1
|
Abdullah AR, Gamal El-Din AM, El-Mahdy HA, Ismail Y, El-Husseiny AA. The crucial role of fascin-1 in the pathogenesis, metastasis, and chemotherapeutic resistance of breast cancer. Pathol Res Pract 2024; 254:155079. [PMID: 38219494 DOI: 10.1016/j.prp.2023.155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.
Collapse
Affiliation(s)
- Ahmed R Abdullah
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ayman M Gamal El-Din
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Yahia Ismail
- Medical Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt.
| |
Collapse
|
2
|
Robson JL, Thorn RMS, Williams AC, Collard TJ, Qualtrough D. Gut bacteria promote proliferation in benign S/RG/C2 colorectal tumour cells, and promote proliferation, migration and invasion in malignant HCT116 cells. Sci Rep 2023; 13:17291. [PMID: 37828235 PMCID: PMC10570319 DOI: 10.1038/s41598-023-44130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden with a rising incidence worldwide. Distinct bacterial populations are associated with CRC development and progression, and it is thought that the relationship between CRC and associated gut bacteria changes during the progression from normal epithelium to benign adenoma and eventually malignant carcinoma and metastasis. This study compared the interaction of CRC-associated species Enterotoxigenic Bacteroides fragilis, Enterococcus faecalis and Fusobacterium nucleatum and one probiotic species, Escherichia coli Nissle 1917 with a colorectal adenoma (S/RG/C2) and a colorectal adenocarcinoma (HCT116) derived cell line. Gentamicin protection assays showed that all species displayed higher attachment to benign tumour monolayers when compared to malignant monolayers. However, invasion of 3/4 species was higher in the HCT116 cells than in the adenoma cells. All species were found to persist within tumour cell monolayers for a minimum of 48 h under standard aerobic cell culture conditions, with persistence significantly higher in HCT116 cells. Downstream assays were performed to analyse the behaviour of S/RG/C2 and HCT116 cells post-infection and revealed that all species increased the tumour cell yield of both cell lines. The migratory and invasive potential of HCT116 cells was increased after infection with F. nucleatum; however, no species significantly altered these characteristics in S/RG/C2 cells. These results add to the growing evidence for the involvement of microorganisms in CRC progression and suggest that these interactions may be dependent on tumour cell-specific characteristics.
Collapse
Affiliation(s)
- J L Robson
- Department of Applied Sciences, University of the West of England, Bristol, England
| | - R M S Thorn
- Department of Applied Sciences, University of the West of England, Bristol, England
| | - A C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, England
| | - T J Collard
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, England
| | - D Qualtrough
- Department of Applied Sciences, University of the West of England, Bristol, England.
| |
Collapse
|
3
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Knox EG, Aburto MR, Tessier C, Nagpal J, Clarke G, O’Driscoll CM, Cryan JF. Microbial-derived metabolites induce actin cytoskeletal rearrangement and protect blood-brain barrier function. iScience 2022; 25:105648. [PMID: 36505934 PMCID: PMC9732410 DOI: 10.1016/j.isci.2022.105648] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.
Collapse
Affiliation(s)
- Emily G. Knox
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria R. Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Corresponding author
| | - Carmen Tessier
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jatin Nagpal
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland,Corresponding author
| |
Collapse
|
5
|
Li CH, Chan MH, Liang SM, Chang YC, Hsiao M. Fascin-1: Updated biological functions and therapeutic implications in cancer biology. BBA ADVANCES 2022; 2:100052. [PMID: 37082587 PMCID: PMC10074911 DOI: 10.1016/j.bbadva.2022.100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Filopodia are cellular protrusions that respond to a variety of stimuli. Filopodia are formed when actin is bound to the protein Fascin, which may play a crucial role in cellular interactions and motility during cancer metastasis. Significantly, the noncanonical features of Fascin-1 are gradually being clarified, including the related molecular network contributing to metabolic reprogramming, chemotherapy resistance, stemness ac-tivity, and tumor microenvironment events. However, the relationship between biological characteristics and pathological features to identify effective therapeutic strategies needs to be studied further. The pur-pose of this review article is to provide a broad overview of the latest molecular networks and multiomics research regarding fascins and cancer. It also highlights their direct and indirect effects on available cancer treatments. With this multidisciplinary approach, researchers and clinicians can gain the most relevant in-formation on the function of fascins in cancer progression, which may facilitate clinical applications in the future.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Shu-Mei Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Corresponding authors.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding authors.
| |
Collapse
|
6
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
7
|
Lin S, Taylor MD, Singh PK, Yang S. How does fascin promote cancer metastasis? FEBS J 2020; 288:1434-1446. [PMID: 32657526 DOI: 10.1111/febs.15484] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Fascin is an F-actin-bundling protein that cross-links individual actin filaments into straight and stiff bundles. Fascin overexpression in cancer is strongly associated with poor prognosis and metastatic progression across different cancer types. It is well established that fascin plays a causative role in promoting metastatic progression. We will review the recent progress in our understanding of mechanisms underlying fascin-mediated cancer metastasis. This review will cover the biochemical basis for fascin-bundling activity, the mechanisms by which cancer cells upregulate fascin expression and the mechanism underlying fascin-mediated cancer cell migration, invasion, and metastatic colonization. We propose that fascin has broad roles in both metastatic dissemination and metastatic colonization. Understanding these mechanisms will be crucial to the development of anti-metastasis therapeutics targeting fascin.
Collapse
Affiliation(s)
- Shengchen Lin
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Matthew D Taylor
- Department of Surgery, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pankaj K Singh
- Department of Pathology and Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Expression of Genes Encoding Cell Motility Proteins during Progression of Head and Neck Squamous Cell Carcinoma. Bull Exp Biol Med 2018; 166:250-252. [PMID: 30488206 DOI: 10.1007/s10517-018-4325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 10/27/2022]
Abstract
The model of head and neck squamous cell carcinoma (HNSCC) was used to study the expression of genes encoding actin-binding proteins depending on the type of cell motility. The expression of SNAIL1 and CAPN2 mRNA in HNSCC tissue was higher than in specimens of dysplastic epithelium of the larynx and hypopharynx, which can be explained by activation of mesenchymal and amoeboid types of cell motility. In biopsy material of HNSCC patients with T1-2N0M0, expression of genes responsible for actin-binding proteins differed from that of patients with pretumor pathology of the larynx and hypopharynx: expression of FSCN was lower, while expressions of EZR and CAP1 were higher. The data attest that progression of HNSCC is associated with activation of both types of cell motility and with the changes in the expression of mRNA encoding cell motility proteins.
Collapse
|
9
|
Kanda Y, Kawaguchi T, Osaki M, Onuma K, Ochiya T, Kitagawa T, Okada F. Fascin protein stabilization by miR-146a implicated in the process of a chronic inflammation-related colon carcinogenesis model. Inflamm Res 2018; 67:839-846. [PMID: 30056535 DOI: 10.1007/s00011-018-1175-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE In sporadic colon tumors, multistep process of well-known genetic alterations accelerates carcinogenesis; however, this does not appear to be the case in inflammation-related ones. We previously established a model of inflammation-related colon carcinogenesis using human colonic adenoma cells, and identified fascin as a driver gene of this process. We analyzed the microRNAs involved in the stable fascin expression in colon adenocarcinoma cells. MATERIALS AND METHODS miRNA microarray analysis was performed using FPCK-1-1 adenoma cells and its-derived FPCKpP1-4 adenocarcinoma cells through chronic inflammation. To assess the involvement of miRNA in the inflammation-related carcinogenesis, sphere-forming ability, expression of colon cancer stemness markers, and stability of fascin protein via the proteasome using tough decoy RNA technique. RESULTS We found that 17 miRNAs including miR-146a were upregulated and 16 miRNAs were downregulated in FPCKpP1-4 adenocarcinoma cells. We revealed that miR-146a in the adenocarcinoma cells brought about acquisition of sphere formation, cancer stemness, and inhibition of proteasomal degradation of the fascin protein. CONCLUSIONS We found that stable fascin expression is brought about via the inhibition of proteasome degradation by miR-146a in the process of a chronic inflammation-related colon carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
| | - Tokuichi Kawaguchi
- Japanese Foundation for Cancer Research, Cancer Institute, Tokyo, 135-8550, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, 683-8503, Japan
| | - Kunishige Onuma
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tomoyuki Kitagawa
- Japanese Foundation for Cancer Research, Cancer Institute, Tokyo, 135-8550, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, 86 Nishicho, Yonago, 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, 683-8503, Japan.
| |
Collapse
|
10
|
Jefferies MT, Pope CS, Kynaston HG, Clarke AR, Martin RM, Adams JC. Analysis of Fascin-1 in Relation to Gleason Risk Classification and Nuclear ETS-Related Gene Status of Human Prostate Carcinomas: An Immunohistochemical Study of Clinically Annotated Tumours From the Wales Cancer Bank. BIOMARKERS IN CANCER 2017; 9:1179299X17710944. [PMID: 28607544 PMCID: PMC5457026 DOI: 10.1177/1179299x17710944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
Although prostate-specific antigen (PSA) testing can identify early-stage prostate cancers, additional biomarkers are needed for risk stratification. In one study, high levels of the actin-bundling protein, fascin-1, were correlated with lethal-phase, hormone-refractory prostate cancer. Analyses of independent samples are needed to establish the value of fascin-1 as a possible biomarker. We examined fascin-1 by immunohistochemistry in tumour specimens from the Wales Cancer Bank in comparison with nuclear-located ETS-related gene (ERG), an emerging marker for aggressive prostate cancer. Fascin-1 was elevated in focal areas of a minority of tumours, yet fascin-1-positivity did not differentiate tumours of low-, intermediate-, or high-risk Gleason scores and did not correlate with PSA status or biochemical relapse after surgery. Stromal fascin-1 correlated with high Gleason score. Nuclear ERG was upregulated in tumours but not in stroma. The complexities of fascin-1 status indicate that fascin-1 is unlikely to provide a suitable biomarker for prediction of aggressive prostate cancers.
Collapse
Affiliation(s)
- Matthew T Jefferies
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Howard G Kynaston
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, UK
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Nutritional Biomedical Research Unit, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | | |
Collapse
|
11
|
Ma Y, Faller WJ, Sansom OJ, Brown ER, Doig TN, Melton DW, Machesky LM. Fascin expression is increased in metastatic lesions but does not correlate with progression nor outcome in melanoma. Melanoma Res 2015; 25:169-72. [PMID: 25535872 DOI: 10.1097/cmr.0000000000000135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Levels of the actin bundling protein fascin correlate with invasion and metastasis and reveal prognostic value in many epithelial carcinomas. However, we know very little about the potential role of fascin in melanoma. The purpose of this study is to compare fascin expression in primary melanomas and melanoma metastasis. Fascin expression was examined through the immunohistochemistry of paraffin embedded tissue microarrays including 560 cores of primary tumour and metastasis. Fascin expression was significantly elevated in 48 metastases compared with 254 primary tumours (P=0.034). In 187 patients with primary melanomas, fascin was not correlated with survival (P=0.067), whereas low fascin was significantly correlated with the presence of ulceration (P=0.005). Our results indicate that fascin status does not correlate with progression in melanoma. Upregulated fascin expression was detected in melanoma metastases, but was not correlated to patient outcome.
Collapse
Affiliation(s)
- Yafeng Ma
- aBeatson Institute for Cancer Research, Glasgow bEdinburgh Cancer Centre cDepartment of Pathology, NHS Lothian, Western General Hospital dEdinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK eMedical Oncology Group, Ingham Institute for Applied Medical Research, School of Medicine, University of New South Wales, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Adams JC. Fascin-1 as a biomarker and prospective therapeutic target in colorectal cancer. Expert Rev Mol Diagn 2014; 15:41-8. [DOI: 10.1586/14737159.2015.976557] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Kanda Y, Kawaguchi T, Kuramitsu Y, Kitagawa T, Kobayashi T, Takahashi N, Tazawa H, Habelhah H, Hamada JI, Kobayashi M, Hirahata M, Onuma K, Osaki M, Nakamura K, Kitagawa T, Hosokawa M, Okada F. Fascin regulates chronic inflammation-related human colon carcinogenesis by inhibiting cell anoikis. Proteomics 2014; 14:1031-41. [PMID: 24574163 DOI: 10.1002/pmic.201300414] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/21/2014] [Accepted: 02/21/2014] [Indexed: 12/31/2022]
Abstract
By a proteomics-based approach, we identified an overexpression of fascin in colon adenocarcinoma cells (FPCKpP-3) that developed from nontumorigenic human colonic adenoma cells (FPCK-1-1) and were converted to tumorigenic by foreign-body-induced chronic inflammation in nude mice. Fascin overexpression was also observed in the tumors arising from rat intestinal epithelial cells (IEC 6) converted to tumorigenic in chronic inflammation which was induced in the same manner. Upregulation of fascin expression in FPCK-1-1 cells by transfection with sense fascin cDNA converted the cells tumorigenic, whereas antisense fascin-cDNA-transfected FPCKpP-3 cells reduced fascin expression and lost their tumor-forming ability in vivo. The tumorigenic potential by fascin expression was consistent with their ability to survive and grow in the three-dimensional multicellular spheroids. We found that resistance to anoikis (apoptotic cell death as a consequence of insufficient cell-to-substrate interactions), which is represented by the three-dimensional growth of solid tumors in vivo, was regulated by fascin expression through caspase-dependent apoptotic signals. From these, we demonstrate that fascin is a potent suppressor to caspase-associated anoikis and accelerator of the conversion of colonic adenoma cells into adenocarcinoma cells by chronic inflammation.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schrodt C, McHugh EE, Gawinowicz MA, DuPont HL, Brown EL. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis. PLoS One 2013; 8:e68550. [PMID: 23922656 PMCID: PMC3724845 DOI: 10.1371/journal.pone.0068550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Schrodt
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Erin E. McHugh
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
| | - Mary Ann Gawinowicz
- Protein Core Facility, Columbia University College, New York, New York, United States of America
| | - Herbert L. DuPont
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- Internal Medicine Services, St. Luke’s Episcopal Hospital and Department of Medicine, Infectious Diseases Section, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eric L. Brown
- Center for Infectious Diseases, the University of Texas School of Public Health, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|