1
|
Parikh MN, Brokamp C, Rasnick E, Ding L, Mersha TB, Bowers K, Folger AT. Epigenome-wide association of neonatal methylation and trimester-specific prenatal PM 2.5 exposure. Environ Epidemiol 2022; 6:e227. [PMID: 36249271 PMCID: PMC9556110 DOI: 10.1097/ee9.0000000000000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/26/2022] [Indexed: 11/07/2022] Open
Abstract
Exposure to particulate matter with an aerodynamic diameter smaller than 2.5 microns (PM2.5) can affect birth outcomes through physiological pathways such as inflammation. One potential way PM2.5 affects physiology could be through altering DNA methylation (DNAm). Considering that exposures during specific windows of gestation may have unique effects on DNAm, we hypothesized a timing-specific association between PM2.5 exposure during pregnancy and DNAm in the neonatal epithelial-cell epigenome. Methods After collecting salivary samples from a cohort of 91 neonates, DNAm was assessed at over 850,000 cytosine-guanine dinucleotide (CpG) methylation sites on the epigenome using the MethylationEPIC array. Daily ambient PM2.5 concentrations were estimated based on the mother's address of primary residence during pregnancy. PM2.5 was averaged over the first two trimesters, separately and combined, and tested for association with DNAm through an epigenome-wide association (EWA) analysis. For each EWA, false discovery rate (FDR)-corrected P < 0.05 constituted a significant finding and every CpG site with uncorrected P < 0.0001 was selected to undergo pathway and network analysis to identify molecular functions enriched by them. Results Our analysis showed that cg18705808 was associated with the combined average of PM2.5. Pathway and network analysis revealed little similarity between the first two trimesters. Previous studies reported that TMEM184A, the gene regulated by cg18705808, has a putative role in inflammatory pathways. Conclusions The differences in pathway and network analyses could potentially indicate trimester-specific effects of PM2.5 on DNAm. Further analysis with greater temporal resolution would be valuable to fully characterize the effect of PM2.5 on DNAm and child development.
Collapse
Affiliation(s)
- Milan N. Parikh
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tesfaye B. Mersha
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Katherine Bowers
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alonzo T. Folger
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
2
|
Development and validation of an RNA-seq-based transcriptomic risk score for asthma. Sci Rep 2022; 12:8643. [PMID: 35606385 PMCID: PMC9126925 DOI: 10.1038/s41598-022-12199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Recent progress in RNA sequencing (RNA-seq) allows us to explore whole-genome gene expression profiles and to develop predictive model for disease risk. The objective of this study was to develop and validate an RNA-seq-based transcriptomic risk score (RSRS) for disease risk prediction that can simultaneously accommodate demographic information. We analyzed RNA-seq gene expression data from 441 asthmatic and 254 non-asthmatic samples. Logistic least absolute shrinkage and selection operator (Lasso) regression analysis in the training set identified 73 differentially expressed genes (DEG) to form a weighted RSRS that discriminated asthmatics from healthy subjects with area under the curve (AUC) of 0.80 in the testing set after adjustment for age and gender. The 73-gene RSRS was validated in three independent RNA-seq datasets and achieved AUCs of 0.70, 0.77 and 0.60, respectively. To explore their biological and molecular functions in asthma phenotype, we examined the 73 genes by enrichment pathway analysis and found that these genes were significantly (p < 0.0001) enriched for DNA replication, recombination, and repair, cell-to-cell signaling and interaction, and eumelanin biosynthesis and developmental disorder. Further in-silico analyses of the 73 genes using Connectivity map shows that drugs (mepacrine, dactolisib) and genetic perturbagens (PAK1, GSR, RBM15 and TNFRSF12A) were identified and could potentially be repurposed for treating asthma. These findings show the promise for RNA-seq risk scores to stratify and predict disease risk.
Collapse
|
3
|
Odeniyide P, Yohe ME, Pollard K, Vaseva AV, Calizo A, Zhang L, Rodriguez FJ, Gross JM, Allen AN, Wan X, Somwar R, Schreck KC, Kessler L, Wang J, Pratilas CA. Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma. Oncogene 2022; 41:2973-2983. [PMID: 35459782 PMCID: PMC9122815 DOI: 10.1038/s41388-022-02305-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/11/2023]
Abstract
Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.
Collapse
Affiliation(s)
- Patience Odeniyide
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kai Pollard
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina V Vaseva
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ana Calizo
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fausto J Rodriguez
- Department of Laboratory Medicine and Pathology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Gross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy N Allen
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolin Wan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karisa C Schreck
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jiawan Wang
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Luger SM, Wang VX, Rowe JM, Litzow MR, Paietta E, Ketterling RP, Lazarus H, Rybka WB, Craig MD, Karp J, Cooper BW, Makary AZ, Kaminer LS, Appelbaum FR, Larson RA, Tallman MS. Tipifarnib as maintenance therapy did not improve disease-free survival in patients with acute myelogenous leukemia at high risk of relapse: Results of the phase III randomized E2902 trial. Leuk Res 2021; 111:106736. [PMID: 34773794 PMCID: PMC8643322 DOI: 10.1016/j.leukres.2021.106736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite the achievement of complete remission with chemotherapy in patients with acute myeloid leukemia (AML), relapse is common and the majority of patients will die of their disease. Patients who achieve a remission after refractory or relapsed disease as well as elderly patients have a very high rate of relapse even if they achieve a complete remission. A phase 3 randomized ECOG-ACRIN-led intergroup study was conducted to determine whether post-remission therapy with the farnesyl transferase inhibitor, tipifarnib (R115777), improved the disease-free survival (DFS) of adult patients with AML in complete remission (CR), at high risk for relapse. PATIENTS AND METHODS Adult patients with AML in remission after salvage therapy and/or over age 60 in first remission were enrolled in this study. They were randomly assigned to treatment with tipifarnib or observation (control). The primary objective was to compare the disease-free survival (DFS) between the two arms based on intention to treat, which includes all randomized patients. RESULTS One hundred and forty-four patients were enrolled on the study. Median DFS was 8.9 vs 5.3 months, for tipifarnib vs observation (one-sided p = 0.026) and did not cross the pre-specified boundary to call the study positive. For the 134 eligible patients, median DFS was 10.8 vs 5.3 months for those randomized to tipifarnib vs observation (one-sided p = 0.008). Moreover in an ad hoc evaluation of all women (n = 71) median DFS was 12.1 vs 3.9 months for tipifarnib vs observation (one-sided p = 0.0004) while median OS was 26.5 vs 8.4 months respectively (one-sided p = 0.001). CONCLUSION This study was not able to demonstrate a benefit to tipifarnib as maintenance therapy in patients with AML in remission. While subsets of patients may indeed benefit, additional studies would be needed to elucidate that benefit which is unlikely given that other seemingly better options have since become available.
Collapse
Affiliation(s)
- Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Perelman Center for Advanced Medicine, South Tower, 12th Floor, Philadelphia, PA, PA 19104, United States.
| | - Victoria X Wang
- Dana Farber Cancer Institute-ECOG-ACRIN Biostatistics Center, Boston, AMA, United States
| | | | | | | | | | - Hillard Lazarus
- Case Western Reserve University, Cleveland, OH, United States
| | - Witold B Rybka
- Penn State Hershey Cancer Institute, Hershey, PA, United States
| | - Michael D Craig
- West Virginia University Healthcare, Morgantown, WB, United States
| | - Judith Karp
- Johns Hopkins University, Baltimore, MD, United States
| | - Brenda W Cooper
- Case Western Reserve University, Cleveland, OH, United States
| | - Adel Z Makary
- Geisinger Medical Center, Danville, PA, United States
| | - Lynne S Kaminer
- North Shore Health System-Evanston Hospital, Evanston, IL, United States
| | | | | | - Martin S Tallman
- Northwestern University, Chicago, IL, United States(1); Memorial Sloan Kettering Cancer Center, NY, NY, United States(2)
| |
Collapse
|
5
|
Selective drug combination vulnerabilities in STAT3- and TP53-mutant malignant NK cells. Blood Adv 2021; 5:1862-1875. [PMID: 33792631 DOI: 10.1182/bloodadvances.2020003300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mature natural killer (NK) cell neoplasms are rare but very aggressive types of cancers. With currently available treatments, they have a very poor prognosis and, as such, are an example of group of cancers in which the development of effective precision therapies is needed. Using both short- and long-term drug sensitivity testing, we explored novel ways to target NK-cell neoplasms by combining the clinically approved JAK inhibitor ruxolitinib with other targeted agents. We profiled 7 malignant NK-cell lines in drug sensitivity screens and identified that these exhibit differential drug sensitivities based on their genetic background. In short-term assays, various classes of drugs combined with ruxolitinib seemed highly potent. Strikingly, resistance to most of these combinations emerged rapidly when explored in long-term assays. However, 4 combinations were identified that selectively eradicated the cancer cells and did not allow for development of resistance: ruxolitinib combined with the mouse double-minute 2 homolog (MDM2) inhibitor idasanutlin in STAT3-mutant, TP53 wild-type cell lines; ruxolitinib combined with the farnesyltransferase inhibitor tipifarnib in TP53-mutant cell lines; and ruxolitinib combined with either the glucocorticoid dexamethasone or the myeloid cell leukemia-1 (MCL-1) inhibitor S63845 but both without a clear link to underlying genetic features. In conclusion, using a new drug sensitivity screening approach, we identified drug combinations that selectively target mature NK-cell neoplasms and do not allow for development of resistance, some of which can be applied in a genetically stratified manner.
Collapse
|
6
|
Lee HW, Sa JK, Gualberto A, Scholz C, Sung HH, Jeong BC, Choi HY, Kwon GY, Park SH. A Phase II Trial of Tipifarnib for Patients with Previously Treated, Metastatic Urothelial Carcinoma Harboring HRAS Mutations. Clin Cancer Res 2020; 26:5113-5119. [PMID: 32636318 DOI: 10.1158/1078-0432.ccr-20-1246] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To assess the antitumor activity and safety of tipifarnib, a highly potent and selective farnesyltransferase inhibitor, we performed a phase II clinical trial in patients with advanced and refractory urothelial carcinoma harboring missense HRAS mutations. PATIENTS AND METHODS A total of 245 adult patients with previously treated, advanced urothelial carcinoma entered the molecular screening program including HRAS. Those with missense HRAS mutations or STK11:rs2075606 received oral tipifarnib 900 mg twice daily on days 1-7 and 15-21 of 28-day treatment cycles. The primary endpoint was progression-free survival at 6 months (PFS6). RESULTS We identified 16 (7%) missense HRAS mutations (G13R, 7; Q61R, 4; G12S, 3; G12C, 2) and 104 (46%) STK11:rs2075606 carriers. In 21 patients enrolled in the study, 14 and 7 patients had missense HRAS mutations and STK11:rs2075606, respectively. The most frequently observed adverse events included fatigue (86%) and hematologic toxicities. With a median follow-up of 28 months, 4 patients (19%) reached PFS6: 3 had missense HRAS mutations and one patient, enrolled as an STK11 carrier, had HRAS frameshift insertions at H27fs and H28fs rendering a nonsense HRAS mutation. The overall response rate by intent-to-treat analysis was 24% (4 missense and one nonsense frameshift HRAS mutation); no response was observed in patients with urothelial carcinoma with wild-type HRAS tumors. Five responses were observed in 12 evaluable patients of 15 with tumors carrying HRAS mutations. CONCLUSIONS Oral tipifarnib resulted in a manageable safety profile and encouraging antitumor efficacy against treatment-refractory urothelial carcinoma containing HRAS mutations.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | | | | | - Hyun Hwan Sung
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byong Chang Jeong
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Han Yong Choi
- Department of Urology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ghee Young Kwon
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Ghosh D, Ding L, Sivaprasad U, Geh E, Biagini Myers J, Bernstein JA, Khurana Hershey GK, Mersha TB. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways. PLoS One 2015; 10:e0144316. [PMID: 26717000 PMCID: PMC4696650 DOI: 10.1371/journal.pone.0144316] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures '89ADGES', including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the '89ADGES' discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = <0.0006) among the 89 signature genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel "barrier therapy" for this disease.
Collapse
Affiliation(s)
- Debajyoti Ghosh
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, United States of America
| | - Lili Ding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States of America
| | - Umasundari Sivaprasad
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States of America
| | - Esmond Geh
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, United States of America
| | - Jocelyn Biagini Myers
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States of America
| | - Jonathan A. Bernstein
- Division of Immunology, Allergy & Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, United States of America
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States of America
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wray CJ, Ko TC, Tan FK. Secondary use of existing public microarray data to predict outcome for hepatocellular carcinoma. J Surg Res 2014; 188:137-42. [DOI: 10.1016/j.jss.2013.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 12/23/2022]
|
9
|
Li L, Csaszar E, Szodorai E, Patil S, Pollak A, Lubec G. The differential hippocampal phosphoproteome of Apodemus sylvaticus paralleling spatial memory retrieval in the Barnes maze. Behav Brain Res 2014; 264:126-34. [PMID: 24509310 DOI: 10.1016/j.bbr.2014.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/23/2022]
Abstract
Protein phosphorylation is a well-known and well-documented mechanism in memory processes. Although a large series of protein kinases involved in memory processes have been reported, information on phosphoproteins is limited. It was therefore the aim of the study to determine a partial and differential phosphoproteome along with the corresponding network in hippocampus of a wild caught mouse strain with excellent performance in several paradigms of spatial memory. Apodemus sylvaticus mice were trained in the Barnes maze, a non-invasive test system for spatial memory and untrained mice served as controls. Animals were sacrificed 6h following memory retrieval, hippocampi were taken, proteins extracted and in-solution digestion was carried out with subsequent iTRAQ double labelling. Phosphopeptides were enriched by a TiO2-based method and semi-quantified using two fragmentation principles on the LTQ-orbitrap Velos. In hippocampi of trained animals phosphopeptide levels representing signalling, neuronal, synaptosomal, cytoskeletal and metabolism proteins were at least twofold reduced or increased. Furthermore, a network revealing a link to pathways of ubiquitination, the androgen receptor, small GTPase Rab5 and MAPK signaling as well as synucleins was constructed. This work is relevant for interpretation of previous work and the design of future studies on protein phosphorylation in spatial memory.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Edina Csaszar
- Max F. Perutz Laboratories GmbH, Mass Spectrometry Facility, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Edit Szodorai
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Sudarshan Patil
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
10
|
Ju F, Guo F, Ye L, Xia Y, Zhang T. Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:80-9. [PMID: 24596265 DOI: 10.1111/1758-2229.12110] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 09/15/2013] [Indexed: 05/23/2023]
Abstract
Metagenomic technique was employed to characterize the seasonal dynamics of activated sludge (AS) communities in a municipal wastewater treatment plant (WWTP) over 4 years. The results indicated that contrary to Eukaryota (mainly Rotifera and Nematoda), abundances of Bacteria and Archaea (mainly Euryarchaeota) were significantly higher in winter than summer. Two-way analysis of variance and canonical correspondence analysis revealed that many functionally important genera followed strong seasonal variation patterns driven by temperature and salinity gradients; among them, two nitrifying bacteria, Nitrospira and Nitrosomonas, displayed much higher abundances in summer, whereas phosphate-removing genus Tetrasphaera, denitrifier Paracoccus and potential human faecal bacteria, i.e. Bifidobacterium, Dorea and Ruminococcus, showed significantly higher abundances in winter. Particularly, occurrence of dual variation patterns beyond explanation merely by seasonality indicated that multivariables (e.g. dissolved oxygen, sludge retention time, nutrients) participated in shaping AS community structure. However, SEED subsystems annotation showed that functional categories in AS showed no significant difference between summer and winter, indicating that compared with its microbial components, the functional profiles of AS were much more stable. Taken together, our study provides novel insights into the microbial community variations in AS and discloses their correlations with influential factors in WWTPs.
Collapse
Affiliation(s)
- Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Hong Kong, China
| | | | | | | | | |
Collapse
|
11
|
Di Michele M, Van Geet C, Freson K. Recent advances in platelet proteomics. Expert Rev Proteomics 2014; 9:451-66. [DOI: 10.1586/epr.12.31] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Hippocampal protein kinase C family members in spatial memory retrieval in the mouse. Behav Brain Res 2013; 258:202-7. [PMID: 24075976 DOI: 10.1016/j.bbr.2013.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
Abstract
Although a few individual members of the protein kinase C (PKC) family were studied in spatial memory no systematic approach was carried out to concomitantly determine all described PKC family members in spatial memory of the mouse. It was therefore the aim of the current study to link hippocampal PKCs to memory retrieval in the Morris water maze (MWM). CD1 mice were trained (n=9) or untrained (n=9) in the MWM, hippocampi were taken 6h following the test for memory retrieval and PKCs were determined in mouse hippocampi by immunoblotting. The trained animals learned the spatial memory task and kept memory at the probe trial. PKCs alpha and epsilon were comparable between groups while PKCs beta, delta, gamma (two forms, i.e. two bands on Western blotting), zeta (2 forms) were higher in trained mice and theta (2 forms) were lower in trained mice. PKC gamma (1 form) was significantly correlating with the time spent in the target quadrant (r=0.7933; P=0.0188). Changes of hippocampal levels of PKCs beta, delta, gamma, zeta and theta were paralleling memory retrieval of the MWM task but correlations revealed that spatial memory retrieval was only linked to one form of PKC gamma. Results are also in agreement with a recent publication showing that PKM zeta is not required for memory formation. These findings may be relevant for the interpretation of previous work and the design of future work on the protein kinase C family in spatial memory of the mouse.
Collapse
|
13
|
Porcu G, Parsons AB, Di Giandomenico D, Lucisano G, Mosca MG, Boone C, Ragnini-Wilson A. Combined p21-activated kinase and farnesyltransferase inhibitor treatment exhibits enhanced anti-proliferative activity on melanoma, colon and lung cancer cell lines. Mol Cancer 2013; 12:88. [PMID: 23915247 PMCID: PMC3765434 DOI: 10.1186/1476-4598-12-88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
Background Farnesyltransferase inhibitors (FTIs) are anticancer agents with a spectrum of activity in Ras-dependent and independent tumor cellular and xenograph models. How inhibition of protein farnesylation by FTIs results in reduced cancer cell proliferation is poorly understood due to the multiplicity of potential FTase targets. The low toxicity and oral availability of FTIs led to their introduction into clinical trials for the treatment of breast cancer, hematopoietic malignancy, advanced solid tumor and pancreatic cancer treatment, and Hutchinson-Gilford Progeria Syndrome. Although their efficacy in combinatorial therapies with conventional anticancer treatment for myeloid malignancy and solid tumors is promising, the overall results of clinical tests are far below expectations. Further exploitation of FTIs in the clinic will strongly rely on understanding how these drugs affect global cellular activity. Methods Using FTase inhibitor I and genome-wide chemical profiling of the yeast barcoded deletion strain collection, we identified genes whose inactivation increases the antiproliferative action of this FTI peptidomimetic. The main findings were validated in a panel of cancer cell lines using FTI-277 in proliferation and biochemical assays paralleled by multiparametric image-based analyses. Results ABC transporter Pdr10 or p-21 activated kinase (PAK) gene deletion increases the antiproliferative action of FTase inhibitor I in yeast cells. Consistent with this, enhanced inhibition of cell proliferation by combining group I PAK inhibition, using IPA3, with FTI-277 was observed in melanoma (A375MM), lung (A549) and colon (HT29), but not in epithelial (HeLa) or breast (MCF7), cancer cell lines. Both HeLa and A375MM cells show changes in the nuclear localization of group 1 PAKs in response to FTI-277, but up-regulation of PAK protein levels is observed only in HeLa cells. Conclusions Our data support the view that group I PAKs are part of a pro-survival pathway activated by FTI treatment, and group I PAK inactivation potentiates the anti-proliferative action of FTIs in yeast as well as in cancer cells. These findings open new perspectives for the use of FTIs in combinatorial strategies with PAK inhibitors in melanoma, lung and colon malignancy.
Collapse
Affiliation(s)
- Giampiero Porcu
- Department of Translational Pharmacology, Consorzio Mario Negri Sud, S, Maria Imbaro, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Li L, Sase A, Patil S, Sunyer B, Höger H, Smalla KH, Stork O, Lubec G. Distinct set of kinases induced after retrieval of spatial memory discriminate memory modulation processes in the mouse hippocampus. Hippocampus 2013; 23:672-83. [PMID: 23536525 DOI: 10.1002/hipo.22127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo-like kinase 1. Together with its recently observed genetic association to autism-spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2013; 13:1257-69. [PMID: 22920396 DOI: 10.2217/pgs.12.102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myelogenous leukemia (AML) is an extremely heterogeneous neoplasm with several clinical, pathological, genetic and molecular subtypes. Combinations of various doses and schedules of cytarabine and different anthracyclines have been the mainstay of treatment for all forms of AMLs in adult patients. Although this combination, with the addition of an occasional third agent, remains effective for treatment of some young-adult patients with de novo AML, the prognosis of AML secondary to myelodysplastic syndromes or myeloproliferative neoplasms, treatment-related AML, relapsed or refractory AML, and AML that occurs in older populations remains grim. Taken into account the heterogeneity of AML, one size does not and should not be tried to fit all. In this article, the authors review currently understood, applicable and relevant findings related to cytarabine and anthracycline drug-metabolizing enzymes and drug transporters in adult patients with AML. To provide a prime-time example of clinical applicability of pharmacogenomics in distinguishing a subset of patients with AML who might be better responders to farnesyltransferase inhibitors, the authors also reviewed findings related to a two-gene transcript signature consisting of high RASGRP1 and low APTX, the ratio of which appears to positively predict clinical response in AML patients treated with farnesyltransferase inhibitors.
Collapse
Affiliation(s)
- Ashkan Emadi
- University of Maryland, School of Medicine, Marlene & Stewart Greenebaum Cancer Center, Leukemia & Hematologic Malignancies, Baltimore, MD 21201, USA
| | | |
Collapse
|
16
|
Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics 2013; 80:236-49. [PMID: 23376484 DOI: 10.1016/j.jprot.2013.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/17/2012] [Accepted: 01/05/2013] [Indexed: 02/06/2023]
Abstract
Glutaminase is a multifunctional enzyme encoded by gene Gls involved in energy metabolism, ammonia trafficking and regeneration of neurotransmitter glutamate. To address the proteomic basis for the neurophenotypes of glutaminase-deficient mice, brain proteins from late gestation wild type, Gls+/- and Gls-/- male mice were subjected to two-dimensional gel electrophoresis, with subsequent identification by mass spectrometry using nano-LC-ESI-MS/MS. Protein spots that showed differential genotypic variation were quantified by immunoblotting. Differentially expressed proteins unambiguously identified by MS/MS included neurocalcin delta, retinol binding protein-1, reticulocalbin-3, cytoskeleton proteins fascin and tropomyosin alpha-4-chain, dihydropyrimidinase-related protein-5, apolipoprotein IV and proteins from protein metabolism proteasome subunits alpha type 2, type 7, heterogeneous nuclear ribonucleoprotein C1/C2 and H, voltage-gated anion-selective channel proteins 1 and 2, ATP synthase subunit β and transitional endoplasmic reticulum ATPase. An interaction network determined by Ingenuity Pathway Analysis revealed a link between glutaminase and calcium, Akt and retinol signaling, cytoskeletal elements, ATPases, ion channels, protein synthesis and the proteasome system, intermediary, nucleic acid and lipid metabolism, huntingtin, guidance cues, transforming growth factor beta-1 and hepatocyte nuclear factor 4-alpha. The network identified involves (a) cellular assembly and organization and (b) cell signaling and cell cycle, suggesting that Gls is crucial for neuronal maturation.
Collapse
|
17
|
Yamada Y, Sawada H, Hirotani KI, Oshima M, Satou K. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset. BMC Res Notes 2012; 5:680. [PMID: 23232071 PMCID: PMC3557167 DOI: 10.1186/1756-0500-5-680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 11/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these "differentially expressed GO terms" and have named the algorithm "matrix-assisted identification method of differentially expressed GO terms" (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. FINDINGS We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson's correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. CONCLUSIONS MIMGO is a reliable method to identify differentially expressed GO terms comprehensively.
Collapse
Affiliation(s)
- Yoichi Yamada
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
18
|
Jawad M, Yu N, Seedhouse C, Tandon K, Russell NH, Pallis M. Targeting of CD34+CD38- cells using Gemtuzumab ozogamicin (Mylotarg) in combination with tipifarnib (Zarnestra) in Acute Myeloid Leukaemia. BMC Cancer 2012; 12:431. [PMID: 23013471 PMCID: PMC3488582 DOI: 10.1186/1471-2407-12-431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/21/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The CD34+CD38- subset of AML cells is enriched for resistance to current chemotherapeutic agents and considered to contribute to disease progression and relapse in Acute Myeloid Leukaemia (AML) patients following initial treatment. METHODS Chemosensitivity in phenotypically defined subsets from 34 primary AML samples was measured by flow cytometry following 48 hr in vitro treatment with gemtuzumab ozogamicin (GO, Mylotarg) and the farnesyltransferase inhibitor tipifarnib/zarnestra. The DNA damage response was measured using flow cytometry, immunofluorescence and immunohistochemistry. RESULTS Using a previously validated in vitro minimal residual disease model, we now show that the combination of GO (10 ng/ml) and tipifarnib (5 μM) targets the CD34+CD38- subset resulting in 65% median cell loss compared to 28% and 13% CD34+CD38- cell loss in GO-treated and tipifarnib-treated cells, respectively. Using phosphokinome profiling and immunofluorescence in the TF-1a cell line, we demonstrate that the drug combination is characterised by the activation of a DNA damage response (induction of γH2A.X and thr68 phosphorylation of chk2). Higher induction of γH2AX was found in CD34+CD38- than in CD34+CD38+ patient cells. In a model system, we show that dormancy impairs damage resolution, allowing accumulation of γH2AX foci. CONCLUSIONS The chemosensitivity of the CD34+CD38- subset, combined with enhanced damage indicators, suggest that this subset is primed to favour programmed cell death as opposed to repairing damage. This interaction between tipifarnib and GO suggests a potential role in the treatment of AML.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Aminoglycosides/pharmacology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD34/metabolism
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Damage/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gemtuzumab
- Histones/metabolism
- Humans
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nuclear Proteins/metabolism
- Nucleophosmin
- Quinolones/pharmacology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Signal Transduction/drug effects
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Mays Jawad
- Division of Haematology, University of Nottingham, Nottingham, UK
| | - Ning Yu
- Division of Haematology, University of Nottingham, Nottingham, UK
| | - Claire Seedhouse
- Division of Haematology, University of Nottingham, Nottingham, UK
| | - Karuna Tandon
- Division of Haematology, University of Nottingham, Nottingham, UK
| | - Nigel H Russell
- Division of Haematology, University of Nottingham, Nottingham, UK
- Department of Clinical Haematology, Nottingham University Hospitals, Nottingham, UK
| | - Monica Pallis
- Department of Clinical Haematology, Nottingham University Hospitals, Nottingham, UK
| |
Collapse
|
19
|
Gazzah AC, Camoin L, Abid S, Bacha H, Ladjimi M. iTRAQ: a method to elucidate cellular responses to mycotoxin zearalenone. J Appl Toxicol 2012; 33:566-75. [DOI: 10.1002/jat.1766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Affiliation(s)
| | | | - Salwa Abid
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry; Rue Avicenne; Monastir; 5000; Tunisia
| | - Hassen Bacha
- Laboratory of Research on Biologically Compatible Compounds, Faculty of Dentistry; Rue Avicenne; Monastir; 5000; Tunisia
| | - Moncef Ladjimi
- Laboratory of Genetic and Cellular Biology, CNRS, UMR 8159; Versailles St-Quentin University; 45 Avenue des Etats-Unis; Versailles; 78035; France
| |
Collapse
|
20
|
LUISTRO LEOPOLDOL, ROSINSKI JAMESA, BIAN HONGJIN, BISHAYEE SUBAL, RAMESHWAR PRANELA, PONZIO NICHOLASM, RITLAND STEVER. Development and characterization of a preclinical ovarian carcinoma model to investigate the mechanism of acquired resistance to trastuzumab. Int J Oncol 2012; 41:639-51. [DOI: 10.3892/ijo.2012.1463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/27/2012] [Indexed: 11/05/2022] Open
|
21
|
A phase II trial of capecitabine in combination with the farnesyltransferase inhibitor tipifarnib in patients with anthracycline-treated and taxane-resistant metastatic breast cancer: an Eastern Cooperative Oncology Group Study (E1103). Breast Cancer Res Treat 2012; 134:345-52. [PMID: 22547107 DOI: 10.1007/s10549-012-2071-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
Capecitabine produces an objective response rate of up to 25% in anthracycline-treated, taxane-resistant metastatic breast cancer (MBC). The farnesyltransferase inhibitor tipifarnib inhibits Ras signaling and has clinical activity when used alone in MBC. The objective of this study was to determine the efficacy and safety of tipifarnib-capecitabine combination in MBC patients who were previously treated with an anthracycline and progressed on taxane therapy. Eligible patients received oral capecitabine 1,000 mg/m2 twice daily plus oral tipifarnib 300 mg twice daily on days 1-14 every 21 days. The primary endpoint was ORR. The trial was powered to detect an improvement in response rate from 25 to 40%. Among 63 eligible, partial response occurred in six patients (9.5%; 90% CI 4.2-17.9%), median progression-free survival was 2.6 months (95% CI 2.1-4.4), and median overall survival was 11.4 months (95% CI 7.7-14.0). Dose modifications were required for 43 patients (68%) for either tipifarnib and/or capecitabine. Grades 3 and 4 toxicities were seen in 30 patients (44%; 90% CI 44.4-67.0%) and 11 patients (16%; 90% CI 10.8-29.0%), respectively. The most common grade 3 toxicities included neutropenia, nausea, and vomiting; and the most common grade 4 toxicity was neutropenia (8 out of 11 cases). The tipifarnib-capecitabine combination is not more effective than capecitabine alone in MBC patients who were previously treated with an anthracycline and taxane therapy.
Collapse
|
22
|
Strain-independent global effect of hippocampal proteins in mice trained in the Morris water maze. Amino Acids 2012; 43:1739-49. [DOI: 10.1007/s00726-012-1258-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
23
|
Proteomics: Bases for protein complexity understanding. Thromb Res 2012; 129:257-62. [DOI: 10.1016/j.thromres.2011.12.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 01/10/2023]
|
24
|
Multi-institutional phase 2 clinical and pharmacogenomic trial of tipifarnib plus etoposide for elderly adults with newly diagnosed acute myelogenous leukemia. Blood 2011; 119:55-63. [PMID: 22001391 DOI: 10.1182/blood-2011-08-370825] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tipifarnib (T) exhibits modest activity in elderly adults with newly diagnosed acute myelogenous leukemia (AML). Based on preclinical synergy, a phase 1 trial of T plus etoposide (E) yielded 25% complete remission (CR). We selected 2 comparable dose levels for a randomized phase 2 trial in 84 adults (age range, 70-90 years; median, 76 years) who were not candidates for conventional chemotherapy. Arm A (T 600 mg twice a day × 14 days, E 100 mg days 1-3 and 8-10) and arm B (T 400 mg twice a day × 14 days, E 200 mg days 1-3 and 8-10) yielded similar CR, but arm B had greater toxicity. Total CR was 25%, day 30 death rate 7%. A 2-gene signature of high RASGRP1 and low aprataxin (APTX) expression previously predicted for T response. Assays using blasts from a subset of 40 patients treated with T plus E on this study showed that AMLs with a RASGRP1/APTX ratio of more than 5.2 had a 78% CR rate and negative predictive value 87%. This ratio did not correlate with outcome in 41 patients treated with conventional chemotherapies. The next T-based clinical trials will test the ability of the 2-gene signature to enrich for T responders prospectively. This study is registered at www.clinicaltrials.gov as #NCT00602771.
Collapse
|
25
|
Bai F, Villagra AV, Zou J, Painter JS, Connolly K, Blaskovich MA, Sokol L, Sebti S, Djeu JY, Loughran TP, Wei S, Sotomayor E, Epling-Burnette P. Tipifarnib-mediated suppression of T-bet-dependent signaling pathways. Cancer Immunol Immunother 2011; 61:523-33. [PMID: 21983879 DOI: 10.1007/s00262-011-1109-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Large granular lymphocyte (LGL) leukemia is a chronic lymphoproliferative disease in which T-bet [T-box transcription factor 21 gene (tbx21)] overexpression may play a pathogenic role. T-bet orchestrates the differentiation of mature peripheral T-cells into interferon-γ (IFN-γ) and tumor necrosis factor-α producing CD4+ T-helper type I (Th1) and CD8+ T cytotoxic cells that are necessary for antiviral responses. When IL-12 is produced by antigen-presenting cells, T-bet expression is induced, causing direct stimulation of ifng gene transcription while simultaneously acting as a transcriptional repressor of the IL4 gene, which then leads to Th1 dominance and T-helper type 2 differentiation blockade. Additionally, T-bet has been shown to regulate histone acetylation of the ifng promoter and enhancer to loosen condensed DNA, creating greater accessibility for other transcription factor binding, which further amplifies IFNγ production. We found that treatment with a farnesyltransferase inhibitor tipifarnib reduced Th1 cytokines in LGL leukemia patient T-cells and blocked T-bet protein expression and IL-12 responsiveness in T-cells from healthy donors. The mechanism of suppression was based on modulation of histone acetylation of the ifng gene, which culminated in Th1 blockade.
Collapse
Affiliation(s)
- Fanqi Bai
- Immunology Program, H. Lee Moffitt Cancer Center, SRB3, 12902 Magnolia Dr, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ahrens I, Domeij H, Eisenhardt SU, Topcic D, Albrecht M, Leitner E, Viitaniemi K, Jowett JB, Lappas M, Bode C, Haviv I, Peter K. Opposing effects of monomeric and pentameric C-reactive protein on endothelial progenitor cells. Basic Res Cardiol 2011; 106:879-95. [PMID: 21562922 PMCID: PMC3149664 DOI: 10.1007/s00395-011-0191-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 04/12/2011] [Accepted: 04/29/2011] [Indexed: 12/17/2022]
Abstract
C-reactive protein (CRP) has been linked to the pathogenesis of atherosclerosis. The dissociation of native, pentameric (p)CRP to monomeric (m)CRP on the cell membrane of activated platelets has recently been demonstrated. The dissociation of pCRP to mCRP may explain local pro-inflammatory reactions at the site of developing atherosclerotic plaques. As a biomarker, pCRP predicts cardiovascular adverse events and so do reduced levels and function of circulating endothelial progenitor cells (EPCs). We hypothesised that mCRP and pCRP exert a differential effect on EPC function and differentiation. EPCs were treated with mCRP or pCRP for 72 h, respectively. Phenotypical characterisation was done by flow cytometry and immunofluorescence microscopy, while the effect of mCRP and pCRP on gene expression was examined by whole-genome gene expression analysis. The functional capacity of EPCs was determined by colony forming unit (CFU) assay and endothelial tube formation assay. Double staining for acetylated LDL and ulex lectin significantly decreased in cells treated with pCRP. The length of tubuli in a matrigel assay with HUVECs decreased significantly in response to pCRP, but not to mCRP. The number of CFUs increased after pCRP treatment. RNA expression profiling demonstrated that mCRP and pCRP cause highly contradictory gene regulation. Interferon-responsive genes (IFI44L, IFI44, IFI27, IFI 6, MX1, OAS2) were among the highly up-regulated genes after mCRP, but not after pCRP treatment. In conclusion, EPC phenotype, genotype and function were differentially affected by mCRP and pCRP, strongly arguing for differential roles of these two CRP conformations. The up-regulation of interferon-inducible genes in response to mCRP may constitute a mechanism for the local regulation of EPC function.
Collapse
Affiliation(s)
- I Ahrens
- Department of Cardiology and Angiology, University Hospital Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS One 2011; 6:e23210. [PMID: 21858032 PMCID: PMC3155543 DOI: 10.1371/journal.pone.0023210] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/14/2011] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene.
Collapse
|
28
|
Abstract
Farnesyltransferase inhibitors (FTIs) represent a new class of signal transduction inhibitors that block the processing of cellular polypeptides that have cysteine terminal residues and, by so doing, interdict multiple pathways involved in proliferation and survival of diverse malignant cell types. Tipifarnib is an orally bioavailable, nonpeptidomimetic methylquinolone FTI that has exhibited clinical activity in patients with myeloid malignancies including elderly adults with acute myelogenous leukemia (AML) who are not candidates for traditional cytotoxic chemotherapy, patients with high-risk myelodysplasia, myeloproliferative disorders, and imatinib-resistant chronic myelogenous leukemia. Because of its relatively low toxicity profile, tipifarnib provides an important alternative to traditional cytotoxic approaches for elderly patients who are not likely to tolerate or even benefit from aggressive chemotherapy. In this review, we will focus on the clinical development of tipifarnib for treatment of newly diagnosed AML, both as induction therapy for elderly adults with poor-risk AML and as maintenance therapy following achievement of first complete remission following induction and consolidation therapies for poor-risk AML. As with all other malignancies, the optimal approach is likely to lie in rational combinations of tipifarnib with cytotoxic, biologic and/or immunomodulatory agents with non-cross-resistant mechanisms of action. Gene expression profiling has identified networks of differentially expressed genes and gene combinations capable of predicting response to single agent tipifarnib. The clinical and correlative laboratory trials in progress and under development will provide the critical foundations for defining the optimal roles of tipifarnib and in patients with AMl and other hematologic malignancies.
Collapse
Affiliation(s)
- Judith E Karp
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Baye TM. Inter-chromosomal variation in the pattern of human population genetic structure. Hum Genomics 2011; 5:220-40. [PMID: 21712187 PMCID: PMC3326352 DOI: 10.1186/1479-7364-5-4-220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 12/24/2022] Open
Abstract
Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC), cluster, discriminant, fixation index (FST) and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2), hect domain and RLD 2 (HERC2), ectodysplasin A receptor (EDAR) and solute carrier family 45, member 2 (SLC45A2). These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG) and death-associated protein kinase 1 (DAPK1), which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the application of complementary statistical and functional network analysis in human genetic variation studies.
Collapse
Affiliation(s)
- Tesfaye M Baye
- Cincinnati Children's Hospital Medical Center, Division of Asthma Research, Department of Pediatrics, University of Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Vizirianakis IS, Chatzopoulou M, Bonovolias ID, Nicolaou I, Demopoulos VJ, Tsiftsoglou AS. Toward the development of innovative bifunctional agents to induce differentiation and to promote apoptosis in leukemia: clinical candidates and perspectives. J Med Chem 2010; 53:6779-810. [PMID: 20925433 DOI: 10.1021/jm100189a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences,Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The farnesyltransferase inhibitors (FTIs) are in active clinical development in a variety of human malignancies. The most promising activity to date has been demonstrated in patients with hematologic malignancies, in particular acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). In patients with MDS, two nonpeptidomimetic agents, tipifarnib (Zarnestra, Johnson & Johnson, New Brunswick, NJ) and lonafarnib (Sarasar, Schering-Plough, Kenilworth, NJ) have been the most extensively studied. In both phase I and phase II trials, tipifarnib has demonstrated significant efficacy, with overall response rates of 30% and complete remissions in about 15%. Dose-limiting adverse effects have been primarily myelosuppression, although fatigue, neurotoxicity, and occasional renal dysfunction have required dose reductions. Lonafarnib in patients with MDS has also resulted in clinical responses in approximately 30%, including significant improvements in platelet counts. Lonafarnib has been associated primarily with diarrhea and other gastrointestinal toxicity, anorexia, and nausea, which has limited its efficacy. Clinical response correlation with documentation of inhibition of farnesyltransferase and/or evidence of decreased farnesylation of downstream protein targets has not been demonstrated with either agent. In addition, the presence of an activating Ras mutation has not predicted response to therapy with FTIs in MDS and AML. Despite this lack of evidence, significant clinical efficacy of the FTIs has been observed in MDS, on a par with the efficacy of currently available chemotherapeutic agents, leading to further development of this new class of drugs in MDS and AML.
Collapse
Affiliation(s)
- E J Feldman
- Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA.
| |
Collapse
|
32
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
33
|
Geryk-Hall M, Yang Y, Hughes DPM. Driven to death: Inhibition of farnesylation increases Ras activity and promotes growth arrest and cell death [corrected]. Mol Cancer Ther 2010; 9:1111-9. [PMID: 20406948 PMCID: PMC2868119 DOI: 10.1158/1535-7163.mct-09-0833] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To improve cancer outcomes, investigators are turning increasingly to small molecule medicines that disrupt vital signaling cascades, inhibit malignant growth, or induce apoptosis. One vital signaling molecule is Ras, and a key step in Ras activation is membrane anchoring of Ras through prenylation, the C-terminal addition of a lipid anchor. Small molecule inhibitors of farnesyltransferase (FTI), the enzyme most often responsible for prenylating Ras, showed clinical promise, but development of FTIs such as tipifarnib has been stalled by uncertainty about their mechanism of action, because Ras seemed unimpeded in tipifarnib-treated samples. Interpretation was further complicated by the numerous proteins that may be farnesylated, as well as availability of an alternate prenylation pathway, geranylgeranylation. Our initial observations of varied response by cancer cell lines to tipifarnib led us to evaluate the role of FTI in Ras signal alteration using various tumor models. We describe our novel counterintuitive finding that endogenous Ras activity increases in cancer cell lines with low endogenous Ras activity when farnesyltransferase is inhibited by either tipifarnib or short hairpin RNA. In response to tipifarnib, variable growth arrest and/or cell death correlated with levels of activated extracellular signal–regulated kinase (ERK) and p38 mitogenactivated protein kinase (MAPK). Sensitivity to tipifarnib treatment was shown by growth inhibition and by an increase in subdiploid cell numbers; cells with such sensitivity had increased activation of ERK and p38 MAPK. Because Ras must be prenylated to be active, our findings suggest that geranylgeranylated N-Ras or K-Ras B interacts differently with downstream effector proteins in sensitive cancer cells responding to tipifarnib, switching the balance from cell proliferation to growth inhibition [corrected].
Collapse
Affiliation(s)
- Mandy Geryk-Hall
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
34
|
Baye TM, Wilke RA, Olivier M. Genomic and geographic distribution of private SNPs and pathways in human populations. Per Med 2009; 6:623-641. [PMID: 20352079 PMCID: PMC2843937 DOI: 10.2217/pme.09.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS: Geography-based genetic differentials operating on entire biochemical pathways may reflect different adaptive evolutionary processes that separated populations may have undergone. They may also influence treatment outcome for a variety of drugs - an emerging and important area of study. This research article leverages the International HapMap Consortium data to identify pathway components that differ in genotype frequency for four populations: individuals of Northern European descent from the USA (CEU), individuals from West Africa (YRI), Japan (JPT) and China (CHB). MATERIALS #ENTITYSTARTX00026; METHODS: By identifying loci with fixed or large frequency differences (δ = 1) between paired population samples (CEU vs YRI, CEU vs CHB, CEU vs JPT, YRI vs CHB, YRI vs JPT and CHB vs JPT), and reconstructing the physiological functions of genes at these loci, we report a list of pathways affected by natural selection during human evolution. RESULTS: Of the 3.7 million HapMap SNPs, 463 loci (which mapped to 38 genes) were fixed (δ = 1) in at least one population pair. These private loci included four nonsynonymous coding SNPs: rs4536103 (NEUROG3), rs1385699 (EDA2R), rs11946338 (ARHGAP24) and rs4422842 (CACNA1B). A total of four additional genes demonstrated evidence of recent positive selection: three genes in European subjects (IER5L, NPNT and SESTD1) and a single gene in Asian subjects (EXOC6B). DISCUSSION: Gene ontology and pathway analyses suggest that cellular differentiation, apoptosis and activation of the NF-κB transcription factor vary between populations in genomic regions of fixed (private) SNPs identified in this study. Variability in these pathways may provide important clues into the mechanisms of human adaptation to different environments. An improved understanding of their variability may also help to explain race-specific differences in the treatment outcomes observed for a variety of modern drugs.
Collapse
Affiliation(s)
- Tesfaye M Baye
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, WI, USA
| | - Russell A Wilke
- Human and Molecular Genetics Center, Medical College of Wisconsin, WI, USA
| | - Michael Olivier
- Human and Molecular Genetics Center, Medical College of Wisconsin, WI, USA
| |
Collapse
|
35
|
Aonuma H, Ogura N, Kamino Y, Ito K, Kondoh T. Microarray Analysis of Human Dental Follicle Cells in Osteogenic Differentiation. J HARD TISSUE BIOL 2009. [DOI: 10.2485/jhtb.18.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Goswami RS, Sukhai MA, Thomas M, Reis PP, Kamel-Reid S. Applications of microarray technology to Acute Myelogenous Leukemia. Cancer Inform 2008; 7:13-28. [PMID: 19352456 PMCID: PMC2664704 DOI: 10.4137/cin.s1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microarray technology is a powerful tool, which has been applied to further the understanding of gene expression changes in disease. Array technology has been applied to the diagnosis and prognosis of Acute Myelogenous Leukemia (AML). Arrays have also been used extensively in elucidating the mechanism of and predicting therapeutic response in AML, as well as to further define the mechanism of AML pathogenesis. In this review, we discuss the major paradigms of gene expression array analysis, and provide insights into the use of software tools to annotate the array dataset and elucidate deregulated pathways and gene interaction networks. We present the application of gene expression array technology to questions in acute myelogenous leukemia; specifically, disease diagnosis, treatment and prognosis, and disease pathogenesis. Finally, we discuss several new and emerging array technologies, and how they can be further utilized to improve our understanding of AML.
Collapse
Affiliation(s)
- Rashmi S Goswami
- Division of Applied Molecular Oncology, Princess Margaret Hospital/Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
37
|
Rambow F, Malek O, Geffrotin C, Leplat JJ, Bouet S, Piton G, Hugot K, Bevilacqua C, Horak V, Vincent-Naulleau S. Identification of differentially expressed genes in spontaneously regressing melanoma using the MeLiM swine model. Pigment Cell Melanoma Res 2008; 21:147-61. [PMID: 18426408 DOI: 10.1111/j.1755-148x.2008.00442.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Partial and some few cases of complete spontaneous regression have been observed in cutaneous melanoma patients but little is known about the molecular mechanisms involved. The Melanoblastoma-bearing Libechov Minipig (MeLiM) is a suitable animal model to study the phenomenon of spontaneous regression because MeLiM pigs exhibit naturally occurring melanomas which regress completely 6 months after birth. In this study, we used suppression subtractive hybridization (SSH) to identify molecular determinants of melanoma regression within swine melanoma tissues and melanoma cell cultures. Several markers involved in cell-adhesion, -communication, -motility, signal transduction, negative regulation of cell proliferation, transport and immune response were identified that correlated with melanoma regression whereas the main genes involved in melanin synthesis showed a strong downregulation. For the most differentially expressed genes, we validated the results obtained by SSH with qRT-PCR and with immunohistochemistry for some of them (CD9, MITF, RARRES1). Most notable, for the first time in melanoma, we identified the retinoic acid responder 1 gene (RARRES1) as a main actor of the regression process in melanoma. This first gene expression study in swine melanoma regression, may contribute to the finding of new therapeutic targets for human melanoma treatment.
Collapse
Affiliation(s)
- F Rambow
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et d'Etude du Génome, Jouy-en-Josas, F-78352 France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu D, Ghosh D, Lin X. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 2008; 9:292. [PMID: 18577223 PMCID: PMC2483287 DOI: 10.1186/1471-2105-9-292] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/24/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growing interest on biological pathways has called for new statistical methods for modeling and testing a genetic pathway effect on a health outcome. The fact that genes within a pathway tend to interact with each other and relate to the outcome in a complicated way makes nonparametric methods more desirable. The kernel machine method provides a convenient, powerful and unified method for multi-dimensional parametric and nonparametric modeling of the pathway effect. RESULTS In this paper we propose a logistic kernel machine regression model for binary outcomes. This model relates the disease risk to covariates parametrically, and to genes within a genetic pathway parametrically or nonparametrically using kernel machines. The nonparametric genetic pathway effect allows for possible interactions among the genes within the same pathway and a complicated relationship of the genetic pathway and the outcome. We show that kernel machine estimation of the model components can be formulated using a logistic mixed model. Estimation hence can proceed within a mixed model framework using standard statistical software. A score test based on a Gaussian process approximation is developed to test for the genetic pathway effect. The methods are illustrated using a prostate cancer data set and evaluated using simulations. An extension to continuous and discrete outcomes using generalized kernel machine models and its connection with generalized linear mixed models is discussed. CONCLUSION Logistic kernel machine regression and its extension generalized kernel machine regression provide a novel and flexible statistical tool for modeling pathway effects on discrete and continuous outcomes. Their close connection to mixed models and attractive performance make them have promising wide applications in bioinformatics and other biomedical areas.
Collapse
Affiliation(s)
- Dawei Liu
- Center for Statistical Sciences, Brown University, Providence, RI 02912, USA
| | - Debashis Ghosh
- Departments of Statistics and Public Health Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
39
|
Roesch A, Becker B, Bentink S, Spang R, Vogl A, Hagen I, Landthaler M, Vogt T. Ataxia telangiectasia-mutated gene is a possible biomarker for discrimination of infiltrative deep penetrating nevi and metastatic vertical growth phase melanoma. Cancer Epidemiol Biomarkers Prev 2008; 16:2486-90. [PMID: 18006941 DOI: 10.1158/1055-9965.epi-07-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The deep penetrating nevus (DPN) is a variant of benign melanocytic nevus with clinical and histologic features mimicking vertical growth phase, nodular malignant melanoma (NMM). Because fatal misdiagnosis such as NMM occurs in 29% to 40% of the DPN, molecular differentiation markers are highly desirable. Beyond the clinical demand for precise diagnosis and diagnosis-adapted, preventive therapeutic strategies, the DPN represents a valuable natural model for melanocytic invasion without metastatic potential that per se deserves further investigations. In the present study, at first, we used a genome-wide, microarray-based approach to systematically prescreen for possible molecular markers differentially expressed between selected cases of typical DPN (n=4) and metastatic NMM controls (n=4). Gene expression profiling was done on Affymetrix Human X3P microarrays. Of the 47,000 genes spotted, we identified a list of 227 transcripts, which remained significantly regulated at a false discovery rate of 5%. Subsequently, we verified the expression of a subset of the most interesting transcripts in a larger immunohistochemical series (DPN, n=17; NMM, n=16). Of these transcripts, three were selected for immunohistochemical confirmation: tissue inhibitor of metalloproteinase-2, tumor protein D52, and ataxia telangiectasia-mutated gene (ATM). Additional criteria for selection from the list of 227 significantly regulated transcripts were grouping into functional Ingenuity networks and a known melanoma- or cancer-relevant function. Following these criteria, we detected a highly significant up-regulation of ATM transcription in NMM, which was also mirrored by ATM protein up-regulation. In contrast to the other markers, ATM particularly might serve as a suitable diagnostic and reliable discriminator of DPN/NMM because ATM immunoreactivity also showed a reliable staining consistency within all samples of both entities.
Collapse
Affiliation(s)
- Alexander Roesch
- Department of Dermatology, Regensburg University Medical Center, Franz-Josef Strauss-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang QY, Li GHY, Cheung WMW, Song YQ, Kung AWC. Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 2008; 53:644-655. [PMID: 18463784 DOI: 10.1007/s10038-008-0295-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/08/2008] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a complex disease with a strong genetic component. To date, more than 20 genome-wide linkage scans across multiple populations have been launched to hunt for osteoporosis susceptibility genes. Some significant or suggestive chromosomal regions of linkage to bone mineral density have been identified and replicated in genome-wide linkage screens. However, identification of key candidate genes within these confirmed regions is challenging. We used five freely available bioinformatics tools (Prioritizer, GeneSeeker, PROSPECTR and SUSPECTS, Disease Gene Prediction, and Endeavor) to analyze the 13 well-replicated osteoporosis susceptibility loci: 1p36, 1q21-25, 2p22-24, 3p14-25, 4q25-34, 6p21, 7p14-21, 11q14-25, 12q23-24, 13q14-34, 20p12, 2q24-32, and 5q12-21. Pathways and regulatory network analyses were performed using the Ingenuity Pathways Analysis (IPA) software. We identified a subset of most likely candidate osteoporosis susceptibility genes that are largely involved in transforming growth factor (TGF)-beta signaling, granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, axonal guidance signaling, peroxisome proliferator-activated receptor (PPAR) signaling, and Wnt/beta-catenin signaling pathway. Six nonoverlapping networks were generated by IPA 5.0 from 88 out of the 91 candidate genes. The list of most likely candidate genes and the associated pathway identified will assist researchers in prioritizing candidate disease genes for further empirical analysis and understanding the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Qing-Yang Huang
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Gloria H Y Li
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | - Annie W C Kung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
41
|
Ruse CI, McClatchy DB, Lu B, Cociorva D, Motoyama A, Kyu Park S, Yates JR. Motif-specific sampling of phosphoproteomes. J Proteome Res 2008; 7:2140-50. [PMID: 18452278 PMCID: PMC2703005 DOI: 10.1021/pr800147u] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides from as little as 250 microg of proteins. To extend coverage of the phosphoproteome, we sampled the nuclear extract of HeLa cells with three values of Ba2+ ions molarity. The presence of more than 70% of identified phosphoproteins was further substantiated by their nonmodified peptides. Upon isoproterenol stimulation of HEK cells, we identified an increasing number of phosphoproteins from MAPK cascades and AKAP signaling hubs. We quantified changes in both protein and phosphorylation levels of 197 phosphoproteins including a critical kinase, MAPK1. Integration of differential phosphorylation of MAPK1 with knowledge bases constructed modules that correlated well with its role as node in cross-talk of canonical pathways.
Collapse
Affiliation(s)
- Cristian I. Ruse
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Daniel B. McClatchy
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Bingwen Lu
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Daniel Cociorva
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Akira Motoyama
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - Sung Kyu Park
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| | - John R. Yates
- Department of Chemical Physiology/Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, SR11, La Jolla, California 92037
| |
Collapse
|
42
|
Braun T, Fenaux P. Farnesyltransferase inhibitors and their potential role in therapy for myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2008; 141:576-86. [PMID: 18410457 DOI: 10.1111/j.1365-2141.2008.07099.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel strategies are required for treatment of acute myeloid leukaemia (AML) and higher risk myelodysplastic syndrome (MDS) patients who are not eligible for intensive chemotherapy and/or allogenic stem cell transplantation. As activating RAS mutations are frequent in these diseases, one novel approach, consisting of interfering with isoprenylation of RAS proteins by farnesyltransferase inhibitors (FTIs), has been proposed. Clinical phase II studies with the oral FTIs tipifarnib and lonafarnib in previously untreated AML, MDS and chronic myelomonocytic leukaemia yielded rather encouraging results while results in relapsed and/or refractory AML were disappointing. Results of a phase III trial in untreated AML in the elderly with tipifarnib were also disappointing. Clinical responses were not related to RAS mutations, suggesting additional actions of FTIs on other molecular targets. The combination of existing FTIs with other treatments, such as chemotherapy (in AML) and hypomethylating agents (in MDS and AML), is under investigation. Ongoing studies will also determine if gene profiling analysis may help to identify patients that will respond to FTIs.
Collapse
Affiliation(s)
- Thorsten Braun
- Department of Haematology, Hôpital Avicenne (Assistance Publique-Hôpitaux de Paris), University Paris 13, Bobigny, France
| | | |
Collapse
|
43
|
Raponi M, Harousseau JL. Development of genomic markers that predict response to molecularly targeted antileukemic therapy. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2008; 2:361-72. [PMID: 23495705 DOI: 10.1517/17530059.2.4.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The cancer genome is characterized by the accumulation of multiple mutations and alterations that ultimately result in the deregulation of various cell-signaling pathways. Knowledge of these genetic alterations has provided a unique opportunity to develop therapies targeted against these pathways and to identify which patients are likely to benefit from them. OBJECTIVE The progress that has been made in identifying genomic biomarkers that can predict response to antileukemic therapies is highlighted. METHODS Global gene expression profiling approaches utilizing tipifarnib in acute myeloid leukemia as an in-depth example are focused on. The challenges in developing associated theranostic molecular assays are discussed. CONCLUSION The integration of validated genomic-based assays with common morphological tests may allow for improved prediction of antileukemic drug response.
Collapse
Affiliation(s)
- Mitch Raponi
- Veridex, LLC, a Johnson & Johnson Company, 3210 Merryfield Row, San Diego, CA 92121, USA +1 858 320 3319 ; +1 858 784 3182 ;
| | | |
Collapse
|
44
|
Liu XY, Yang JL, Chen LJ, Zhang Y, Yang ML, Wu YY, Li FQ, Tang MH, Liang SF, Wei YQ. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008; 8:582-603. [DOI: 10.1002/pmic.200700514] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Roesch A, Mueller AM, Stempfl T, Moehle C, Landthaler M, Vogt T. RBP2-H1/JARID1B is a transcriptional regulator with a tumor suppressive potential in melanoma cells. Int J Cancer 2008; 122:1047-57. [PMID: 17973255 DOI: 10.1002/ijc.23211] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The RBP2-H1/JARID1B nuclear protein belongs to the ARID family of DNA-binding proteins and is a potential tumor suppressor that is lost during melanoma development. As we have recently shown, one physiological function of RBP2-H1/JARID1B is to exert cell cycle control via maintenance of active retinoblastoma protein. We now add new evidence that RBP2-H1/JARID1B can also directly regulate gene transcription in a reporter assay system, either alone or as part of a multimolecular complex together with the developmental transcription factors FOXG1b and PAX9. In melanoma cells, chromatin immunoprecipitation combined with promoter chip analysis (ChIP-on-chip) suggests a direct binding of re-expressed RBP2-H1/JARID1B to a multitude of human regulatory chromosomal elements (promoters, enhancers and introns). Among those, a set of 23 genes, including the melanoma relevant genes CDK6 and JAG-1 could be confirmed by cDNA microarray analyses to be differentially expressed after RBP2-H1/JARID1B re-expression. In contrast, in nonmelanoma HEK 293 cells, RBP2-H1/JARID1B overexpression only evokes a minor transcriptional response in cDNA microarray analyses. Because the transcriptional regulation in melanoma cells is accompanied by an inhibition of proliferation, an increase in caspase activity and a partial cell cycle arrest in G1/0, our data support an anti-tumorigenic role of RBP2-H1/JARID1B in melanocytic cells.
Collapse
Affiliation(s)
- Alexander Roesch
- Department of Dermatology, Regensburg University Medical Center, D-93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Li J, Abraham S, Cheng L, Witzmann FA, Koch M, Xie J, Rahman M, Mohammed SI. Proteomic-based approach for biomarkers discovery in early detection of invasive urothelial carcinoma. Proteomics Clin Appl 2008; 2:78-89. [DOI: 10.1002/prca.200780027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Indexed: 11/10/2022]
|
47
|
Nazmul-Hossain ANM, Patel KJ, Rhodus NL, Moser KL. Microarrays: applications in dental research. Oral Dis 2007; 14:25-9. [DOI: 10.1111/j.1601-0825.2006.01342.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Tipifarnib in the treatment of acute myeloid leukemia. Biologics 2007; 1:415-24. [PMID: 19707311 PMCID: PMC2721284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Farnesyltransferase inhibitors (FTIs) are a new class of biologically active anticancer drugs. The exact anti-tumorigenic mechanism is currently unknown. FTIs inhibit farnesylation of a wide range of target proteins. In preclinical models, tipifarnib (R115777, Zarnestra(R)), a non-peptidomimetic competitive FTI, showed great potency against leukemic cells. Although it has recently demonstrated clinical responses in adults with refractory and relapsed acute myeloid leukemia (AML), and in older adults with newly diagnosed poor-risk AML, its activity was far less than anticipated. However, it appears that tipifarnib as a single agent may be important in selected groups of patients. Much remains to be learned to optimize such therapy in patients with AML. To this end, trials that combine tipifarnib with cytotoxics are ongoing.
Collapse
|
49
|
Karp JE, Lancet JE. Development of farnesyltransferase inhibitors for clinical cancer therapy: focus on hematologic malignancies. Cancer Invest 2007; 25:484-94. [PMID: 17882662 DOI: 10.1080/07357900701359437] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Farnesyltransferase inhibitors (FTIs) target and inhibit the peptide prenylating enzyme farnesyltransferase. This new class of signal transduction inhibitors is being tested clinically in diverse malignancies, with encouraging results in hematololgic malignancies and breast cancer in particuarl. Critical questions have yet to be answered, for example, optimal dose and schedule, disease subgroups most likely to respond, and appropriate combinations with standard cytotoxics and new biologics. Gene profiling studies of malignant target cells obtained during FTI clinical trials will help to identify patients who are likely to respond to FTIs and to develop mechanisms for overcoming FTI resistance. Clinical trials and correlative laboratory studies in progress and under development will define the optimal roles of FTIs in cancer patients.
Collapse
Affiliation(s)
- Judith E Karp
- Division of Hematologic Malignancies, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
50
|
Kim S, Choi KH, Baykiz AF, Gershenfeld HK. Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genomics 2007; 8:413. [PMID: 17997842 PMCID: PMC2211497 DOI: 10.1186/1471-2164-8-413] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/12/2007] [Indexed: 01/06/2023] Open
Abstract
Background Suicide is an important and potentially preventable consequence of serious mental disorders of unknown etiology. Gene expression profiling technology provides an unbiased approach to identifying candidate genes for mental disorders. Microarray studies with post-mortem prefrontal cortex (Brodmann's Area 46/10) tissue require larger sample sizes. This study poses the question: to what extent are differentially expressed genes for suicide a diagnostic specific set of genes (bipolar disorder vs. schizophrenia) vs. a shared common pathway? Results In a reanalysis of a large set of Affymetrix Human Genome U133A microarray data, gene expression levels were compared between suicide completers vs. non-suicide groups within a diagnostic group, namely Bipolar disorder (N = 45; 22 suicide completers; 23 non-suicide) or Schizophrenia (N = 45; 10 suicide completers ; 35 non-suicide). Among bipolar samples, 13 genes were found and among schizophrenia samples, 70 genes were found as differentially expressed. Two genes, PLSCR4 (phospholipid scramblase 4) and EMX2 (empty spiracles homolog 2 (Drosophila)) were differentially expressed in suicide groups of both diagnostic groups by microarray analysis. By qRT-PCR, PLSCR4 and EMX2 were significantly down-regulated in the schizophrenia suicide completers, but could not be confirmed in bipolar disorder. Conclusion This molecular level analysis suggests that diagnostic specific genes predominate to shared genes in common among suicide vs. non-suicide groups. These differentially expressed, candidate genes are neural correlates of suicide, not necessarily causal. While suicide is a complex endpoint with many pathways, these candidate genes provide entry points for future studies of molecular mechanisms and genetic association studies to test causality.
Collapse
Affiliation(s)
- Sanghyeon Kim
- Department of Psychiatry, Univ, of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | | | | | |
Collapse
|