITF E318K in 2% of patients and none carried CDK4 or the POT1 S270N pathogenic variant. Sporadic melanoma patients significantly differed from familial and multiple cases for the young age at diagnosis, infrequent red hair colour, low number of nevi, low frequency of CDKN2A pathogenic variants and of the MC1R R160W variant. Melanoma in children (≤12 years) had more frequently spitzoid histotype, were located on the head/neck and upper limbs and had higher Breslow thickness. The MC1R V92M variant was more common in children than in adolescents. CDKN2A common polymorphisms and MC1R variants were associated with a high number of nevi. CONCLUSION Our results confirm the scarce involvement of the major high-risk susceptibility genes in paediatric melanoma and suggest the implication of MC1R gene variants especially in the children population.
Collapse
Affiliation(s)
- C Pellegrini
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - S Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - L Di Nardo
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Dermatology, Department of Translational Medicine and Surgery, Catholic University of Rome, Italy
| | - P Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, and Department of Internal Medicine and Medical Specialties, University of Genoa, Italy
| | - C Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - M A Manganoni
- Department of Dermatology, Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - G Palmieri
- Unit of Cancer Genetics, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Sassari, Italy
| | - G Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari 'A. Moro', Bari, Italy
| | - P Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Torino, Turin, Italy
| | - I Stanganelli
- Skin Cancer Unit, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, Meldola and University of Parma, Parma, Italy
| | - D Massi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - L Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, and Department of Internal Medicine and Medical Specialties, University of Genoa, Italy
| | - L Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | - G Tosti
- Division of Melanoma, Sarcoma and Rare Cancer, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - P Queirolo
- Division of Melanoma, Sarcoma and Rare Cancer, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - A Leva
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Rodolfo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M C Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
Stefanaki I, Stratigos AJ, Kypreou KP, Evangelou E, Gandini S, Maisonneuve P, Polsky D, Lazovich D, Newton-Bishop J, Kanetsky PA, Puig S, Gruis NA, Ghiorzo P, Pellegrini C, De Nicolo A, Ribas G, Guida G, Garcia-Borron JC, Fargnoli MC, Nan H, Landi MT, Little J, Sera F, Raimondi S. MC1R variants in relation to naevi in melanoma cases and controls: a pooled analysis from the M-SKIP project. J Eur Acad Dermatol Venereol 2021; 35:e135-e138. [PMID: 32780924 PMCID: PMC8327925 DOI: 10.1111/jdv.16869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/25/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Affiliation(s)
- I Stefanaki
- 1st Department of Dermatology, Medical School, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - A J Stratigos
- 1st Department of Dermatology, Medical School, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - K P Kypreou
- 1st Department of Dermatology, Medical School, Andreas Sygros Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - E Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - S Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - P Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - D Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - D Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - J Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - P A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - S Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Centro de Investigación Biomédica August Pi I Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Spain
| | - N A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - C Pellegrini
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - A De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - G Ribas
- Dptd. Oncologia medica y hematologia, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - G Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "A. Moro", Bari, Italy
| | - J C Garcia-Borron
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - M C Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - H Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, IU Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - M T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - J Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - F Sera
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - S Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
6
|
Caini S, Gandini S, Botta F, Tagliabue E, Raimondi S, Nagore E, Zanna I, Maisonneuve P, Newton-Bishop J, Polsky D, Lazovich D, Kumar R, Kanetsky PA, Hoiom V, Ghiorzo P, Landi MT, Ribas G, Menin C, Stratigos AJ, Palmieri G, Guida G, García-Borrón JC, Nan H, Little J, Sera F, Puig S, Fargnoli MC. MC1R variants and cutaneous melanoma risk according to histological type, body site, and Breslow thickness: a pooled analysis from the M-SKIP project. Melanoma Res 2020; 30:500-510. [PMID: 32898390 PMCID: PMC7479262 DOI: 10.1097/cmr.0000000000000668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Little is known on whether melanocortin 1 receptor (MC1R) associated cutaneous melanoma (CM) risk varies depending on histological subtype and body site, and whether tumour thickness at diagnosis (the most important prognostic factor for CM patients) differs between MC1R variant carriers and wild-type individuals. We studied the association between MC1R variants and CM risk by histological subtype, body site, and Breslow thickness, using the database of the M-SKIP project. We pooled individual data from 15 case-control studies conducted during 2005-2015 in Europe and the USA. Study-specific, multi-adjusted odds ratios were pooled into summary odds ratios (SOR) and 95% confidence intervals (CI) using random-effects models. Six thousand eight hundred ninety-one CM cases and 5555 controls were included. CM risk was increased among MC1R variant carriers vs. wild-type individuals. The increase in risk was comparable across histological subtypes (SOR for any variant vs. wild-type ranged between 1.57 and 1.70, always statistical significant) except acral lentiginous melanoma (ALM), for which no association emerged; and slightly greater on chronically (1.74, 95% CI 1.47-2.07) than intermittently (1.55, 95% CI 1.34-1.78) sun-exposed skin. CM risk was greater for those carrying 'R' vs. 'r' variants; correlated with the number of variants; and was more evident among individuals not showing the red hair colour phenotype. Breslow thickness was not associated with MC1R status. MC1R variants were associated with an increased risk of CM of any histological subtype (except ALM) and occurring on both chronically and intermittently sun-exposed skin.
Collapse
Affiliation(s)
- Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Botta
- Department of Statistics and Quantitative Methods, Università degli Studi di Milano-Bicocca, Milan, Italy
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sara Raimondi
- Molecular and Pharmaco-Epidemiology Unit, Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Ines Zanna
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - DeAnn Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, MN, USA
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Veronica Hoiom
- Department of Oncology and Pathology, Cancer Center, Karolinska Institutet, Stockholm, Sweden
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gloria Ribas
- Dptd. Oncologia medica y hematologia, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| | | | - Giuseppe Palmieri
- Unit of Cancer Genetics, Istituto di Chimica Biomolecolare, CNR, Sassari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs; University of Bari “A. Moro”, Italy
| | - Jose Carlos García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) Spain & CIBER de Enfermedades Raras, Barcelona, Spain
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
7
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
8
|
Tietz T, Selinski S, Golka K, Hengstler JG, Gripp S, Ickstadt K, Ruczinski I, Schwender H. Identification of interactions of binary variables associated with survival time using survivalFS. Arch Toxicol 2019; 93:585-602. [PMID: 30694373 DOI: 10.1007/s00204-019-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/16/2019] [Indexed: 12/01/2022]
Abstract
Many medical studies aim to identify factors associated with a time to an event such as survival time or time to relapse. Often, in particular, when binary variables are considered in such studies, interactions of these variables might be the actual relevant factors for predicting, e.g., the time to recurrence of a disease. Testing all possible interactions is often not possible, so that procedures such as logic regression are required that avoid such an exhaustive search. In this article, we present an ensemble method based on logic regression that can cope with the instability of the regression models generated by logic regression. This procedure called survivalFS also provides measures for quantifying the importance of the interactions forming the logic regression models on the time to an event and for the assessment of the individual variables that take the multivariate data structure into account. In this context, we introduce a new performance measure, which is an adaptation of Harrel's concordance index. The performance of survivalFS and the proposed importance measures is evaluated in a simulation study as well as in an application to genotype data from a urinary bladder cancer study. Furthermore, we compare the performance of survivalFS and its importance measures for the individual variables with the variable importance measure used in random survival forests, a popular procedure for the analysis of survival data. These applications show that survivalFS is able to identify interactions associated with time to an event and to outperform random survival forests.
Collapse
Affiliation(s)
- Tobias Tietz
- Mathematical Institute, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Silvia Selinski
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, IfADo, 44139, Dortmund, Germany
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, IfADo, 44139, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, IfADo, 44139, Dortmund, Germany
| | - Stephan Gripp
- Department of Radiation Oncology, Heinrich Heine University Hospital, 44225, Düsseldorf, Germany
| | - Katja Ickstadt
- Faculty of Statistics, TU Dortmund University, 44221, Dortmund, Germany
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Tagliabue E, Gandini S, Bellocco R, Maisonneuve P, Newton-Bishop J, Polsky D, Lazovich D, Kanetsky PA, Ghiorzo P, Gruis NA, Landi MT, Menin C, Fargnoli MC, García-Borrón JC, Han J, Little J, Sera F, Raimondi S. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled analysis from the M-SKIP project. Cancer Manag Res 2018; 10:1143-1154. [PMID: 29795986 PMCID: PMC5958947 DOI: 10.2147/cmar.s155283] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Melanoma represents an important public health problem, due to its high case-fatality rate. Identification of individuals at high risk would be of major interest to improve early diagnosis and ultimately survival. The aim of this study was to evaluate whether MC1R variants predicted melanoma risk independently of at-risk phenotypic characteristics. MATERIALS AND METHODS Data were collected within an international collaboration - the M-SKIP project. The present pooled analysis included data on 3,830 single, primary, sporadic, cutaneous melanoma cases and 2,619 controls from seven previously published case-control studies. All the studies had information on MC1R gene variants by sequencing analysis and on hair color, skin phototype, and freckles, ie, the phenotypic characteristics used to define the red hair phenotype. RESULTS The presence of any MC1R variant was associated with melanoma risk independently of phenotypic characteristics (OR 1.60; 95% CI 1.36-1.88). Inclusion of MC1R variants in a risk prediction model increased melanoma predictive accuracy (area under the receiver-operating characteristic curve) by 0.7% over a base clinical model (P=0.002), and 24% of participants were better assessed (net reclassification index 95% CI 20%-30%). Subgroup analysis suggested a possibly stronger role of MC1R in melanoma prediction for participants without the red hair phenotype (net reclassification index: 28%) compared to paler skinned participants (15%). CONCLUSION The authors suggest that measuring the MC1R genotype might result in a benefit for melanoma prediction. The results could be a valid starting point to guide the development of scientific protocols assessing melanoma risk prediction tools incorporating the MC1R genotype.
Collapse
Affiliation(s)
- Elena Tagliabue
- Clinical Trial Center, Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Rino Bellocco
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David Polsky
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - DeAnn Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, MN
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa
- IRCCS AOU San Martino-IST, Genoa, Italy
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padua
| | | | - Jose Carlos García-Borrón
- Department of Biochemistry, Molecular Biology, and Immunology, University of Murcia
- IMIB-Arrixaca, Murcia, Spain
| | - Jiali Han
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Sera
- Department of Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
10
|
Tagliabue E, Gandini S, García-Borrón JC, Maisonneuve P, Newton-Bishop J, Polsky D, Lazovich D, Kumar R, Ghiorzo P, Ferrucci L, Gruis NA, Puig S, Kanetsky PA, Motokawa T, Ribas G, Landi MT, Fargnoli MC, Wong TH, Stratigos A, Helsing P, Guida G, Autier P, Han J, Little J, Sera F, Raimondi S. Association of Melanocortin-1 Receptor Variants with Pigmentary Traits in Humans: A Pooled Analysis from the M-Skip Project. J Invest Dermatol 2016; 136:1914-1917. [PMID: 27251790 PMCID: PMC5317175 DOI: 10.1016/j.jid.2016.05.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Elena Tagliabue
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - José C García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia and IMIB-Arrixaca, Murcia, Spain
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - David Polsky
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, NYU Langone Medical Center, New York, New York, USA
| | - DeAnn Lazovich
- Division of Epidemiology and Community Health, University of Minnesota, Minnesota, USA
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Italy; IRCCS AOU San Martino-IST, Genoa, Italy
| | - Leah Ferrucci
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale Cancer Center, New Haven, Connecticut, USA
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic Barcelona, University of Barcelona, CIBER de Enfermedades Raras, Spain
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute2, Tampa, Florida, USA
| | | | - Gloria Ribas
- Department of medical oncology and hematology, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Alexander Stratigos
- First Department of Dermatology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Per Helsing
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | | | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Julian Little
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada
| | - Francesco Sera
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
11
|
Tagliabue E, Fargnoli MC, Gandini S, Maisonneuve P, Liu F, Kayser M, Nijsten T, Han J, Kumar R, Gruis NA, Ferrucci L, Branicki W, Dwyer T, Blizzard L, Helsing P, Autier P, García-Borrón JC, Kanetsky PA, Landi MT, Little J, Newton-Bishop J, Sera F, Raimondi S. MC1R gene variants and non-melanoma skin cancer: a pooled-analysis from the M-SKIP project. Br J Cancer 2015; 113:354-363. [PMID: 26103569 PMCID: PMC4506395 DOI: 10.1038/bjc.2015.231] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The melanocortin-1-receptor (MC1R) gene regulates human pigmentation and is highly polymorphic in populations of European origins. The aims of this study were to evaluate the association between MC1R variants and the risk of non-melanoma skin cancer (NMSC), and to investigate whether risk estimates differed by phenotypic characteristics. METHODS Data on 3527 NMSC cases and 9391 controls were gathered through the M-SKIP Project, an international pooled-analysis on MC1R, skin cancer and phenotypic characteristics. We calculated summary odds ratios (SOR) with random-effect models, and performed stratified analyses. RESULTS Subjects carrying at least one MC1R variant had an increased risk of NMSC overall, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC): SOR (95%CI) were 1.48 (1.24-1.76), 1.39 (1.15-1.69) and 1.61 (1.35-1.91), respectively. All of the investigated variants showed positive associations with NMSC, with consistent significant results obtained for V60L, D84E, V92M, R151C, R160W, R163Q and D294H: SOR (95%CI) ranged from 1.42 (1.19-1.70) for V60L to 2.66 (1.06-6.65) for D84E variant. In stratified analysis, there was no consistent pattern of association between MC1R and NMSC by skin type, but we consistently observed higher SORs for subjects without red hair. CONCLUSIONS Our pooled-analysis highlighted a role of MC1R variants in NMSC development and suggested an effect modification by red hair colour phenotype.
Collapse
Affiliation(s)
- E Tagliabue
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy
| | - M C Fargnoli
- Department of Dermatology, University of L'Aquila, 47100 L'Aquila, Italy
| | - S Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy
| | - P Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy
| | - F Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, 3000 DR Rotterdam, The Netherlands
| | - M Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, 3000 DR Rotterdam, The Netherlands
| | - T Nijsten
- Department of Dermatology, Erasmus MC University Medical Center, 3000 DR Rotterdam, The Netherlands
| | - J Han
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - R Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - N A Gruis
- Department of Dermatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - L Ferrucci
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale Cancer Center, New Haven, CT 06520-8034, USA
| | - W Branicki
- Institute of Forensic Research, 31-033 Krakow, Poland
| | - T Dwyer
- Murdoch Childrens Research Institute, Royal Children's Hospital, Victoria 3052, Australia
| | - L Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, 7001 Australia
| | - P Helsing
- Department of Pathology, Oslo University Hospital, N-0027 Oslo, Norway
| | - P Autier
- International Prevention Research Institute, Lyon 69006, France
| | - J C García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30100 Murcia, Spain
| | - P A Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - M T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892-7236, USA
| | - J Little
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, Canada ON K1N 6N5
| | - J Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - F Sera
- UCL Institute of Child Health, London WC1N 1EH, UK
| | - S Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ripamonti 435, Milan 20141, Italy
| |
Collapse
|
12
|
Pasquali E, García-Borrón JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V, Specchia C, Liu F, Kayser M, Nijsten T, Nagore E, Kumar R, Hansson J, Kanetsky PA, Ghiorzo P, Debniak T, Branicki W, Gruis NA, Han J, Dwyer T, Blizzard L, Landi MT, Palmieri G, Ribas G, Stratigos A, Council M, Autier P, Little J, Newton-Bishop J, Sera F, Raimondi S. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer 2015; 136:618-631. [PMID: 24917043 PMCID: PMC4378685 DOI: 10.1002/ijc.29018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
The MC1R gene is a key regulator of skin pigmentation. We aimed to evaluate the association between MC1R variants and the risk of sporadic cutaneous melanoma (CM) within the M-SKIP project, an international pooled-analysis on MC1R, skin cancer and phenotypic characteristics. Data included 5,160 cases and 12,119 controls from 17 studies. We calculated a summary odds ratio (SOR) for the association of each of the nine most studied MC1R variants and of variants combined with CM by using random-effects models. Stratified analysis by phenotypic characteristics were also performed. Melanoma risk increased with presence of any of the main MC1R variants: the SOR for each variant ranged from 1.47 (95%CI: 1.17-1.84) for V60L to 2.74 (1.53-4.89) for D84E. Carriers of any MC1R variant had a 66% higher risk of developing melanoma compared with wild-type subjects (SOR; 95%CI: 1.66; 1.41-1.96) and the risk attributable to MC1R variants was 28%. When taking into account phenotypic characteristics, we found that MC1R-associated melanoma risk increased only for darker-pigmented Caucasians: SOR (95%CI) was 3.14 (2.06-4.80) for subjects with no freckles, no red hair and skin Type III/IV. Our study documents the important role of all the main MC1R variants in sporadic CM and suggests that they have a direct effect on melanoma risk, independently on the phenotypic characteristics of carriers. This is of particular importance for assessing preventive strategies, which may be directed to darker-pigmented Caucasians with MC1R variants as well as to lightly pigmented, fair-skinned subjects.
Collapse
Affiliation(s)
- Elena Pasquali
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - José C. García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | | | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Vincenzo Bagnardi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
- Department of Statistics and Quantitative Methods, University of Milan Bicocca, Milan, Italy
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Johan Hansson
- Department of Oncology and Pathology, Cancer Center, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino –IST, Genoa
| | - Tadeusz Debniak
- Department of Genetic and Pathology, Pomeranian Medical University, Polabska, Poland
| | | | - Nelleke A. Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jiali Han
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Terry Dwyer
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Leigh Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Istituto di Chimica Biomolecolare, CNR, Sassari, Italy
| | - Gloria Ribas
- Dptd. Oncologia medica y hematologia, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - Alexander Stratigos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - M.Laurin Council
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Julian Little
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|