1
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
2
|
Gao B, Wang L, Zhang N, Han M, Zhang Y, Liu H, Sun D, Liu Y. Screening Novel Drug Candidates for Kidney Renal Clear Cell Carcinoma Treatment: A Study on Differentially Expressed Genes through the Connectivity Map Database. Kidney Blood Press Res 2021; 46:702-713. [PMID: 34818247 DOI: 10.1159/000518437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Kidney renal clear cell carcinoma (KIRC) is a common cancer with high morbidity and mortality in renal cancer. Thus, the transcriptome data of KIRC patients in The Cancer Genome Atlas (TCGA) database were analyzed and drug candidates for the treatment of KIRC were explored through the connectivity map (CMap) database. METHODS The transcriptome data of KIRC patients were downloaded from TCGA database, and KIRC-associated hub genes were screened out through differential analysis and protein-protein interaction (PPI) network analysis. Afterward, the CMap database was used to select drug candidates for KIRC treatment, and the drug-targeted genes were obtained through the STITCH database. A PPI network was constructed by combining drug-targeted genes with hub genes that affected the pathogenesis of KIRC to obtain final hub genes. Finally, combining hub genes and KIRC-associated hub genes, the pathways affected by drugs were explored by pathway enrichment analysis. RESULTS A total of 2,312 differentially expressed genes were found in patients, which were concentrated in immune cell activity, cytokine, and chemokine secretion pathways. Drug screening disclosed 5 drug candidates for KIRC treatment: fedratinib, Ly344864, geldanamycin, AS-605240, and luminespib. Based on drug-targeted genes and KIRC-associated hub genes, 16 hub genes were screened out. Pathway enrichment analysis revealed that drugs mainly affected pathways such as neuroactive ligand pathways, cell adhesion, and chemokines. CONCLUSION The above results indicated that fedratinib, LY 344864, geldanamycin, AS-605240, and luminespib could be used as candidates for KIRC therapy. The findings from this study will make contributions to the treatment of KIRC in the future.
Collapse
Affiliation(s)
- Bin Gao
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Lijuan Wang
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Na Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Miaomiao Han
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Yubo Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Huancai Liu
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Dongli Sun
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| | - Yifei Liu
- Department of Urology, Tangshan Central Hospital, Tangshan, China
| |
Collapse
|
3
|
Ni J, Ni A. Histone deacetylase inhibitor induced pVHL-independent degradation of HIF-1α and hierarchical quality control of pVHL via chaperone system. PLoS One 2021; 16:e0248019. [PMID: 34329303 PMCID: PMC8323912 DOI: 10.1371/journal.pone.0248019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
The mortality rate of ovarian cancer is increasing and the role of hypoxia inducible factor-1α (HIF-1α) in tumor progression has been confirmed. von Hippel-Lindau tumor suppressor protein (pVHL) binds HIF-1α and mediates proteasome degradation of HIF-1α. Besides, histone deacetylase inhibitor (HDACi) mitigates tumor growth via targeting HIF-1α, whereas underlying mechanism still requires investigation. In this research, we exposed ovarian cancer cell lines OV-90 and SKOV-3 to escalating concentrations of HDACi LBH589. As a result, cell viability was significantly suppressed and expression of HIF-1α was remarkably reduced along with decreased levels of signal molecules, including phosphoinositide 3-kinase (PI3K) and glycogen synthase kinase 3β (GSK3β) (P = 0.000). Interestingly, pVHL was expressed in a notably declining tendency (P = 0.000). Chaperone heat shock protein-70 (HSP70) was expressed in an ascending manner, whereas expression of chaperonin TCP-1α was reduced clearly (P = 0.000). Besides, co-inhibition of pVHL plus HDAC did not contribute to a remarkable difference in HIF-1α expression as compared with single HDAC inhibition. Furthermore, both cell lines were transfected with plasmids of VHL plus VHL binding protein-1 (VBP-1). Consequently, the expression of HIF-1α as well as lactate dehydrogenase-A (LDHA) was remarkably decreased (P = 0.000). These findings indicate HDACi may repress expression of HIF-1α via inhibiting PI3K and GSK3β and promote degradation of HIF-1α via HSP70, independent of pVHL. Additionally, a sophisticated network of HDAC and chaperones may involve in pVHL quality control.
Collapse
Affiliation(s)
- Jieming Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Anping Ni
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
4
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
5
|
Natua S, Ashok C, Shukla S. Hypoxia-induced alternative splicing in human diseases: the pledge, the turn, and the prestige. Cell Mol Life Sci 2021; 78:2729-2747. [PMID: 33386889 PMCID: PMC11072330 DOI: 10.1007/s00018-020-03727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022]
Abstract
Maintenance of oxygen homeostasis is an indispensable criterion for the existence of multicellular life-forms. Disruption of this homeostasis due to inadequate oxygenation of the respiring tissues leads to pathological hypoxia, which acts as a significant stressor in several pathophysiological conditions including cancer, cardiovascular defects, bacterial infections, and neurological disorders. Consequently, the hypoxic tissues develop necessary adaptations both at the tissue and cellular level. The cellular adaptations involve a dramatic alteration in gene expression, post-transcriptional and post-translational modification of gene products, bioenergetics, and metabolism. Among the key responses to oxygen-deprivation is the skewing of cellular alternative splicing program. Herein, we discuss the current concepts of oxygen tension-dependent alternative splicing relevant to various pathophysiological conditions. Following a brief description of cellular response to hypoxia and the pre-mRNA splicing mechanism, we outline the impressive number of hypoxia-elicited alternative splicing events associated with maladies like cancer, cardiovascular diseases, and neurological disorders. Furthermore, we discuss how manipulation of hypoxia-induced alternative splicing may pose promising strategies for novel translational diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Cheemala Ashok
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
6
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
7
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
8
|
Gao F, Fan Y, Zhou B, Guo W, Jiang X, Shi J, Ren C. The functions and properties of cullin-5, a potential therapeutic target for cancers. Am J Transl Res 2020; 12:618-632. [PMID: 32194910 PMCID: PMC7061844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Cullin-5 (CUL5), a scaffold protein in active cullin-RING ubiquitin ligase (CRL) complexes, is a member of the cullin family of proteins. The CUL5-type ubiquitin ligase can target multiple proteins involved in ubiquitination and proteasome degradation. CUL5 plays positive roles in regulating cell growth, proliferation and physiological and other processes in the human body. It has been found that the expression of CUL5 is significantly downregulated in various cancer cells, which affects the course of the cancers. Here, we reviewed the current data on the expression and role of CUL5 in both normal and cancer cells, its possible mechanisms, and its potential as a therapeutic target for cancers.
Collapse
Affiliation(s)
- Feng Gao
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yimin Fan
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Bolun Zhou
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Weihua Guo
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
| | - Jing Shi
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University87 Xiangya Road, Kaifu District, Changsha 410008, China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha, Hunan, China
- The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| |
Collapse
|
9
|
Peng S, Zhang J, Tan X, Huang Y, Xu J, Silk N, Zhang D, Liu Q, Jiang J. The VHL/HIF Axis in the Development and Treatment of Pheochromocytoma/Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:586857. [PMID: 33329393 PMCID: PMC7732471 DOI: 10.3389/fendo.2020.586857] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells in the adrenal medulla (PCCs) or extra-adrenal sympathetic or parasympathetic paraganglia (PGLs). About 40% of PPGLs result from germline mutations and therefore they are highly inheritable. Although dysfunction of any one of a panel of more than 20 genes can lead to PPGLs, mutations in genes involved in the VHL/HIF axis including PHD, VHL, HIF-2A (EPAS1), and SDHx are more frequently found in PPGLs. Multiple lines of evidence indicate that pseudohypoxia plays a crucial role in the tumorigenesis of PPGLs, and therefore PPGLs are also known as metabolic diseases. However, the interplay between VHL/HIF-mediated pseudohypoxia and metabolic disorder in PPGLs cells is not well-defined. In this review, we will first discuss the VHL/HIF axis and genetic alterations in this axis. Then, we will dissect the underlying mechanisms in VHL/HIF axis-driven PPGL pathogenesis, with special attention paid to the interplay between the VHL/HIF axis and cancer cell metabolism. Finally, we will summarize the currently available compounds/drugs targeting this axis which could be potentially used as PPGLs treatment, as well as their underlying pharmacological mechanisms. The overall goal of this review is to better understand the role of VHL/HIF axis in PPGLs development, to establish more accurate tools in PPGLs diagnosis, and to pave the road toward efficacious therapeutics against metastatic PPGLs.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Natalie Silk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| |
Collapse
|
10
|
Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells 2019; 8:cells8091083. [PMID: 31540045 PMCID: PMC6770817 DOI: 10.3390/cells8091083] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initially believed to be a disease of deregulated cellular and genetic expression, cancer is now also considered a disease of the tumor microenvironment. Over the past two decades, significant and rapid progress has been made to understand the complexity of the tumor microenvironment and its contribution to shaping the response to various anti-cancer therapies, including immunotherapy. Nevertheless, it has become clear that the tumor microenvironment is one of the main hallmarks of cancer. Therefore, a major challenge is to identify key druggable factors and pathways in the tumor microenvironment that can be manipulated to improve the efficacy of current cancer therapies. Among the different tumor microenvironmental factors, this review will focus on hypoxia as a key process that evolved in the tumor microenvironment. We will briefly describe our current understanding of the molecular mechanisms by which hypoxia negatively affects tumor immunity and shapes the anti-tumor immune response. We believe that such understanding will provide insight into the therapeutic value of targeting hypoxia and assist in the design of innovative combination approaches to improve the efficacy of current cancer therapies, including immunotherapy.
Collapse
|
11
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)-induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1-dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
12
|
Zeynali-Moghaddam S, Mohammadian M, Kheradmand F, Fathi-Azarbayjani A, Rasmi Y, Esna-Ashari O, Malekinejad H. A molecular basis for the synergy between 17‑allylamino‑17‑demethoxy geldanamycin with Capecitabine and Irinotecan in human colorectal cancer cells through VEFG and MMP-9 gene expression. Gene 2019; 684:30-38. [DOI: 10.1016/j.gene.2018.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
|
13
|
Koukourakis MI, Giatromanolaki A. Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol 2018; 95:408-426. [PMID: 29913092 DOI: 10.1080/09553002.2018.1490041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anaerobic metabolism of glucose by cancer cells, even under well-oxygenated conditions, has been documented by Otto Warburg as early as 1927. Micro-environmental hypoxia and intracellular pathways activating the hypoxia-related gene response, shift cancer cell metabolism to anaerobic pathways. In the current review, we focus on a major enzyme involved in anaerobic transformation of pyruvate to lactate, namely lactate dehydrogenase 5 (LDH5). The value of LDH5 as a marker of prognosis of cancer patients, as a predictor of response to radiotherapy (RT) and chemotherapy and, finally, as a major target for cancer treatment and radio-sensitization is reported and discussed. Clinical, translational and experimental data supporting the uniqueness of the LDHA gene and its product LDH5 isoenzyme are summarized and future directions for a metabolic treatment of cancer are highlighted.
Collapse
Affiliation(s)
- Michael I Koukourakis
- a Department of Radiotherapy and Oncology, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Alexandra Giatromanolaki
- b Department of Pathology , Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
14
|
Daoud A, Gopal U, Kaur J, Isaacs JS. Molecular and functional crosstalk between extracellular Hsp90 and ephrin A1 signaling. Oncotarget 2017; 8:106807-106819. [PMID: 29290990 PMCID: PMC5739775 DOI: 10.18632/oncotarget.22370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
The Eph receptor tyrosine kinase family member EphA2 plays a pivotal role in modulating cytoskeletal dynamics to control cancer cell motility and invasion. EphA2 is frequently upregulated in diverse solid tumors and has emerged as a viable druggable target. We previously reported that extracellular Hsp90 (eHsp90), a known pro-motility and invasive factor, collaborates with EphA2 to regulate tumor invasion in the absence of its cognate ephrin ligand. Here, we aimed to further define the molecular and functional relationship between EphA2 and eHsp90. Ligand dependent ephrin A1 signaling promotes RhoA activation and altered cell morphology to favor transient cell rounding, retraction, and diminished adhesion. Exposure of EphA2-expressing cancer cells to ligand herein revealed a unique role for eHsp90 as an effector of cytoskeletal remodeling. Notably, blockade of eHsp90 via either neutralizing antibodies or administration of cell-impermeable Hsp90-targeted small molecules significantly attenuated ligand dependent cell rounding in diverse tumor types. Although eHsp90 blockade did not appear to influence receptor internalization, downstream signaling events were augmented. In particular, eHsp90 activated a Src-RhoA axis to enhance ligand dependent cell rounding, retraction, and ECM detachment. Moreover, eHsp90 signaling via this axis stimulated activation of the myosin pathway, culminating in formation of an EphA2-myosin complex. Inhibition of either eHsp90 or Src was sufficient to impair ephrin A1 mediated Rho activation, activation of myosin intermediates, and EphA2-myosin complex formation. Collectively, our data support a paradigm whereby eHsp90 and EphA2 exhibit molecular crosstalk and functional cooperation within a ligand dependent context to orchestrate cytoskeletal events controlling cell morphology and attachment.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Udhayakumar Gopal
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA.,Current address: Department of Pathology, Duke University School of Medicine, NC, 27708, Durham, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| |
Collapse
|
15
|
Qiu GZ, Jin MZ, Dai JX, Sun W, Feng JH, Jin WL. Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends Pharmacol Sci 2017; 38:669-686. [DOI: 10.1016/j.tips.2017.05.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/06/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
|
16
|
Yu T, Tang B, Sun X. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Med J 2017; 58:489-496. [PMID: 28332352 PMCID: PMC5368132 DOI: 10.3349/ymj.2017.58.3.489] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is frequently observed in solid tumors and also one of the major obstacles for effective cancer therapies. Cancer cells take advantage of their ability to adapt hypoxia to initiate a special transcriptional program that renders them more aggressive biological behaviors. Hypoxia-inducible factors (HIFs) are the key factors that control hypoxia-inducible pathways by regulating the expression of a vast array of genes involved in cancer progression and treatment resistance. HIFs, mainly HIF-1 and -2, have become potential targets for developing novel cancer therapeutics. This article reviews the updated information in tumor HIF pathways, particularly recent advances in the development of HIF inhibitors. These inhibitors interfere with mRNA expression, protein synthesis, protein degradation and dimerization, DNA binding and transcriptional activity of HIF-1 and -2, or both. Despite efforts in the past two decades, no agents directly inhibiting HIFs have been approved for treating cancer patients. By analyzing results of the published reports, we put the perspectives at the end of the article. The therapeutic efficacy of HIF inhibitors may be improved if more efforts are devoted on developing agents that are able to simultaneously target HIF-1 and -2, increasing the penetrating capacity of HIF inhibitors, and selecting suitable patient subpopulations for clinical trials.
Collapse
Affiliation(s)
- Tianchi Yu
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Tang
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xueying Sun
- Department of General Surgery, The Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Martínez-Sáez O, Gajate Borau P, Alonso-Gordoa T, Molina-Cerrillo J, Grande E. Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy. Crit Rev Oncol Hematol 2017; 111:117-123. [PMID: 28259286 DOI: 10.1016/j.critrevonc.2017.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/22/2017] [Indexed: 12/24/2022] Open
Abstract
The loss of the Von Hippel-Lindau tumor suppressor (VHL) is a key oncogenic event in the vast majority of patients with clear cell renal cell carcinoma (ccRCC). With the loss of the VHL protein (pVHL) function, the hypoxia inducible factor α (HIF-α) accumulates inside the tumor cell and dimerizes with HIF-β. The HIF-α/HIF-β complex transcriptionally activates hundreds of genes promoting the adaptation to hypoxia that is implicated in tumor development. There is growing evidence showing that HIF-2α subunit has a central role in ccRCC over HIF-1α. Thus, efforts have been made to specifically target this pathway. PT2385 and PT2399 are first-in-class, orally available, small molecule inhibitors of HIF-2 that selectively disrupt the heterodimerization of HIF-2α with HIF-1β. Preclinical and clinical data indicate that these new molecules are effective in blocking cancer cell growth, proliferation, and tumor angiogenesis characteristic in ccRCC. Treatment with HIF-2α specific antagonists, either alone or in combination with immunotherapy or other antiangiogenic agents have the potential to transform the therapeutic landscape in this tumor in the future. Herein, we summarize the molecular background behind the use of HIF-2α inhibitors in ccRCC and give an overview of the development of new agents in this setting.
Collapse
Affiliation(s)
- Olga Martínez-Sáez
- Medical Oncology Department, Ramon y Cajal University Hospital, Ctra, Colmenar Viejo km9100, 28029, Madrid, Spain.
| | - Pablo Gajate Borau
- Medical Oncology Department, Ramon y Cajal University Hospital, Ctra, Colmenar Viejo km9100, 28029, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramon y Cajal University Hospital, Ctra, Colmenar Viejo km9100, 28029, Madrid, Spain
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramon y Cajal University Hospital, Ctra, Colmenar Viejo km9100, 28029, Madrid, Spain
| | - Enrique Grande
- Medical Oncology Department, Ramon y Cajal University Hospital, Ctra, Colmenar Viejo km9100, 28029, Madrid, Spain
| |
Collapse
|
18
|
Abstract
We sought to evaluate the expression of HSP27 and HSP90 chaperones in renal cell carcinomas as a target for cancer therapeutics.A total of 127 clear cell renal cell carcinomas stratified according to the Mayo Clinic SSIGN (size, staging, grading, and necrosis) risk groups (good, 1; poor, 5) and 20 cases with metastases, were available. Immunostaining for both HSP27 and HSP90 was performed on tissue microarrays. Results were detailed per scorable arrays per SSIGN risk groups.Immunolabelling for HSP90 and HSP27 was seen in 109 of 127 (86%) and 114 of 127 (89%) cases, respectively. HSP90 scored 4.9 in 32 cases risked SSIGN 1, 3.5 in 41 cases SSIGN 2, 4.8 in 11 cases SSIGN 3, 4.2 in 22 cases SSIGN 4, and 5.0 in three cases SSIGN 5. HSP27 scored 4.6 in 33 risked SSIGN 1, 3.1 in 43 SSIGN 2, 2.6 in 11 SSIGN 3, 3.6 in 24 SSIGN 4, and 2.7 in three SSIGN 5. Metastases ranged from 2.9-5.0. A trend of increasing value for HSP90 was observed when comparing SSIGN 1-2 versus SSIGN 3-5 risk groups (4.2 versus 4.6 mean values; p = 0.06); no difference has been observed for HSP27 (3.8 to 3.9; p = 0.08).A score modulation of HSPs is observed in renal cell carcinoma and may affect the efficacy of targeted therapy.
Collapse
|
19
|
Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164:152-69. [PMID: 27139518 DOI: 10.1016/j.pharmthera.2016.04.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.
Collapse
Affiliation(s)
- Caroline Wigerup
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden.
| | - Daniel Bexell
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Ye XY, Luo QQ, Xu YH, Tang NW, Niu XM, Li ZM, Shen SP, Lu S, Chen ZW. 17-AAG suppresses growth and invasion of lung adenocarcinoma cells via regulation of the LATS1/YAP pathway. J Cell Mol Med 2015; 19:651-63. [PMID: 25712415 PMCID: PMC4369821 DOI: 10.1111/jcmm.12469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
Abstract
The large tumour suppressor 1 (LATS1) signalling network has been proved to be an essential regulator within the cell, participating in multiple cellular phenotypes. However, it is unclear concerning the clinical significance of LATS1 and the regulatory mechanisms of 17-Allylamino-17- demethoxygeldanamycin (17-AAG) in lung adenocarcinoma (LAC). The aim of the present study was to investigate the correlation of LATS1 and yes-associated protein (YAP) expression with clinicopathological characteristics in LAC patients, and the effects of 17-AAG on biological behaviours of LAC cells. Subcutaneous LAC tumour models were further established to observe the tumour growth in nude mice. The results showed that the positive expression of LATS1 was significantly lowered (26.7% versus 68.0%, P < 0.001), while that of YAP was elevated (76.0% versus 56.0%, P + 0.03) in LAC tissues compared to the adjacent non-cancerous tissues; LAST1 expression was negatively correlated with YAP expression (r + 0.432, P < 0.001) and lymphatic invasion of the tumour (P + 0.015). In addition, 17-AAG inhibited proliferation and invasion, and induced cell apoptosis and cycle arrest in LAC cells together with increased expression of E-cadherin and p-LATS1, and decreased expression of YAP and connective tissue growth factor. Tumour volumes and weight were much smaller in 17-AAG-treated groups than those in untreated group (P < 0.01). Taken together, our findings indicate that decreased expression of LATS1 is associated with lymphatic invasion of LAC, and 17-AAG suppresses growth and invasion of LAC cells via regulation of the LATS1/YAP pathway in vitro and in vivo, suggesting that we may provide a promising therapeutic strategy for the treatment of human LAC.
Collapse
Affiliation(s)
- Xiang-Yun Ye
- Department of Shanghai Lung Tumor Clinical Medical Centre, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fischer C, Leithner K, Wohlkoenig C, Quehenberger F, Bertsch A, Olschewski A, Olschewski H, Hrzenjak A. Panobinostat reduces hypoxia-induced cisplatin resistance of non-small cell lung carcinoma cells via HIF-1α destabilization. Mol Cancer 2015; 14:4. [PMID: 25608569 PMCID: PMC4320451 DOI: 10.1186/1476-4598-14-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/16/2014] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancer types and the leading cause of cancer death worldwide. Cisplatin is a widely used chemotherapeutic for non-small cell lung carcinoma (NSCLC), however, its positive effects are diminished under hypoxia. We wanted to determine if co-treatment with cisplatin and histone deacetalyse (HDAC) inhibitor panobinostat can reduce hypoxia-induced cisplatin resistance in NSCLC cells, and to elucidate mechanism involved. METHODS Expression status of different HDACS was determined in two cell lines and in tumor tissue from 20 patients. Cells were treated with cisplatin, panobinostat, or with combination of both under normoxic and hypoxic (1% O(2)) conditions. Cell cycle, viability, acetylation of histones, and activation of apoptosis were determined. HIF-1α stability and its interaction with HDAC4 were analyzed. RESULTS Most class I and II HDACs were expressed in NSCLC cells and tumor samples. Co-treatment of tumor cells with cisplatin and panobinostat decreased cell viability and increased apoptosis more efficiently than in primary, non-malignant bronchial epithelial cells. Co-treatment induced apoptosis by causing chromatin fragmentation, activation of caspases-3 and 7 and PARP cleavage. Toxic effects were more pronounced under hypoxic conditions. Co-treatment resulted in destabilization and degradation of HIF-1α and HDAC4, a protein responsible for acetylation and de/stabilization of HIF-1α. Direct interaction between HDAC4 and HIF-1α proteins in H23 cells was detected. CONCLUSIONS Here we show that hypoxia-induced cisplatin resistance can be overcome by combining cisplatin with panobinostat, a potent HDAC inhibitor. These findings may contribute to the development of a new therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria.
| |
Collapse
|
22
|
Bohonowych JE, Hance MW, Nolan KD, Defee M, Parsons CH, Isaacs JS. Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate 2014; 74:395-407. [PMID: 24338924 PMCID: PMC4306584 DOI: 10.1002/pros.22761] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND The tumor microenvironment (TME) plays an essential role in supporting and promoting tumor growth and progression. An inflammatory stroma is a widespread hallmark of the prostate TME, and prostate tumors are known to co-evolve with their reactive stroma. Cancer-associated fibroblasts (CAFs) within the reactive stroma play a salient role in secreting cytokines that contribute to this inflammatory TME. Although a number of inflammatory mediators have been identified, a clear understanding of key factors initiating the formation of reactive stroma is lacking. METHODS We explored whether tumor secreted extracellular Hsp90 alpha (eHsp90α) may initiate a reactive stroma. Prostate stromal fibroblasts (PrSFs) were exposed to exogenous Hsp90α protein, or to conditioned medium (CM) from eHsp90α-expressing prostate cancer cells, and evaluated for signaling, motility, and expression of prototypic reactive markers. In tandem, ELISA assays were utilized to characterize Hsp90α-mediated secreted factors. RESULTS We report that exposure of PrSFs to eHsp90 upregulates the transcription and protein secretion of IL-6 and IL-8, key inflammatory cytokines known to play a causative role in prostate cancer progression. Cytokine secretion was regulated in part via a MEK/ERK and NF-κB dependent pathway. Secreted eHsp90α also promoted the rapid and durable activation of the oncogenic inflammatory mediator signal transducer and activator of transcription (STAT3). Finally, eHsp90 induced the expression of MMP-3, a well-known mediator of fibrosis and the myofibroblast phenotype. CONCLUSIONS Our results provide compelling support for eHsp90α as a transducer of signaling events culminating in an inflammatory and reactive stroma, thereby conferring properties associated with prostate cancer progression.
Collapse
Affiliation(s)
- JE Bohonowych
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - MW Hance
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - KD Nolan
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| | - M Defee
- Department of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - CH Parsons
- Department of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - JS Isaacs
- Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
23
|
Kim BK, Kim BR, Lee HJ, Lee SA, Kim BJ, Kim H, Won YS, Shon WJ, Lee NR, Inn KS, Kim BJ. Tumor-suppressive effect of a telomerase-derived peptide by inhibiting hypoxia-induced HIF-1α-VEGF signaling axis. Biomaterials 2014; 35:2924-2933. [PMID: 24411674 DOI: 10.1016/j.biomaterials.2013.12.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 01/13/2023]
Abstract
A reverse-transcriptase-subunit of telomerase (hTERT) derived peptide, GV1001, has been developed as a vaccine against various cancers. Previously, we have shown that GV1001 interacts with heat shock proteins (HSPs) and penetrates cell membranes to be localized in the cytoplasm. In this study, we have found that GV1001 lowered the level of intracellular and surface HSPs of various cancer cells. In hypoxic conditions, GV1001 treatment of cancer cells resulted in decreases of HSP90, HSP70, and HIF-1α. Subsequently, proliferation of cancer cells and synthesis of VEGF were significantly reduced by treatment using GV1001 in hypoxic conditions. In an experiment using a nude mouse xenograft model, GV1001 exerted a similar tumor suppressive effect, further confirming its anti-tumor efficacy. Higher apoptotic cell death, reduced proliferation of cells, and fewer blood vessels were observed in GV1001-treated tumors compared to control. In addition, significant reduction of Tie2+ CD11b+ monocytes, which were recruited by VEGF from tumor cells and play a critical role in angiogenesis, was observed in GV1001-treated tumors. Collectively, the results suggest that GV1001 possesses potential therapeutic efficacy in addition to its ability to induce anti-cancer immune responses by suppressing both HSP70 and HSP90.
Collapse
Affiliation(s)
- Bu-Kyung Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Hyun-Joo Lee
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Hong Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Yu-Sub Won
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Won-Jun Shon
- Department of Conservative Dentistry, Dental Research Institute and School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Na-Rae Lee
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul 110-799, Republic of Korea.
| |
Collapse
|
24
|
Wann AKT, Thompson CL, Chapple JP, Knight MM. Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium. Cilia 2013; 2:17. [PMID: 24330727 PMCID: PMC3886195 DOI: 10.1186/2046-2530-2-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation.
Collapse
Affiliation(s)
- Angus KT Wann
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Clare L Thompson
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Martin M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| |
Collapse
|
25
|
Ho N, Li A, Li S, Zhang H. Heat shock protein 90 and role of its chemical inhibitors in treatment of hematologic malignancies. Pharmaceuticals (Basel) 2012; 5:779-801. [PMID: 24280675 PMCID: PMC3763672 DOI: 10.3390/ph5080779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/09/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a conserved and constitutively expressed molecular chaperone and it has been shown to stabilize oncoproteins and facilitate cancer development. Hsp90 has been considered as a therapeutic target for cancers and three classes of Hsp90 inhibitors have been developed: (1) benzoquinone ansamycin and its derivatives, (2) radicicol and its derivates, and (3) small synthetic inhibitors. The roles of these inhibitors in cancer treatment have been studied in laboratories and clinical trials, and some encouraging results have been obtained. Interestingly, targeting of Hsp90 has been shown to be effective in inhibition of cancer stem cells responsible for leukemia initiation and progression, providing a strategy for finding a cure. Because cancer stem cells are well defined in some human leukemias, we will focus on hematologic malignancies in this review.
Collapse
Affiliation(s)
- Ngoc Ho
- Division of Hematology and Oncology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|