1
|
Zhu J, Guo L, Dai H, Zheng Z, Yan J, Liu J, Zhang S, Li X, Sun X, Zhao Q, Xu C. RNF115 aggravates tumor progression through regulation of CDK10 degradation in thyroid carcinoma. Cell Biol Toxicol 2024; 40:14. [PMID: 38376606 PMCID: PMC10879231 DOI: 10.1007/s10565-024-09845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/06/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND RING Finger Protein 115 (RNF115), a notable E3 ligase, is known to modulate tumorigenesis and metastasis. In our investigation, we endeavor to unravel the putative function and inherent mechanism through which RNF115 influences the evolution of thyroid carcinoma (THCA). METHODS We analyzed RNF115 expression in THCA using the Cancer Genome Atlas (TCGA) database. The influence of RNF115 on the progression of THCA was evaluated using both in vitro and in vivo experimental approaches. The protein regulated by RNF115 was identified through bioinformatics analysis, and its biological significance was further explored. RESULTS In both THCA tissues and cells, RNF115 showed elevated expression levels. Enhanced expression of RNF115 fostered cell proliferation, tumor growth, and the exacerbation of epithelial-mesenchymal transition (EMT) in THCA, while also promoting tumor lung metastasis. Bioinformatics analysis identified cyclin-dependent kinase 10 (CDK10) as a downstream target of RNF115, which was found to be ubiquitinated and degraded by RNF115 in THCA cells. Functionally, overexpression of CDK10 was found to counteract the promotion of malignant phenotype in THCA induced by RNF115. From a mechanistic perspective, RNF115 activated the Raf-1 pathway and enhanced cancer cell cycle progression by degrading CDK10 in THCA cells. CONCLUSION RNF115 triggers cell proliferation, EMT, and tumor metastasis by ubiquitinating and degrading CDK10. The regulation of the Raf-1 pathway and cell cycle progression in THCA may be profoundly influenced by this process.
Collapse
Affiliation(s)
- Jinxiang Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
- Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an City, 710061, Shaanxi Province, China
| | - Longwei Guo
- Department of Radiation Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi Province, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Zhiwei Zheng
- Department of The Third Ward of General Surgery, Rizhao People's Hospital, Rizhao City, 276800, Shandong Province, China
| | - Jinfeng Yan
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Xiang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi Province, China
| | - Qian Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China.
| | - Chongwen Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Western Yanta Road, Xi'an City, 710061, Shaanxi Province, China.
| |
Collapse
|
2
|
Wang MX, Liuyu T, Zhang ZD. Multifaceted Roles of the E3 Ubiquitin Ligase RING Finger Protein 115 in Immunity and Diseases. Front Immunol 2022; 13:936579. [PMID: 35844553 PMCID: PMC9279554 DOI: 10.3389/fimmu.2022.936579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Ubiquitination is a post-translational modification that plays essential roles in various physiological and pathological processes. Protein ubiquitination depends on E3 ubiquitin ligases that catalyze the conjugation of ubiquitin molecules on lysine residues of targeted substrates. RING finger protein 115 (RNF115), also known as breast cancer associated gene 2 (BCA2) and Rab7-interacting RING finger protein (Rabring7), has been identified as a highly expressed protein in breast cancer cells and tissues. Later, it has been demonstrated that RNF115 catalyzes ubiquitination of a series of proteins to modulate a number of signaling pathways, and thereby regulates viral infections, autoimmunity, cell proliferation and death and tumorigenesis. In this review, we introduce the identification, expression and activity regulation of RNF115, summarize the substrates and functions of RNF115 in different pathways, and discuss the roles of RNF115 as a biomarker or therapeutic target in diseases.
Collapse
Affiliation(s)
- Mei-Xia Wang
- The Executive Master of Business Administration (EMBA) Program, School of Management, Fudan University, Shanghai, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Fa P, Qiu Z, Wang QE, Yan C, Zhang J. A Novel Role for RNF126 in the Promotion of G2 Arrest via Interaction With 14-3-3σ. Int J Radiat Oncol Biol Phys 2022; 112:542-553. [PMID: 34563636 PMCID: PMC8748417 DOI: 10.1016/j.ijrobp.2021.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Cell cycle checkpoints and DNA repair are important for cell survival after exogenous DNA damage. Both rapid blockage of G2 to M phase transition in the cell cycle and the maintenance of relatively slow G2 arrest are critical to protect cells from lethal ionizing radiation (IR). Checkpoint kinase 1 is pivotal in blocking the transition from G2 to M phases in response to IR. The 14-3-3σ protein is important for IR-induced G2 arrest maintenance in which p53-dependent 14-3-3σ transcription is involved. It has been demonstrated that Ring finger protein 126 (RNF126), an E3 ligase, is required to upregulate checkpoint kinase 1 expression. Thus, our goal was to study the role of RNF126 in the G2/M phase checkpoint. METHODS AND MATERIALS The transition from G2 to M phases and G2 accumulation in response to IR were determined by flow cytometry through staining with phospho-histone H3 (pS10) antibody and propidium iodide, respectively. The interaction of RNF126 and 14-3-3σ was determined by GST-pulldown and coimmunoprecipitation assays. The stability of RNF126 and 14-3-3σ was determined by cycloheximide-based stability assay and ubiquitination detection by coimmunoprecipitation. The sequestering of cyclin-dependent kinase 1 and cyclin B1 from the nucleus was determined by immunofluorescence staining. RESULTS RNF126 knockdown had no impact on the IR-induced transient blockage of G2 to M but impaired IR-induced G2 arrest maintenance in cells with or without wild-type p53. Mechanistically, RNF126 binds 14-3-3σ and prevents both proteins from ubiquitination-mediated degradation. Last, RNF126 is required for enforcing the cytoplasmic sequestration of cyclin B1 and cyclin-dependent kinase 1 proteins in response to IR. CONCLUSIONS RNF126 promotes G2 arrest via interaction with 14-3-3σ in response to IR. Our study revealed a novel role for RNF126 in promoting G2 arrest, providing a new target for cancer treatment.
Collapse
Affiliation(s)
- Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA,Corresponding author: Junran Zhang,
| |
Collapse
|
4
|
Huang C, Min Y, Liu J, Li J, Yang X. Ring finger protein 126: a potential biomarker for colorectal cancer. Histol Histopathol 2021; 36:559-566. [PMID: 33724438 DOI: 10.14670/hh-18-328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common cancer of the digestive system. However, effective therapeutic targets against CRC have not been found yet. Further, the relationship between the expression of ring finger protein 126 (RNF126) and CRC is not clear. MATERIAL AND METHODS The expression level of RNF126 in CRC tissues and cell lines was detected by immunohistochemical staining and western blot. Subsequently, endogenous RNF126 expression was inhibited in a CRC cell line using a short hairpin RNA. Next, the effect of RNF126 on the properties of CRC cells was studied through different experimental methods. RESULTS We found that the RNF126 protein was mainly localized in the cytoplasm. High RNF126 expression was observed to be an independent risk factor for poor prognosis in CRC patients. In vitro studies showed that RNF126 was able to promote the proliferation, migration, and invasion ability of CRC cells. CONCLUSION RNF126 acts as an oncogene during CRC development, and may serve as a novel target for CRC treatment.
Collapse
Affiliation(s)
- Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China.,Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei Province, PR China.,Clinical Cancer Study Center of Hubei Provence, Wuhan, Hubei Province, PR China
| | - Yao Min
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Jiuyang Liu
- Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei Province, PR China.,Clinical Cancer Study Center of Hubei Provence, Wuhan, Hubei Province, PR China.,Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China
| | - Jing Li
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China.
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, PR China.,Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei Province, PR China.,Clinical Cancer Study Center of Hubei Provence, Wuhan, Hubei Province, PR China.
| |
Collapse
|
5
|
Zhang ZD, Xiong TC, Yao SQ, Wei MC, Chen M, Lin D, Zhong B. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. Nat Commun 2020; 11:5536. [PMID: 33139700 PMCID: PMC7606512 DOI: 10.1038/s41467-020-19318-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
MAVS and MITA are essential adaptor proteins mediating innate antiviral immune responses against RNA and DNA viruses, respectively. Here we show that RNF115 plays dual roles in response to RNA or DNA virus infections by catalyzing distinct types of ubiquitination of MAVS and MITA at different phases of viral infection. RNF115 constitutively interacts with and induces K48-linked ubiquitination and proteasomal degradation of homeostatic MAVS in uninfected cells, whereas associates with and catalyzes K63-linked ubiquitination of MITA after HSV-1 infection. Consistently, the protein levels of MAVS are substantially increased in Rnf115−/− organs or cells without viral infection, and HSV-1-induced aggregation of MITA is impaired in Rnf115−/− cells compared to the wild-type counterparts. Consequently, the Rnf115−/− mice exhibit hypo- and hyper-sensitivity to EMCV and HSV-1 infection, respectively. These findings highlight dual regulation of cellular antiviral responses by RNF115-mediated ubiquitination of MAVS and MITA and contribute to our understanding of innate immune signaling. MAVS and MITA are adapter proteins that play distinct roles in the context of the host response to RNA and DNA viruses, respectively. Here the authors implicate RNF115 in dual temporal and spatial mechanisms of interacting and catalyzing distinct ubiquitination of MAVS and MITA to modulate RNA and DNA antiviral immune responses.
Collapse
Affiliation(s)
- Zhi-Dong Zhang
- Department of Virology, College of Life Sciences, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, 430072, Wuhan, China
| | - Tian-Chen Xiong
- Department of Virology, College of Life Sciences, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, 430072, Wuhan, China
| | - Shu-Qi Yao
- Department of Virology, College of Life Sciences, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, 430072, Wuhan, China
| | - Ming-Cong Wei
- Department of Virology, College of Life Sciences, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, 430072, Wuhan, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Bo Zhong
- Department of Virology, College of Life Sciences, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
6
|
Zhang R, Liu W, Sun J, Kong Y, Chen C. Roles of RNF126 and BCA2 E3 ubiquitin ligases in DNA damage repair signaling and targeted cancer therapy. Pharmacol Res 2020; 155:104748. [DOI: 10.1016/j.phrs.2020.104748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
7
|
Lu Q, Lu D, Shao ZM, Li DQ. Deubiquitinase ubiquitin-specific protease 9X regulates the stability and function of E3 ubiquitin ligase ring finger protein 115 in breast cancer cells. Cancer Sci 2019; 110:1268-1278. [PMID: 30689267 PMCID: PMC6447854 DOI: 10.1111/cas.13953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022] Open
Abstract
The E3 ubiquitin ligase ring finger protein 115 (RNF115) is overexpressed in more than half of human breast tumors and is implicated in the pathogenesis and progression of breast cancer. However, the mechanism behind RNF115 overexpression in breast tumors remains largely unknown. Here we report that ubiquitin‐specific protease 9X (USP9X), a substrate‐specific deubiquitinating enzyme, stabilizes RNF115 and thereby regulates its biological functions in breast cancer cells. Immunoprecipitation and GST pull‐down assays showed that USP9X interacted with RNF115. Depletion of RNF115 by siRNAs or overexpression of RNF115 did not significantly affect USP9X expression. In contrast, knockdown of USP9X in breast cancer cells by siRNAs reduced RNF115 protein abundance, which was partially restored following treatment with proteasome inhibitor MG‐132. Moreover, depletion of USP9X reduced the half‐life of RNF115 and increased its ubiquitination. Conversely, overexpression of USP9X resulted in an accumulation of RNF115 protein, accompanied by a decrease in its ubiquitination. RNF115 mRNA levels were unaffected by overexpression or knockdown of USP9X. Furthermore, USP9X protein expression levels correlated positively with RNF115 in breast cancer cell lines and breast tumor samples. Importantly, reintroduction of RNF115 in USP9X‐depleted cells partially rescued the reduced proliferation, migration, and invasion of breast cancer cells by USP9X knockdown. Collectively, these findings indicate that USP9X is a stabilizer of RNF115 protein and that the USP9X‐RNF115 signaling axis is implicated in the breast cancer malignant phenotype.
Collapse
Affiliation(s)
- Qin Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dayun Lu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Ming Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Song J, Zhang X, Liao Z, Liang H, Chu L, Dong W, Zhang X, Ge Q, Liu Q, Fan P, Zhang Z, Zhang B. 14-3-3ζ inhibits heme oxygenase-1 (HO-1) degradation and promotes hepatocellular carcinoma proliferation: involvement of STAT3 signaling. J Exp Clin Cancer Res 2019; 38:3. [PMID: 30606233 PMCID: PMC6319010 DOI: 10.1186/s13046-018-1007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heme oxygenase 1 (HO-1) has been reported to be very important in the pathogenesis or progression of multiple types of cancer. Identification of novel hmox1 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways, and possible treatment targets. METHODS Immunoprecipitation and mass spectrometry analyses were used to identify novel regulators of HO-1. The association of the 14-3-3ζ protein with HO-1 and modulation of the stability of HO-1 were investigated by co-immunoprecipitation, immunofluorescence, western blotting, and quantitative RT-PCR. Degradation and in vivo ubiquitination assays were utilized to examine whether 14-3-3ζ stabilizes the HO-1 protein by inhibiting its ubiquitination. The effect of 14-3-3ζ on proliferation was investigated by function assays conducted in vitro using the CCK-8 and colony formation assays and in vivo in a xenograft mouse model. The biological functions of the 14-3-3ζ/HO-1 axis were demonstrated by western blotting and rescue experiments. Using gain-of-function and loss-of-function strategies, we further clarified the impact of 14-3-3ζ/HO-1 complex on the signal transducers and activators of transcription 3 (STAT3) signaling pathway in cancer cells. RESULTS We identified 14-3-3ζ as a novel HO-1 binding protein. The binding inhibited the ubiquitination and proteasome-mediated degradation of HO-1, thus facilitating its stabilization. Enforced expression of 14-3-3ζ significantly promoted cell proliferation in vitro, as well as tumorigenesis in vivo, while 14-3-3ζ knockdown had opposite effects. The data indicated that 14-3-3ζ can stabilize HO-1 expression and thus influence cancer cell proliferation. We further demonstrated the involvement of the STAT3 pathway in 14-3-3ζ/HO-1 regulation of hepatocellular carcinoma cell proliferation. CONCLUSIONS Collectively, these data show that 14-3-3ζ regulates the stability of HO-1 to promote cancer cell proliferation and STAT3 signaling activation. The data establish the 14-3-3ζ-HO-1-STAT3 axis as an important regulatory mechanism of cancer cell growth and implicate HO-1 and 14-3-3ζ as potential therapeutic targets in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xiaochao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qianyun Ge
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Pan Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, 430030 China
- Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030 China
| |
Collapse
|
9
|
Huang D, Qiao XL, Liang QJ, Wei W, Kong JR, Huan Kang CSZ, Liu Y, Wang WN. Molecular characterization and function analysis of a nucleotide excision repair gene Rad23 from Litopenaeus vannamei after Vibrio alginolyticus challenge. FISH & SHELLFISH IMMUNOLOGY 2018; 83:190-204. [PMID: 30195911 DOI: 10.1016/j.fsi.2018.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide excision repair (NER) removes many different types of DNA lesions, and NER related host factors are reported to aid recovery steps during viral integration. Here, we report the identification and characterization of a DNA repair gene Rad23 from Litopenaeus vannamei and explore its role in innate immunity of crustaceans. LvRad23 contains a1149 bp open reading frame (ORF) which encodes a 382 amino acids protein with predicted theoretical isoelectric point of 4.21. LvRad23 was ubiquitously expressed in the muscle, eyestalk, gill, stomach, heart, legs, intestine, and hepatopancreas in order from high to low and LvRad23 protein was showed to be located in the cytoplasm of Drosophila S2 cells. The homology analysis showed that it has a high sequence homology with Rad23 protein from Marsupenaeus japonicus. Vibrio alginolyticus challenge induced a remarkable up-regulation of LvRad23 mRNA in hepatopancreas. Knocking down LvRad23can interfere the NER pathway by down regulating the expression of replication protein A (RPA) and proliferating cell nuclear antigen (PCNA). However it didn't cause any significant difference on total hemocyte count (THC) between LvRad23-silenced and non-silenced group.LvRad23-silenced then challenge with V. alginolyticus inducing high level of reactive oxygen species (ROS) and DNA damage in hemolymph. As well as decreased THC, which seriously diminished the innate immune system of L. vannamei. Meanwhile, the NER pathway was reactived by enhancing the expression of LvRad23 and promoting the production of LvPCNA to resist apoptosis and maintain proliferation of hemolymph cells in the later stage. Our results suggest that LvRad23 plays a vital role in shrimp specific immune response to V. alginolytcus through its participation in NER pathway.
Collapse
Affiliation(s)
- Di Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xue-Li Qiao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chang-Sheng Zhao Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
10
|
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36:683-702. [DOI: 10.1007/s10555-017-9703-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
BCA2/Rabring7 Interferes with HIV-1 Proviral Transcription by Enhancing the SUMOylation of IκBα. J Virol 2017; 91:JVI.02098-16. [PMID: 28122985 PMCID: PMC5375697 DOI: 10.1128/jvi.02098-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
BCA2/Rabring7 is a BST2 cofactor that promotes the lysosomal degradation of trapped HIV-1 virions but also functions as a BST2-independent anti-HIV factor by targeting Gag for lysosomal degradation. Since many antiviral factors regulate the NF-κB innate signaling pathway, we investigated whether BCA2 is also connected to this proinflammatory cascade. Here, we show for the first time that BCA2 is induced by NF-κB-activating proinflammatory cytokines and that upregulation of BCA2 provides regulatory negative feedback on NF-κB. Specifically, BCA2 serves as an E3 SUMO ligase in the SUMOylation of IκBα, which in turn enhances the sequestration of NF-κB components in the cytoplasm. Since HIV-1 utilizes NF-κB to promote proviral transcription, the BCA2-mediated inhibition of NF-κB significantly decreases the transcriptional activity of HIV-1 (up to 4.4-fold in CD4+ T cells). Therefore, our findings indicate that BCA2 poses an additional barrier to HIV-1 infection: not only does BCA2 prevent assembly and release of nascent virions, it also significantly restricts HIV-1 transcription by inhibiting the NF-κB pathway.IMPORTANCE Understanding the interactions between HIV-1 and its host cells is highly relevant to the design of new drugs aimed at eliminating HIV-1 from infected individuals. We have previously shown that BCA2, a cofactor of BST2 in the restriction of HIV-1, also prevents virion assembly in a BST2-independent manner. In this study, we found that BCA2 negatively regulates the NF-κB pathway-a signaling cascade necessary for HIV-1 replication and infectivity-which in turn detrimentally affects proviral transcription and virus propagation. Thus, our results indicate that, besides its previously described functions as an antiviral factor, BCA2 poses an additional barrier to HIV-1 replication at the transcriptional level.
Collapse
|
12
|
Yokoi M, Hanaoka F. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene 2017; 597:1-9. [DOI: 10.1016/j.gene.2016.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
|
13
|
Wymant JM, Hiscox S, Westwell AD, Urbé S, Clague MJ, Jones AT. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer 2016; 7:2388-2407. [PMID: 27994678 PMCID: PMC5166551 DOI: 10.7150/jca.15055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 08/14/2016] [Indexed: 12/24/2022] Open
Abstract
Breast Cancer Associated gene 2 (BCA2) is an E3 ubiquitin ligase that is over-expressed in >50% of primary breast cancers, and has been shown to increase in vitro cell proliferation and invasion. The protein has been linked to alterations in EGFR degradation; however there is some dispute as to its role and influence on the biology of this receptor. Our work aimed to ascertain the role of BCA2 in EGFR endocytosis and down-regulation and to examine its links with breast cancer outcome. Data generated with the online expression analysis tool KM-Plotter showed that high BCA2 levels are associated with poor prognosis in ovarian, gastric and breast cancer, particularly HER2 over-expressing breast cancers. Experimentally, we demonstrate that over-expression of BCA2 induced a reduction in total EGFR levels. BCA2 over-expressing cells stimulated with EGF exhibited reduced lysosomal degradation of both this ligand and its receptor. Signalling downstream of EGFR in BCA2 over-expressing cells was characterized by a lower magnitude but increased duration. Our findings support a role for BCA2 in receptor endocytosis. Consistent with this we show that BCA2 over-expression reduces the level of vesicle-associated Rab7, a regulator of late endocytosis and documented interaction partner of BCA2. Levels of transferrin receptor and the uptake of transferrin were unaltered by over-expression of BCA2 indicating that trafficking changes may be limited to late endocytic sorting events. This report offers a thorough exploration of BCA2 biology and suggests a context-dependent role for the protein in the endocytic regulation of EGFR and as a prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Jennifer M Wymant
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Stephen Hiscox
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Andrew D Westwell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| | - Sylvie Urbé
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, England, U.K
| | - Michael J Clague
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, England, U.K
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, U.K
| |
Collapse
|
14
|
Loss of RAD-23 Protects Against Models of Motor Neuron Disease by Enhancing Mutant Protein Clearance. J Neurosci 2016; 35:14286-306. [PMID: 26490867 DOI: 10.1523/jneurosci.0642-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Misfolded proteins accumulate and aggregate in neurodegenerative disease. The existence of these deposits reflects a derangement in the protein homeostasis machinery. Using a candidate gene screen, we report that loss of RAD-23 protects against the toxicity of proteins known to aggregate in amyotrophic lateral sclerosis. Loss of RAD-23 suppresses the locomotor deficit of Caenorhabditis elegans engineered to express mutTDP-43 or mutSOD1 and also protects against aging and proteotoxic insults. Knockdown of RAD-23 is further neuroprotective against the toxicity of SOD1 and TDP-43 expression in mammalian neurons. Biochemical investigation indicates that RAD-23 modifies mutTDP-43 and mutSOD1 abundance, solubility, and turnover in association with altering the ubiquitination status of these substrates. In human amyotrophic lateral sclerosis spinal cord, we find that RAD-23 abundance is increased and RAD-23 is mislocalized within motor neurons. We propose a novel pathophysiological function for RAD-23 in the stabilization of mutated proteins that cause neurodegeneration. SIGNIFICANCE STATEMENT In this work, we identify RAD-23, a component of the protein homeostasis network and nucleotide excision repair pathway, as a modifier of the toxicity of two disease-causing, misfolding-prone proteins, SOD1 and TDP-43. Reducing the abundance of RAD-23 accelerates the degradation of mutant SOD1 and TDP-43 and reduces the cellular content of the toxic species. The existence of endogenous proteins that act as "anti-chaperones" uncovers new and general targets for therapeutic intervention.
Collapse
|
15
|
Regulation of metformin response by breast cancer associated gene 2. Neoplasia 2014; 15:1379-90. [PMID: 24403860 DOI: 10.1593/neo.131434] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular energy homeostasis, has emerged as a promising molecular target in the prevention of breast cancer. Clinical trials using the United States Food and Drug Administration (FDA)-approved, AMPK-activating, antidiabetic drug metformin are promising in this regard, but the question of why metformin is protective for some women but not others still remains. Breast cancer associated gene 2 (BCA2/Rabring7/RNF115), a novel Really Interesting New Gene (RING) finger ubiquitin E3 ligase, is overexpressed in >50% of breast tumors. Herein, we report that BCA2 is an endogenous inhibitor of AMPK activation in breast cancer cells and that BCA2 inhibition increases the efficacy of metformin. BCA2 overexpression inhibited both basal and inducible Thr172 phosphorylation/activation of AMPKα1, while BCA2-specific small interfering RNA (siRNA) enhanced phosphorylated AMPKα1 (pAMPKα1). The AMPK-suppressive function of BCA2 requires its E3 ligase-specific RING domain, suggesting that BCA2 targets some protein controlling (de)phosphorylation of AMPKα1 for degradation. Activation of AMPK by metformin triggered a growth inhibitory signal but also increased BCA2 protein levels, which correlated with AKT activation and could be curbed by an AMPK inhibitor, suggesting a potential feedback mechanism from pAMPKα1 to pAkt to BCA2. Finally, BCA2 siRNA, or inhibition of its upstream stabilizing kinase AKT, increased the growth inhibitory effect of metformin in multiple breast cancer cell lines, supporting the conclusion that BCA2 weakens metformin's efficacy. Our data suggest that metformin in combination with a BCA2 inhibitor may be a more effective breast cancer treatment strategy than metformin alone.
Collapse
|
16
|
Nityanandam R, Serra-Moreno R. BCA2/Rabring7 targets HIV-1 Gag for lysosomal degradation in a tetherin-independent manner. PLoS Pathog 2014; 10:e1004151. [PMID: 24852021 PMCID: PMC4031200 DOI: 10.1371/journal.ppat.1004151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/14/2014] [Indexed: 12/04/2022] Open
Abstract
BCA2 (Rabring7, RNF115 or ZNF364) is a RING-finger E3 ubiquitin ligase that was identified as a co-factor in the restriction imposed by tetherin/BST2 on HIV-1. Contrary to the current model, in which BCA2 lacks antiviral activity in the absence of tetherin, we found that BCA2 possesses tetherin-independent antiviral activity. Here we show that the N-terminus of BCA2 physically interacts with the Matrix region of HIV-1 and other retroviral Gag proteins and promotes their ubiquitination, redistribution to endo-lysosomal compartments and, ultimately, lysosomal degradation. The targeted depletion of BCA2 in tetherin-expressing and tetherin-deficient cells results in a significant increase in virus release and replication, indicating that endogenous BCA2 possesses antiviral activity. Therefore, these results indicate that BCA2 functions as an antiviral factor that targets HIV-1 Gag for degradation, impairing virus assembly and release. Tetherin (also known as BST2, CD317 or HM1.24) is an interferon-inducible cellular factor that interferes with the release of enveloped viruses from infected cells. A recent study identified BCA2 (Breast Cancer-Associated gene 2, also known as RNF115, ZNF364 or Rabring7), a RING-finger E3 ubiquitin ligase, as a co-factor in the tetherin-mediated restriction of HIV-1. According to this model, BCA2 interacts with sequences in the N-terminus of tetherin to promote the internalization and lysosomal degradation of tethered HIV-1 particles, with no apparent antiviral activity in cells not expressing tetherin. However, here we show for the first time that BCA2 inhibits virus production for HIV-1 and other retroviruses in a tetherin-independent manner by reducing the cellular levels of Gag – the precursor of the structural proteins Matrix, Capsid, Nucleocapsid and p6. Hence, contrary to its reported role as a tetherin co-factor, BCA2 functions as a tetherin-independent antiviral factor that impairs virus assembly and release.
Collapse
Affiliation(s)
- Ramya Nityanandam
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Ruth Serra-Moreno
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
RNF115/BCA2 E3 ubiquitin ligase promotes breast cancer cell proliferation through targeting p21Waf1/Cip1 for ubiquitin-mediated degradation. Neoplasia 2014; 15:1028-35. [PMID: 24027428 DOI: 10.1593/neo.13678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has previously been reported to be overexpressed in estrogen receptor α (ERα)-positive breast tumors and to promote breast cell proliferation; however, its mechanism is unknown. In this study, we demonstrated that silencing of BCA2 by small interfering RNAs (siRNAs) in two ERα-positive breast cancer cell lines, MCF-7 and T47D, decreases cell proliferation and increases the protein levels of the cyclin-dependent kinase inhibitor p21Waf/Cip1. The protein stability of p21 was negatively regulated by BCA2. BCA2 directly interacts with p21 and promotes p21 ubiquitination and proteasomal degradation. Knockdown of p21 partially rescues the cell growth arrest induced by the BCA2 siRNA. These results suggest that BCA2 promotes ERα-positive breast cancer cell proliferation at least partially through downregulating the expression of p21.
Collapse
|
18
|
Guzmán P. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:69-75. [PMID: 24388516 DOI: 10.1016/j.plantsci.2013.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 06/03/2023]
Abstract
Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution.
Collapse
Affiliation(s)
- Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., Mexico.
| |
Collapse
|
19
|
Aguilar-Hernández V, Guzmán P. Spliceosomal introns in the 5' untranslated region of plant BTL RING-H2 ubiquitin ligases are evolutionary conserved and required for gene expression. BMC PLANT BIOLOGY 2013; 13:179. [PMID: 24228887 PMCID: PMC4225707 DOI: 10.1186/1471-2229-13-179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
BACKGROUND Introns located close to the 5' end of a gene or in the 5' untranslated region often exert positive effects on gene expression. This effect, known as intron-mediated enhancement (IME), has been observed in diverse eukaryotic organisms, including plants. The sequences involved in IME seem to be spread across the intron and function in an additive manner. The IMEter algorithm was developed to predict plant introns that may enhance gene expression. We have identified several plant members of the BTL class of E3s, which may have orthologs across eukaryotes, that contain a 5'UTR intron. The RING finger E3 ligases are key enzymes of the ubiquitination system that mediate the transfer of ubiquitin to substrates. RESULTS In this study, we retrieved BTL sequences from several angiosperm species and found that 5'UTR introns showing a strong IMEter score were predicted, suggesting that they may be conserved by lineage. Promoter-GUS fusion lines were used to confirm the IME effect of these 5'UTR introns on gene expression. IMEter scores of BTLs were compared with the 5'UTR introns of two gene families MHX and polyubiquitin genes. CONCLUSIONS Analysis performed in two Arabidopsis BTL E3 ligases genes indicated that the 5'UTR introns were essential for gene expression in all the tissues tested. Comparison of the average 5'UTR intron size on three gene families in ten angiosperm species suggests that a prevalent size for a 5'UTR intron is in the range of 600 nucleotides, and that the overall IMEter score within a gene family is preserved across several angiosperms. Our results indicated that gene expression dependent on a 5'UTR intron is an efficient regulatory mechanism in BTL E3 ligases that has been preserved throughout plant evolution.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, Mexico
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Apartado Postal 629, Irapuato, Gto 36821, Mexico
| |
Collapse
|
20
|
Aguilar-Hernández V, Medina J, Aguilar-Henonin L, Guzmán P. Expansion and diversification of BTL ring-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs. PLoS One 2013; 8:e72729. [PMID: 23951330 PMCID: PMC3738576 DOI: 10.1371/journal.pone.0072729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/11/2013] [Indexed: 12/26/2022] Open
Abstract
RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes.
Collapse
Affiliation(s)
- Victor Aguilar-Hernández
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Juliana Medina
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Guanajuato, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
21
|
Solubility-based genetic screen identifies RING finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2012; 110:1029-34. [PMID: 23277564 DOI: 10.1073/pnas.1214538110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions are typically identified by either biochemical purification coupled to mass spectrometry or genetic approaches exemplified by the yeast two-hybrid assay; however, neither assay works well for the identification of cofactors for poorly soluble proteins. Solubility of a poorly soluble protein is thought to increase upon cofactor binding, possibly by masking otherwise exposed hydrophobic domains. We have exploited this notion to develop a high-throughput genetic screen to identify interacting partners of an insoluble protein fused to chloramphenicol acetyltransferase by monitoring the survival of bacteria in the presence of a drug. In addition to presenting proof-of-principle experiments, we apply this screen to activation-induced cytidine deaminase (AID), a poorly soluble protein that is essential for antibody diversification. We identify a unique cofactor, RING finger protein 126 (RNF126), verify its interaction by traditional techniques, and show that it has functional consequences as RNF126 is able to ubiquitylate AID. Our results underpin the value of this screening technique and suggest a unique form of AID regulation involving RNF126 and ubiquitylation.
Collapse
|