1
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
2
|
Du F, Li R, He R, Li K, Liu J, Xiang Y, Duan K, Li C. Exploring salivary metabolome alterations in people with HIV: towards early diagnostic markers. Front Public Health 2024; 12:1400332. [PMID: 38912274 PMCID: PMC11192068 DOI: 10.3389/fpubh.2024.1400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Background The human immunodeficiency virus (HIV) remains a critical global health issue, with a pressing need for effective diagnostic and monitoring tools. Methodology This study explored distinctions in salivary metabolome among healthy individuals, individuals with HIV, and those receiving highly active antiretroviral therapy (HAART). Utilizing LC-MS/MS for exhaustive metabolomics profiling, we analyzed 90 oral saliva samples from individuals with HIV, categorized by CD4 count levels in the peripheral blood. Results Orthogonal partial least squares-discriminant analysis (OPLS-DA) and other analyses underscored significant metabolic alterations in individuals with HIV, especially in energy metabolism pathways. Notably, post-HAART metabolic profiles indicated a substantial presence of exogenous metabolites and changes in amino acid pathways like arginine, proline, and lysine degradation. Key metabolites such as citric acid, L-glutamic acid, and L-histidine were identified as potential indicators of disease progression or recovery. Differential metabolite selection and functional enrichment analysis, combined with receiver operating characteristic (ROC) and random forest analyses, pinpointed potential biomarkers for different stages of HIV infection. Additionally, our research examined the interplay between oral metabolites and microorganisms such as herpes simplex virus type 1 (HSV1), bacteria, and fungi in individuals with HIV, revealing crucial interactions. Conclusion This investigation seeks to contribute understanding into the metabolic shifts occurring in HIV infection and following the initiation of HAART, while tentatively proposing novel avenues for diagnostic and treatment monitoring through salivary metabolomics.
Collapse
Affiliation(s)
- Fei Du
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Rong Li
- Department of Stomatology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Rui He
- Department of Stomatology, Kunming Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Kezeng Li
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jun Liu
- Department of Infectious Diseases, Kunming Third People’s Hospital, Kunming, Yunnan, China
| | - Yingying Xiang
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Kaiwen Duan
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Chengwen Li
- Department of Research Management, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Angelovich TA, Cochrane CR, Zhou J, Tumpach C, Byrnes SJ, Jamal Eddine J, Waring E, Busman-Sahay K, Deleage C, Jenkins TA, Hearps AC, Turville S, Gorry PR, Lewin SR, Brew BJ, Estes JD, Roche M, Churchill MJ. Regional Analysis of Intact and Defective HIV Proviruses in the Brain of Viremic and Virally Suppressed People with HIV. Ann Neurol 2023; 94:798-802. [PMID: 37493435 PMCID: PMC10914117 DOI: 10.1002/ana.26750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Here, we provide the first regional analysis of intact and defective HIV reservoirs within the brain. Brain tissue from both viremic and virally suppressed people with HIV (PWH) harbored HIV pol DNA in all regions tested, with lower levels present in basal ganglia and cerebellum relative to frontal white matter. Intact proviruses were primarily found in the frontal white matter but also detected in other brain regions of PWH, demonstrating frontal white matter as a major brain reservoir of intact, potentially replication competent HIV DNA that persists despite antiretroviral therapy. ANN NEUROL 2023;94:798-802.
Collapse
Affiliation(s)
- Thomas A Angelovich
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Catherine R Cochrane
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jingling Zhou
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah J Byrnes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Janna Jamal Eddine
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Emily Waring
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Hillsboro, Oregon, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Trisha A Jenkins
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Paul R Gorry
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St. Vincent's Hospital, University of New South Wales, Sydney, New South Wales, Australia
- University of Notre Dame, Sydney, New South Wales, Australia
| | - Jacob D Estes
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Hillsboro, Oregon, USA
| | - Michael Roche
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melissa J Churchill
- Infectious and Inflammatory Diseases, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
- Life Sciences Discipline, Burnet Institute, Melbourne, Victoria, Australia
- Departments of Microbiology and Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Crucial Role of Central Nervous System as a Viral Anatomical Compartment for HIV-1 Infection. Microorganisms 2021; 9:microorganisms9122537. [PMID: 34946138 PMCID: PMC8705402 DOI: 10.3390/microorganisms9122537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS. Despite advances in the treatment of this infection, HAND significantly contribute to morbidity and mortality globally. The pathogenesis and the role of inflammation in HAND are still incompletely understood. Principally, growing evidence shows that the CNS is an anatomical reservoir for viral infection and replication, and that its compartmentalization can trigger the evolution of neurological damage and thus make virus eradication more difficult. In this review, important concepts for understanding HAND and neuropathogenesis as well as the viral proteins involved in the CNS as an anatomical reservoir for HIV infection are discussed. In addition, an overview of the recent advancements towards therapeutic strategies for the treatment of HAND is presented. Further neurological research is needed to address neurodegenerative difficulties in people living with HIV, specifically regarding CNS viral reservoirs and their effects on eradication.
Collapse
|
5
|
Macrophage Tropism in Pathogenic HIV-1 and SIV Infections. Viruses 2020; 12:v12101077. [PMID: 32992787 PMCID: PMC7601331 DOI: 10.3390/v12101077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023] Open
Abstract
Most myeloid lineage cells express the receptor and coreceptors that make them susceptible to infection by primate lentiviruses (SIVs and HIVs). However, macrophages are the only myeloid lineage cell commonly infected by SIVs and/or HIVs. The frequency of infected macrophages varies greatly across specific host and virus combinations as well as disease states, with infection rates being greatest in pathogenic SIV infections of non-natural hosts (i.e., Asian nonhuman primates (Asian NHPs)) and late in untreated HIV-1 infection. In contrast, macrophages from natural SIV hosts (i.e., African NHPs) are largely resistant to infection due to entry and/or post-entry restriction mechanisms. These highly variable rates of macrophage infection may stem from differences in the host immune environment, entry and post-entry restriction mechanisms, the ability of a virus to adapt to efficiently infect macrophages, and the pleiotropic effects of macrophage-tropism including the ability to infect cells lacking CD4 and increased neutralization sensitivity. Questions remain about the relationship between rates of macrophage infection and viral pathogenesis, with some evidence suggesting that elevated levels of macrophage infection may contribute to greater pathogenesis in non-natural SIV hosts. Alternatively, extensive infection of macrophages may only emerge in the context of high viral loads and immunodeficiency, making it a symptom of highly pathogenic infections, not a primary driver of pathogenesis.
Collapse
|
6
|
Meshreky KM, Wood J, Chowdari KV, Hall MH, Wilckens KA, Yolken R, Buysse DJ, Nimgaonkar VL. Infection with Herpes Simplex virus type 1 (HSV-1) and sleep: The dog that did not bark. Psychiatry Res 2019; 280:112502. [PMID: 31382180 PMCID: PMC7265549 DOI: 10.1016/j.psychres.2019.112502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Persistent infection with Herpes Simplex viruses (HSV) and other brain infections is consistently associated with cognitive impairment. These infections can also affect sleep. Thus, sleep abnormalities could explain the cognitive dysfunction. We investigated the association between sleep variables and persistent HSV-1, HSV-2, cytomegalovirus (CMV) and Toxoplasma gondii (Tox) infections. Sleep data were collected from older adults with or without insomnia (N = 311, total); a subset completed polysomnographic and actigraphy studies (N = 145). No significant associations were found between the infections and insomnia or the remaining sleep variables following corrections for multiple comparisons. Sleep dysfunction is unlikely to explain the infection-related cognitive dysfunction.
Collapse
Affiliation(s)
| | - Joel Wood
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kodavali V Chowdari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martica H Hall
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristine A. Wilckens
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel J. Buysse
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
7
|
Abreu C, Shirk EN, Queen SE, Mankowski JL, Gama L, Clements JE. A Quantitative Approach to SIV Functional Latency in Brain Macrophages. J Neuroimmune Pharmacol 2019; 14:23-32. [PMID: 30167896 PMCID: PMC9070040 DOI: 10.1007/s11481-018-9803-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Lentiviruses are retroviruses that primarily infect myeloid cells, leading to acute inflammatory infections in many tissues particularly, lung, joints and the central nervous system (CNS). Acute infection by lentiviruses is followed by persistent/latent infections that are not cleared by the host immune system. HIV and SIV are lentiviruses that also infect CD4+ lymphocytes as well as myeloid cells in blood and multiple tissues. HIV infection of myeloid cells in brain, lung and heart cause tissue specific diseases as well as infect cells in gut, lymph nodes and spleen. AIDS dementia and other tissue specific disease are observed when infected individuals are immunosuppressed and the number of circulating CD4+ T cells declines to low levels. Antiretroviral therapy (ART) controls viral spread and dramatically changes the course of immunodeficiency and AIDS dementia. However, ART does not eliminate virus-infected cells. Brain macrophages contain HIV DNA and may represent a latent reservoir that persists. HIV latency in CD4+ lymphocytes is the main focus of current research and concern in efforts to eradicate HIV. However, a number of studies have demonstrated that myeloid cells in blood and tissues of ART suppressed individuals harbor HIV DNA. The resident macrophages in tissues such as brain (microglia), spleen (red pulp macrophages) and alveolar macrophages in lung are derived from the yolk sac and can self renew. The question of the latent myeloid reservoir in HIV has not been rigorously examined and its potential as a barrier to eradication been considered. Using a well characterized SIV ART suppressed, non-human primate (NHP) model, our laboratory developed the first quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes and more recently developed a similar protocol for the assessment of latently infected myeloid cells in blood and brain. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro. These studies demonstrate for the first time that myeloid cells have the potential to be a latent reservoir of HIV that produces infectious virus that can be reactivated in the absence of ART and during HIV eradication strategies. Graphical Abstract.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL, Swanson MD, Sheridan P, Zakharova O, Prince F, Kuruc J, Gay CL, Evans C, Eron JJ, Wahl A, Garcia JV. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest 2018; 128:2862-2876. [PMID: 29863499 DOI: 10.1172/jci98968] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Baolin Liao
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA.,Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Christopher C Nixon
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Rachel A Cleary
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - William O Thayer
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Shayla L Birath
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael D Swanson
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Patricia Sheridan
- Department of Nutrition, UNC-CH, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Oksana Zakharova
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Francesca Prince
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - JoAnn Kuruc
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Cynthia L Gay
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Evans
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Joseph J Eron
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research (CFAR), University of North Carolina at Chapel Hill (UNC-CH), School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Gama L, Abreu C, Shirk EN, Queen SE, Beck SE, Metcalf Pate KA, Bullock BT, Zink MC, Mankowski JL, Clements JE. SIV Latency in Macrophages in the CNS. Curr Top Microbiol Immunol 2018; 417:111-130. [PMID: 29770863 DOI: 10.1007/82_2018_89] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.
Collapse
Affiliation(s)
- Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA. .,Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Lu JQ, Steve TA, Wheatley M, Gross DW. Immune Cell Infiltrates in Hippocampal Sclerosis: Correlation With Neuronal Loss. J Neuropathol Exp Neurol 2017; 76:206-215. [PMID: 28395090 DOI: 10.1093/jnen/nlx001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune mechanisms have been increasingly recognized in the pathogenesis of hippocampal sclerosis (HS), but infiltration of cytotoxic T-cells and its pathological significance in patients with HS has not been explored. We examined 30 cases of surgically resected hippocampi, including 16 International League Against Epilepsy (ILAE) type 1, 9 ILAE type 2, 1 ILAE type 3 HS, and 4 ILAE No-HS, as well as 6 autopsy No-HS hippocampi. The HS hippocampi showed sparse to scattered CD8-positive T-cells, rare CD4-positive T-cells, and a modest increase in CD68-positive microglia/macrophages, which were significantly more numerous than those in the No-HS controls. The infiltration of CD8-positive T-cells was significantly greater in the CA1 subfield than other subfields of type 1 and type 2 HS. The numbers of CD8-positive T-cells positively correlated with those of CD4-positive T-cells; there was a lower ratio of CD4/CD8-positive T-cells. There were positive correlations between these cells and scores of neuronal loss but no significant correlation between the infiltration of these cells and epilepsy disease duration or age of epilepsy onset. These findings suggest that an autoimmune process may be involved in the pathogenesis of HS and infiltration of immune cells, particularly CD8-positive cytotoxic T-cells, may contribute to neuronal loss in HS.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor A Steve
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matt Wheatley
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Donald W Gross
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Intellectual Impairment in Patients with Newly Diagnosed HIV Infection in Southwestern Nigeria. BIOMED RESEARCH INTERNATIONAL 2015; 2015:185891. [PMID: 26295033 PMCID: PMC4532809 DOI: 10.1155/2015/185891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/17/2015] [Indexed: 12/01/2022]
Abstract
Neurocognitive impairment is a detrimental complication of HIV infection. Here, we characterized the intellectual performance of patients with newly diagnosed HIV infection in southwestern Nigeria. We conducted a prospective study at Owo Federal Medical Center by using the adapted Wechsler Adult Intelligence Scale (WAIS). The raw scores were converted to standardized scores (z-scores) and correlated with clinical and laboratory findings. Fifty-eight HIV positive patients were recruited; 72% were in WHO stages 3 and 4. We detected a high rate of intellectual impairment in HIV positive patients and controls (63.8% and 10%, resp.; P < 0.001). HIV positive patients performed worse throughout the subtests of both verbal and performance intelligence quotients. Presence of opportunistic infections was associated with worse performance in the similarities and digit symbol tests and performance and full scale scores. Lower body weight correlated with poor performance in different WAIS subtests. The high rate of advanced disease stage warrants measures aimed at earlier diagnosis and treatment. Assessment of neurocognitive performance at diagnosis may offer the opportunity to improve functioning in daily life and counteract disease progression.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To review the literature on infection and evolution of HIV within the brain in the context for understanding the nature of the brain reservoir and its consequences. RECENT FINDINGS HIV-1 in the brain can evolve in separate compartments within macrophage/microglia and astrocytes. The virus adapts to the brain environment to infect these cells and brain-specific mutations can be found in nearly all genes of the virus. The virus evolves to become more neurovirulent. SUMMARY The brain is an ideal reservoir for the HIV. The brain is a relatively immune privileged site and the blood-brain barrier prevents easy access to antiretroviral drugs. Further, the virus infects resident macrophages and astrocytes which are long-lived cells and causes minimal cytopathology in these cells. Hence as we move towards developing strategies for eradication of the virus from the peripheral reservoirs, it is critical that we pay close attention to the virus in the brain and develop strategies for maintaining it in a latent state failure of which could result in dire consequences.
Collapse
|
13
|
Abstract
Human immunodeficiency virus type 1 is associated with the development of neurocognitive disorders in many infected individuals, including a broad spectrum of motor impairments and cognitive deficits. Despite extensive research, the pathogenesis of HIV-associated neurocognitive disorders (HAND) is still not clear. This review provides a comprehensive view of HAND, including HIV neuroinvasion, HAND diagnosis and different level of disturbances, influence of highly-active antiretroviral therapy to HIV-associated dementia (HAD), possible pathogenesis of HAD, etc. Together, this review will give a thorough and clear understanding of HAND, especially HAD, which will be vital for future research, diagnosis and treatment.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney , Australia
| |
Collapse
|
14
|
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J 2013; 10:172. [PMID: 23724961 PMCID: PMC3679988 DOI: 10.1186/1743-422x-10-172] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative diseases (NDs) are chronic degenerative diseases of the central nervous system (CNS), which affect 37 million people worldwide. As the lifespan increases, the NDs are the fourth leading cause of death in the developed countries and becoming increasingly prevalent in developing countries. Despite considerable research, the underlying mechanisms remain poorly understood. Although the large majority of studies do not show support for the involvement of pathogenic aetiology in classical NDs, a number of emerging studies show support for possible association of viruses with classical neurodegenerative diseases in humans. Space does not permit for extensive details to be discussed here on non-viral-induced neurodegenerative diseases in humans, as they are well described in literature.Viruses induce alterations and degenerations of neurons both directly and indirectly. Their ability to attack the host immune system, regions of nervous tissue implies that they can interfere with the same pathways involved in classical NDs in humans. Supporting this, many similarities between classical NDs and virus-mediated neurodegeneration (non-classical) have been shown at the anatomic, sub-cellular, genomic and proteomic levels suggesting that viruses can explain neurodegenerative disorders mechanistically. The main objective of this review is to provide readers a detailed snapshot of similarities viral and non-viral neurodegenerative diseases share, so that mechanistic pathways of neurodegeneration in human NDs can be clearly understood. Viruses can guide us to unveil these pathways in human NDs. This will further stimulate the birth of new concepts in the biological research, which is needed for gaining deeper insights into the treatment of human NDs and delineate mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW 2145, Sydney Australia
| | | | | |
Collapse
|
15
|
Zhou L, Conceicao V, Gupta P, Saksena NK. Why are the neurodegenerative disease-related pathways overrepresented in primary HIV-infected peripheral blood mononuclear cells: a genome-wide perspective. Virol J 2012; 9:308. [PMID: 23241427 PMCID: PMC3546955 DOI: 10.1186/1743-422x-9-308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 12/04/2012] [Indexed: 01/07/2023] Open
Abstract
We demonstrate for the first time that the genome-wide profiling of HIV-infected peripheral blood mononuclear cells (PBMCs) from HIV-patients free of neurologic disease show overrepresentation of neurodegenerative pathways (Alzheimer’s, Parkinson’s, ALS, Huntington’s and Prion Disease, etc.) in genome-wide microarray analysis, which suggests that this genome-wide representation of neurodegenerative diseases-related pathways in PBMCs could possibly be a subcellular manifestation of neurologic interference by HIV. Further, the cell-tagging analysis attested this belief showing the large majority of genes tagged with cells of monocyte and macrophage lineage, which are implicated in neuronal dysfunction in both viral and non-viral neurodegenerative diseases. Together, these findings suggest that the genomic interference of HIV with neurodegenerative pathways is not by chance, but may be an early sign of HIV-mediated sub-genomic and sub-cellular manifestation of neurologic disease. Moreover, these findings signify the utility of PBMC and genome-wide mapping of the host gene expression as a powerful tool in predicting possible early events in neurologic deterioration in HIV patients.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, the University of Sydney, Westmead, Sydney, 2145, NSW, Australia
| | | | | | | |
Collapse
|
16
|
Zhou L, Pupo GM, Gupta P, Liu B, Tran SL, Rahme R, Wang B, Rua R, Rizos H, Carroll A, Cairns MJ, Saksena NK. A parallel genome-wide mRNA and microRNA profiling of the frontal cortex of HIV patients with and without HIV-associated dementia shows the role of axon guidance and downstream pathways in HIV-mediated neurodegeneration. BMC Genomics 2012; 13:677. [PMID: 23190615 PMCID: PMC3560210 DOI: 10.1186/1471-2164-13-677] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV-associated dementia (HAD) is the most common dementia type in young adults less than 40 years of age. Although the neurotoxins, oxidative/metabolic stress and impaired activity of neurotrophic factors are believed to be underlying reasons for the development of HAD, the genomic basis, which ultimately defines the virus-host interaction and leads to neurologic manifestation of HIV disease is lacking. Therefore, identifying HIV fingerprints on the host gene machinery and its regulation by microRNA holds a great promise and potential for improving our understanding of HAD pathogenesis, its diagnosis and therapy. RESULTS A parallel profiling of mRNA and miRNA of the frontal cortex autopsies from HIV positive patients with and without dementia was performed using Illumina Human-6 BeadChip and Affymetrix version 1.0 miRNA array, respectively. The gene ontology and pathway analysis of the two data sets showed high concordance between miRNA and mRNAs, revealing significant interference with the host axon guidance and its downstream signalling pathways in HAD brains. Moreover, the differentially expressed (DE) miRNAs identified in this study, in particular miR-137, 153 and 218, based on which most correlations were built cumulatively targeted neurodegeneration related pathways, implying their future potential in diagnosis, prognosis and possible therapies for HIV-mediated and possibly other neurodegenerative diseases. Furthermore, this relationship between DE miRNAs and DE mRNAs was also reflected in correlation analysis using Bayesian networks by splitting-averaging strategy (SA-BNs), which revealed 195 statistically significant correlated miRNA-mRNA pairs according to Pearson's correlation test (P<0.05). CONCLUSIONS Our study provides the first evidence on unambiguous support for intrinsic functional relationship between mRNA and miRNA in the context of HIV-mediated neurodegeneration, which shows that neurologic manifestation in HIV patients possibly occurs through the interference with the host axon guidance and its downstream signalling pathways. These data provide an excellent avenue for the development of new generation of diagnostic/prognostic biomarkers and therapeutic intervention strategies for HIV-associated neurodegeneration.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Gulietta M Pupo
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Priyanka Gupta
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Bing Liu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sieu L Tran
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Raany Rahme
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Rejane Rua
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Helen Rizos
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
| | - Adam Carroll
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and the Hunter Medical Research Institute, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
- Schizophrenia Research Institute, Darlinghurst, Sydney NSW, Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia
| |
Collapse
|
17
|
Levine AJ, Service S, Miller EN, Reynolds SM, Singer EJ, Shapshak P, Martin EM, Sacktor N, Becker JT, Jacobson LP, Thompson P, Freimer N. Genome-wide association study of neurocognitive impairment and dementia in HIV-infected adults. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:669-83. [PMID: 22628157 PMCID: PMC3418456 DOI: 10.1002/ajmg.b.32071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
Abstract
The neuropathogenesis of HIV-associated neurocognitive disorders (HAND) is unclear. Candidate gene studies have implicated genetic susceptibility loci within immune-related genes; however, these have not been reliably validated. Here, we employed genome-wide association (GWA) methods to discover novel genetic susceptibility loci associated with HAND, and validate susceptibility loci implicated in prior candidate gene studies. Data from 1,287 participants enrolled in the Multicenter AIDS Cohort Study between 1985 and 2010 were used. Genotyping was conducted with Illumina 1M, 1MDuo, or 550K platform. Linear mixed models determined subject-specific slopes for change over time in processing speed and executive functioning, considering all visits including baseline and the most recent study visit. Covariates modeled as fixed effects included: time since the first visit, depression severity, nadir CD4+ T-cell count, hepatitis C co-infection, substance use, and antiretroviral medication regimen. Prevalence of HIV-associated dementia (HAD) and neurocognitive impairment (NCI) was also examined as neurocognitive phenotypes in a case-control analysis. No genetic susceptibility loci were associated with decline in processing speed or executive functioning among almost 2.5 million single nucleotide polymorphisms (SNPs) directly genotyped or imputed. No association between the SNPs and HAD or NCI were found. Previously reported associations between specific genetic susceptibility loci, HIV-associated NCI, and HAD were not validated. In this first GWAS of HAND, no novel or previously identified genetic susceptibility loci were associated with any of the phenotypes examined. Due to the relatively small sample size, future collaborative efforts that incorporate this dataset may still yield important findings.
Collapse
Affiliation(s)
- Andrew J Levine
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Xia C, Luo D, Yu X, Jiang S, Liu S. HIV-associated dementia in the era of highly active antiretroviral therapy (HAART). Microbes Infect 2011; 13:419-25. [PMID: 21262373 DOI: 10.1016/j.micinf.2011.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Neurological complications associated with HIV-1 are being recognized as a common disorder in AIDS patients, especially patients with HIV-associated dementia (HAD). However, our knowledge of the complicated pathogenesis and clinical symptoms of HAD is limited by an incomplete understanding of the biology of HIV-1 in the nervous system. Therefore, this review focuses on the pathogenesis of HAD in the context of novel highly active antiretroviral therapy (HARRT) regimens.
Collapse
Affiliation(s)
- Chenglai Xia
- Pharmacy Department, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | | | | | | | | |
Collapse
|
19
|
Zhou L, Diefenbach E, Crossett B, Tran SL, Ng T, Rizos H, Rua R, Wang B, Kapur A, Gandhi K, Brew BJ, Saksena NK. First evidence of overlaps between HIV-Associated Dementia (HAD) and non-viral neurodegenerative diseases: proteomic analysis of the frontal cortex from HIV+ patients with and without dementia. Mol Neurodegener 2010; 5:27. [PMID: 20573273 PMCID: PMC2904315 DOI: 10.1186/1750-1326-5-27] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 06/24/2010] [Indexed: 12/12/2022] Open
Abstract
Background The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. Result Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. Conclusion These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Li Zhou
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|