1
|
Umemori K, Ono K, Eguchi T, Kawai H, Nakamura T, Ogawa T, Yoshida K, Kanemoto H, Sato K, Obata K, Ryumon S, Yutori H, Katase N, Okui T, Nagatsuka H, Ibaragi S. EpEX, the soluble extracellular domain of EpCAM, resists cetuximab treatment of EGFR-high head and neck squamous cell carcinoma. Oral Oncol 2023; 142:106433. [PMID: 37236125 DOI: 10.1016/j.oraloncology.2023.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Cetuximab (Cmab) is a molecularly targeted monoclonal antibody drug for head and neck squamous cell carcinoma (HNSC), although cetuximab resistance is a serious challenge. Epithelial cell adhesion molecule (EpCAM) is an established marker for many epithelial tumors, while the soluble EpCAM extracellular domain (EpEX) functions as a ligand for epidermal growth factor receptor (EGFR). We investigated the expression of EpCAM in HNSC, its involvement in Cmab action, and the mechanism by which soluble EpEX activated EGFR and played key roles in Cmab resistance. MATERIALS AND METHODS We first examined EPCAM expression in HNSCs and its clinical significance by searching gene expression array databases. We then examined the effects of soluble EpEX and Cmab on intracellular signaling and Cmab efficacy in HNSC cell lines (HSC-3 and SAS). RESULTS EPCAM expression was found to be enhanced in HNSC tumor tissues compared to normal tissues, and the enhancement was correlated with stage progression and prognosis. Soluble EpEX activated the EGFR-ERK signaling pathway and nuclear translocation of EpCAM intracellular domains (EpICDs) in HNSC cells. EpEX resisted the antitumor effect of Cmab in an EGFR expression-dependent manner. CONCLUSION Soluble EpEX activates EGFR to increase Cmab resistance in HNSC cells. The EpEX-activated Cmab resistance in HNSC is potentially mediated by the EGFR-ERK signaling pathway and the EpCAM cleavage-induced nuclear translocation of EpICD. High expression and cleavage of EpCAM are potential biomarkers for predicting the clinical efficacy and resistance to Cmab.
Collapse
Affiliation(s)
- Koki Umemori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan.
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tomoya Nakamura
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tatsuo Ogawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kohei Sato
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shoji Ryumon
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hirokazu Yutori
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Naoki Katase
- Department of Oral Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
2
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
3
|
Mal A, Dey P, Hayes RM, McCarthy JV, Ray A, De A. In Silico Identification of Potential Phosphorylation in the Cytoplasmic Domain of Epithelial Cell Adhesion Molecule. ACS OMEGA 2020; 5:30808-30816. [PMID: 33324790 PMCID: PMC7726786 DOI: 10.1021/acsomega.0c02113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The epithelial cell adhesion molecule (EpCAM) is a transmembrane cell adhesion glycoprotein, which primarily contributes to stemness, proliferation, and metastasis properties of tumor cells. Regulated intramembrane proteolysis by ADAM proteases and γ-secretase cleaves EpCAM into an ∼27 kDa soluble extracellular and an ∼4 kDa cytoplasmic domain (EpICD). After the EpICD fragment is released inside the cell, the formation of a nuclear signaling complex with the FHL2 molecule is critical for exerting its regulatory role. Trop-2, a homologous protein of EpCAM, undergoes phosphorylation in its cytoplasmic domain (Trop-IC). The phosphorylation of Trop-2 is reported to be crucial for its function. This led us to ask the fundamental question if EpCAM does undergo similar post-translational modification(PTM) like its homologous protein to carry out its diverse biological function. Here, we identify a putative phosphorylation site at Tyr297 located in the cytoplasmic domain of EpCAM. Molecular dynamic simulation (MDS) of 90 ns was carried out to understand the biological/functional relevance of the putative phosphorylation. It was observed that this phosphorylation stabilizes the α-helical structure of the EpICD. Though Tyr297 does not affect the γ-secretase mediated cleavage of EpCAM, it affects the binding of EpICD to FHL2. Docking analysis revealed that phosphorylation mediated structural stability of EpICD positively impacts its binding affinity with FHL2, which was further validated using 100 ns MDS. Phosphorylated EpICD forms higher numbers of hydrogen bonds, salt bridges, and other non-bonded interactions with FHL2, leading to enhanced interactions. This in silico study reveals a potential PTM in the EpICD, providing the basis for future research in understanding the mechanism behind the diverse biological function of EpCAM.
Collapse
Affiliation(s)
- Arijit Mal
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| | - Pranay Dey
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| | - Robert Michael Hayes
- Signal Transduction Laboratory, School of Biochemistry
& Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry
& Cell Biology, University College Cork, Cork T12 K8AF, Ireland
| | - Arjun Ray
- Computational Biology, Indraprastha
Institute of Information Technology, Delhi 110020, India
| | - Abhijit De
- Molecular Functional
Imaging Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Life Science, Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Eslami-S Z, Cortés-Hernández LE, Alix-Panabières C. Epithelial Cell Adhesion Molecule: An Anchor to Isolate Clinically Relevant Circulating Tumor Cells. Cells 2020; 9:cells9081836. [PMID: 32764280 PMCID: PMC7464831 DOI: 10.3390/cells9081836] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received increased attention as the main membrane marker used in many enrichment technologies to isolate circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit their clinical utility. The biology of EpCAM and its role are not completely understood but evidence suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review, we summarize the most significant advantages and disadvantages of using EpCAM as a marker for CTC enrichment and its potential biological role in the metastatic cascade.
Collapse
|
5
|
Extracellular domain of EpCAM enhances tumor progression through EGFR signaling in colon cancer cells. Cancer Lett 2018; 433:165-175. [DOI: 10.1016/j.canlet.2018.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
|
6
|
Somasundaram RT, Kaur J, Leong I, MacMillan C, Witterick IJ, Walfish PG, Ralhan R. Subcellular differential expression of Ep-ICD in oral dysplasia and cancer is associated with disease progression and prognosis. BMC Cancer 2016; 16:486. [PMID: 27421772 PMCID: PMC4947324 DOI: 10.1186/s12885-016-2507-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/20/2016] [Indexed: 01/25/2023] Open
Abstract
Background Identification of patients with oral dysplasia at high risk of cancer development and oral squamous cell carcinoma (OSCC) at increased risk of disease recurrence will enable rigorous personalized treatment. Regulated intramembranous proteolysis of Epithelial cell adhesion molecule (EpCAM) resulting in release of its intracellular domain Ep-ICD into cytoplasm and nucleus triggers oncogenic signaling. We analyzed the expression of Ep-ICD in oral dysplasia and cancer and determined its clinical significance in disease progression and prognosis. Methods In a retrospective study, immunohistochemical analysis of nuclear and cytoplasmic Ep-ICD and EpEx (extracellular domain of EpCAM), was carried out in 115 OSCC, 97 oral dysplasia and 105 normal oral tissues, correlated with clinicopathological parameters and disease outcome over 60 months for oral dysplasia and OSCC patients. Disease-free survival (DFS) was determined by Kaplan-Meier method and multivariate Cox regression analysis. Results In comparison with normal oral tissues, significant increase in nuclear Ep-ICD and membrane EpEx was observed in dysplasia, and OSCC (p = 0.013 and < 0.001 respectively). Oral dysplasia patients with increased overall Ep-ICD developed cancer in short time period (mean = 47 months; p = 0.044). OSCC patients with increased nuclear Ep-ICD and membrane EpEx had significantly reduced mean DFS of 33.7 months (p = 0.018). Conclusions Our study provided clinical evidence for Ep-ICD as a predictor of cancer development in patients with oral dysplasia and recurrence in OSCC patients, suggesting its potential utility in enhanced management of those patients detected to have increased risk of progression to cancer and recurrence in OSCC patients.
Collapse
Affiliation(s)
- Raj Thani Somasundaram
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jatinder Kaur
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Iona Leong
- Department of Otolaryngology, Head and Neck Surgery, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ian J Witterick
- Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada.,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada
| | - Paul G Walfish
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada. .,Department of Medicine, Endocrine Division, Mount Sinai Hospital and University of Toronto, Joseph & Wolf Lebovic Health Complex, Room 413-7, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
| | - Ranju Ralhan
- Alex and Simona Shnaider Laboratory, Laboratory Medicine in Molecular Onocolgy, Mount Sinia Hospital, Room 6-318, 600 University Avenue, Toronto, ON, M5G 1X5, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, Alex and Simona Shnaider Laboratory in Molecular Oncology, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, 600 University Avenue, 6-500, Toronto, ON, M5G 1X5, Canada. .,Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
7
|
Park SY, Bae JS, Cha EJ, Chu HH, Sohn JS, Moon WS. Nuclear EpICD expression and its role in hepatocellular carcinoma. Oncol Rep 2016; 36:197-204. [PMID: 27176150 DOI: 10.3892/or.2016.4789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
Regulated intramembrane proteolysis of epithelial cell adhesion molecule (EpCAM) results in shedding of the extracellular domain (EpEX) and release of the intra-cellular domain (EpICD) into the cytoplasm. Released EpICD associates with FHL2, β-catenin and Lef-1 to form a nuclear complex and triggers oncogenic signaling. This study was conducted to examine the nuclear expression of EpICD in hepatocellular carcinoma (HCC) and to assess the role of EpICD in HCC. EpICD immunoexpression was examined in 100 cases of HCC using tissue microarrays and correlated with clinicopathological parameters. We also examined the role of EpICD in HCC using EpICD cDNA transfected HCC cell line and EpCAM silenced HCC cell line by small interfering RNA (siRNA). Nuclear expression of EpICD was observed in 19 of 100 (19%) cases. Nuclear expression of EpICD significantly correlated with nuclear expression of β-catenin, and Ki-67 labeling index. In addition, nuclear expression of EpICD was associated with higher histologic grade and advanced T category. Forced overexpression of EpICD in the HCC cell significantly increased the cell proliferation, migration and invasion. The overexpression of EpICD also increased the expression levels of the active form of β-catenin and c-myc and cyclin D1. In contrast, downregulation of EpCAM by siRNA decreased the cell proliferation, migration, invasion and the expression of active form of β-catenin, c-myc and cyclin D1. Our present data suggest that EpICD plays important roles in HCC progression by modulating expression of target genes of EpCAM.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Pathology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, Chonbuk National University, Medical School Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| | - Eun Jung Cha
- Department of Pathology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Hyun Hee Chu
- Department of Pathology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jang Sihn Sohn
- Department of Pathology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University, Medical School Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju 561-756, Republic of Korea
| |
Collapse
|
8
|
Seeber A, Untergasser G, Spizzo G, Terracciano L, Lugli A, Kasal A, Kocher F, Steiner N, Mazzoleni G, Gastl G, Fong D. Predominant expression of truncated EpCAM is associated with a more aggressive phenotype and predicts poor overall survival in colorectal cancer. Int J Cancer 2016; 139:657-63. [PMID: 26996277 DOI: 10.1002/ijc.30099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/12/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022]
Abstract
Regulated intramembrane proteolysis (RIP) has been shown to be an important mechanism for oncogenic activation of EpCAM through nuclear translocation of the intracellular domain EpICD. Recently, we identified two different membranous EpCAM variants namely EpCAM(MF) (full-length) and EpCAM(MT) (truncated) to be expressed in the majority of human epithelial tumors. The aim of our study was to evaluate the potential role of these two protein variants as additional prognostic biomarkers in colorectal cancer. In most studies only one antibody targeting the extracellular domain of EpCAM (EpEX) has been used, whereas in the present study additionally an antibody which detects the intracellular domain (EpICD) was applied to discriminate between different EpCAM variants. Using immunohistochemistry, we analyzed the expression of EpCAM(MF) and EpCAM(MT) variants in 640 patients with colorectal cancer and determined their correlations with other prognostic factors and clinical outcome. A statistically significant association was observed for EpCAM(MT) with advanced tumor stage (p < 0.001), histological grade (p = 0.01), vascular (p < 0.001) and marginal (p = 0.002) invasion. Survival analysis demonstrated reduced overall survival (p < 0.004) in patients with tumors expressing the EpCAM(MT) phenotype when compared to patients with tumors expressing the EpCAM(MF) variant. In conclusion, this study for the first time indicates that expression of EpCAM(MT) is associated with a more aggressive phenotype and predicts poor survival in patients with colorectal cancer.
Collapse
Affiliation(s)
- Andreas Seeber
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gerold Untergasser
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Gilbert Spizzo
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University of Basel, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Switzerland
| | - Armin Kasal
- Department of Pathology, Central Hospital of Bolzano, Italy
| | - Florian Kocher
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Normann Steiner
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | | | - Guenther Gastl
- Department of Haematology and Oncology, Medical University of Innsbruck, Austria
| | - Dominic Fong
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Oncotyrol-Center for Personalized Cancer Medicine, Innsbruck, Austria.,Department of Haematology and Oncology, Medical University of Innsbruck, Austria.,Haemato-Oncological Day Hospital, Hospital of Merano, Italy
| |
Collapse
|