1
|
Han KK, Zhou Q, Tian M, Li YN, Zhang JY, Zhang YW. Cloning, heterologous expression, and molecular characterization of a highly active and stable non-specific endonuclease from Pseudomonas fluorescens. Arch Microbiol 2024; 206:125. [PMID: 38411841 DOI: 10.1007/s00203-024-03867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Non-specific endonucleases can be used for the digestion of nucleic acids because they hydrolyze DNA/RNA into 3-5 base pairs (bp) length oligonucleotide fragments without strict selectivity. In this work, a novel non-specific endonuclease from Pseudomonas fluorescens (PfNuc) with high activities for both DNA and RNA was successfully cloned and expressed in Escherichia coli. The production of PfNuc in flask scale could be achieved to 1.73 × 106 U/L and 4.82 × 106 U/L for DNA and RNA by investigation of the culture and induction conditions. The characterization of PfNuc indicated that it was Mg2+-dependent and the catalytic activity was enhanced by 3.74 folds for DNA and 1.06 folds for RNA in the presence of 5 mM Mg2+. The specific activity of PfNuc for DNA was 1.44 × 105 U/mg at pH 8.0 and 40 °C, and 3.93 × 105 U/mg for RNA at pH 8.5 and 45 °C. The Km of the enzyme for both DNA and RNA was close to 43 µM. The Vmax was 6.40 × 105 U/mg and 1.11 × 106 U/mg for DNA and RNA, respectively. There was no observed activity loss when PfNuc was stored at 4 °C and - 20 °C after 28 days or 10 repeated freeze-thaw cycles at - 80 °C. Molecular docking revealed that PfNuc formed 17 and 19 hydrogen bonds with single-stranded RNA and double-stranded DNA, respectively. These results could explain the high activity and stability of PfNuc, suggesting its great potential applications in the industry and clinic.
Collapse
Affiliation(s)
- Ke-Ke Han
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qiang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Miao Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing-Yi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
2
|
Zheng R, Wang C, Cai R, Shan Y, Sun C. Mechanisms of nucleic acid degradation and high hydrostatic pressure tolerance of a novel deep-sea wall-less bacterium. mBio 2023; 14:e0095823. [PMID: 37551978 PMCID: PMC10470597 DOI: 10.1128/mbio.00958-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Wall-less bacteria are broadly distributed in diverse habitats. They evolved from a common ancestor within the Firmicutes phylum through reductive evolution. Here, we report the cultivation, characterization, and polyphasic taxonomic analysis of the novel free-living wall-less bacterium, Hujiaoplasma nucleasis zrk29. We demonstrated that strain zrk29 had a strong ability to degrade DNA and RNA both under laboratory conditions and in the deep sea. We found that nucleic acids induced strain zrk29 to release chronic bacteriophages which supported strain zrk29 and other marine bacteria to metabolize nucleic acids without lysing host cells. We also showed that strain zrk29 tolerated high hydrostatic pressure via two pathways: (i) by transporting cations into its cells to increase intracellular osmotic pressure and (ii) by adjusting the unsaturated fatty acid chain content in its cell membrane phospholipids to increase cell membrane fluidity. This study extends our understanding of free-living wall-less bacteria and provides a useful model to explore the unique adaptation mechanisms of deep-sea microbes. IMPORTANCE The unique physiology and survival strategies of the Tenericutes bacterium-a typical wall-less bacterium-have fascinated scientists and the public, especially in extreme deep-sea environments where there is high hydrostatic pressure (HHP) and limited availability of nutrients. Here, we have isolated a novel free-living Tenericutes strain from deep-sea sediment and have found that it metabolizes nucleic acids with the support of chronic bacteriophages. This Tenericutes strain tolerates HHP stress by increasing intracellular osmotic pressure and the unsaturated fatty acid chain content of phospholipids in its cell membrane. Our results provide insights into the unique physiology of deep-sea free-living Tenericutes bacteria and highlight the significant role that chronic bacteriophages play in assisting wall-less bacteria to adapt to harsh conditions.
Collapse
Affiliation(s)
- Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Chong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yeqi Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
McGillick J, Ames JR, Murphy T, Bourne CR. A YoeB toxin cleaves both RNA and DNA. Sci Rep 2021; 11:3592. [PMID: 33574407 PMCID: PMC7878887 DOI: 10.1038/s41598-021-82950-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin systems contain a toxin protein, which mediates diverse interactions within the bacterial cell when it is not bound by its cognate antitoxin protein. These toxins provide a rich source of evolutionarily-conserved tertiary folds that mediate diverse catalytic reactions. These properties make toxins of interest in biotechnology applications, and studies of the catalytic mechanisms continue to provide surprises. In the current work, our studies on a YoeB family toxin from Agrobacterium tumefaciens have revealed a conserved ribosome-independent non-specific nuclease activity. We have quantified the RNA and DNA cleavage activity, revealing they have essentially equivalent dose-dependence while differing in requirements for divalent cations and pH sensitivity. The DNA cleavage activity is as a nickase for any topology of double-stranded DNA, as well as cleaving single-stranded DNA. AtYoeB is able to bind to double-stranded DNA with mid-micromolar affinity. Comparison of the ribosome-dependent and -independent reactions demonstrates an approximate tenfold efficiency imparted by the ribosome. This demonstrates YoeB toxins can act as non-specific nucleases, cleaving both RNA and DNA, in the absence of being bound within the ribosome.
Collapse
Affiliation(s)
- Julia McGillick
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,GENEiQ, Dallas, TX, USA
| | - Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,School of Physics, University of Bristol, Bristol, England
| | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
4
|
Bacterial non-specific nucleases of the phospholipase D superfamily and their biotechnological potential. Appl Microbiol Biotechnol 2020; 104:3293-3304. [PMID: 32086594 DOI: 10.1007/s00253-020-10459-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Bacterial non-specific nucleases are ubiquitously distributed and involved in numerous intra- and extracellular processes. Although all nucleases share the basic chemistry for the hydrolysis of phosphodiester bonds in nucleic acid molecules, the catalysis comprises diverse modes of action, which offers great potential for versatile biotechnological applications. A major criterium for their differentiation is substrate specificity. Specific endonucleases are widely used as restriction enzymes in molecular biology approaches, whereas the main applications of non-specific nucleases (NSNs) are the removal of nucleic acids from crude extracts in industrial downstream processing and the prevention of cell clumping in microfabricated channels. In nature, the predominant role of NSNs is the acquisition of nutrient sources such as nucleotides and phosphates. The number of extensively characterized NSNs and available structures is limited. Moreover, their applicability is mostly challenged by the presence of metal chelators that impede the hydrolysis of nucleic acids in a metal ion-dependent manner. However, a few metal ion-independent NSNs that tolerate the presence of metal chelators have been characterized in recent years with none being commercially available to date. The classification and biotechnological potential of bacterial NSNs with a special focus on metal ion-independent nucleases are presented and discussed.Key Points • Bacterial phospholipases (PLD-family) exhibit nucleolytic activity. • Bacterial nucleases of the PLD-family are metal ion-independent. • NSNs can be used in downstream processing approaches.
Collapse
|
5
|
Schmitz S, Wieczorek M, Nölle V, Elleuche S. Characterization of Single Amino Acid Variations in an EDTA-Tolerating Non-specific Nuclease from the Ice-Nucleating Bacterium Pseudomonas syringae. Mol Biotechnol 2019; 62:67-78. [PMID: 31749083 DOI: 10.1007/s12033-019-00229-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Non-specific nuclease (NSN) can be applied in industrial downstream processing to remove nucleic acids from crude protein extracts or in cell-sorting systems to degrade nucleic acids derived from lysed cells. PsNuc from the ice-nucleating bacterium Pseudomonas syringae has the ability to decompose double- and single-stranded DNA in linear or circular form and RNA. It is not affected by the presence of metal-ion chelators such as EDTA and tolerates several protease inhibitors and reducing agents. A multiple sequence alignment of PsNuc with closely related enzymes (97-99% identity on the protein level) within the family Pseudomonaceae revealed the presence of only six amino acid residues that are variable in putative NSN from different members of the genus Pseudomonas. Single amino acid variants were produced in recombinant form in Escherichia coli, purified, and characterized. They showed similar activity compared to PsNuc, but a single variant even displayed an improved performance with an activity of > 20,000 U/mg at 35 °C, while amino acid residues S148 and V161 were found to be essential for enzymatic functionality. These results suggest that homologous nucleases from Pseudomonaceae display high activity levels in a metal-ion-independent manner and are therefore of interest for applications in biotechnology.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
6
|
Decoding Essential Amino Acid Residues in the Substrate Groove of a Non-Specific Nuclease from Pseudomonas syringae. Catalysts 2019. [DOI: 10.3390/catal9110941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-specific nucleases (NSN) are of interest for biotechnological applications, including industrial downstream processing of crude protein extracts or cell-sorting approaches in microfabricated channels. Bacterial nucleases belonging to the superfamily of phospholipase D (PLD) are featured for their ability to catalyze the hydrolysis of nucleic acids in a metal-ion-independent manner. In order to gain a deeper insight into the composition of the substrate groove of a NSN from Pseudomonas syringae, semi-rational mutagenesis based on a structure homology model was applied to identify amino acid residues on the protein’s surface adjacent to the catalytic region. A collection of 12 mutant enzymes each with a substitution to a positively charged amino acid (arginine or lysine) was produced in recombinant form and biochemically characterized. Mutations in close proximity to the catalytic region (inner ring) either dramatically impaired or completely abolished the enzymatic performance, while amino acid residues located at the border of the substrate groove (outer ring) only had limited or no effects. A K119R substitution mutant displayed a relative turnover rate of 112% compared to the original nuclease. In conclusion, the well-defined outer ring of the substrate groove is a potential target for modulation of the enzymatic performance of NSNs belonging to the PLD superfamily.
Collapse
|
7
|
Schmitz S, Börner P, Nölle V, Elleuche S. Comparative analysis of two non-specific nucleases of the phospholipase D family from the plant pathogen competitor bacterium Pantoea agglomerans. Appl Microbiol Biotechnol 2019; 103:2635-2648. [PMID: 30685815 DOI: 10.1007/s00253-019-09644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/28/2022]
Abstract
Bacterial non-specific nucleases of the phospholipase D family are widely distributed among the members of the Enterobacteriaceae. Each genome mainly contains a single copy of a gene encoding a phospholipase D family protein. However, two distantly related isozymes (< 40% identity at the protein level) were identified by BLAST-analyses in the plant pathogenic competitor enterobacterium Pantoea agglomerans. The two nucleases PaNuc-1 and PaNuc-2 were produced in Escherichia coli. Identical gene constructs and expression conditions resulted in the production of PaNuc-1 in soluble form, while PaNuc-2 remained insoluble in inclusion bodies. PaNuc-2 was refolded and both proteins were purified by a combination of affinity and ion exchange chromatography. Proteolytic removal of the HIS-tag allowed the characterization of pure and mature tag-less proteins. Enzymatic properties of both isozymes revealed that they are non-specific nucleases, displaying activities against RNA, single- and double-stranded genomic DNA as well as circular plasmids. However, their biochemical activity profiles were clearly different, with PaNuc-1 being optimally active at 70 °C and pH 7.0, while PaNuc-2 was most active at 45 °C and pH 7.0. The enzymes retained > 90% nuclease activity at EDTA concentrations of 4 mM (PaNuc-2) and 20 mM (PaNuc-1), respectively. Different enzymatic properties suggest that the roles of PaNuc-1 and PaNuc-2 differ in the cell and might be the result of functional diversification after an ancient gene duplication event took place. The fact that both enzymes could be easily produced in recombinant form and their tolerance against metal ion chelators in combination with a broad substrate promiscuity might pave the way to versatile biotechnological applications.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Paul Börner
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
8
|
Schmitz S, Nölle V, Elleuche S. A non-specific nucleolytic enzyme and its application potential in EDTA-containing buffer solutions. Biotechnol Lett 2018; 41:129-136. [PMID: 30390191 DOI: 10.1007/s10529-018-2618-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Metal-ion independent non-specific nucleases are of high potential for applications in EDTA-containing bioprocessing workflows. RESULTS A novel extracellular non-specific nuclease EcNuc from the enterobacterium Escherichia coli has been identified. The recombinant gene was expressed and the protein was purified. Maximum activity of the enzyme was detected at 41.7 °C and at an acidic pH of 5.8. EcNuc tolerates EDTA in the reaction buffer at concentrations of up to 20 mM and the activity is not impaired by high concentrations of mono- and divalent metal ions in the absence of EDTA. The viscosity of crude protein extracts after cell lysis in EDTA-containing buffers is reduced when supplemented with EcNuc. CONCLUSION Proof-of-concept has been demonstrated that a metal-ion independent non-specific nuclease can be applied for removal of nucleic acids in EDTA-containing buffers for the subsequent purification of proteins from crude extracts.
Collapse
Affiliation(s)
- Sarah Schmitz
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Skander Elleuche
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany.
| |
Collapse
|
9
|
Zhang Y, Chen T, Zheng W, Li ZH, Ying RF, Tang ZX, Shi LE. Active sites and thermostability of a non-specific nuclease from Yersinia enterocoliticasubsp . palearcticaby site-directed mutagenesis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1489738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yu Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Tao Chen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Zhen Hua Li
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Rui-Feng Ying
- Department of Food Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China
| | - Zhen-Xing Tang
- Hangzhou Tianlong Group Co. Ltd, Hangzhou, Zhejiang, PR China
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
10
|
Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Appl Biochem Biotechnol 2017; 183:636-651. [PMID: 28815469 DOI: 10.1007/s12010-017-2568-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
Microorganisms are found throughout every corner of nature, and vast number of microorganisms is difficult to cultivate by classical microbiological techniques. The advent of metagenomics has revolutionized the field of microbial biotechnology. Metagenomics allow the recovery of genetic material directly from environmental niches without any cultivation techniques. Currently, metagenomic tools are widely employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the uncultivable component of microbial communities. The employment of next-generation sequencing techniques for metagenomics resulted in the generation of large sequence data sets derived from various environments, such as soil, the human body and ocean water. This review article describes the state-of-the-art techniques and tools in metagenomics and discusses the potential of metagenomic approaches for the bioprospecting of industrial enzymes from various environmental samples. We also describe the unusual novel enzymes discovered via metagenomic approaches and discuss the future prospects for metagenome technologies.
Collapse
|
11
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Nguyen TH, Nguyen VD. Characterization and Applications of Marine Microbial Enzymes in Biotechnology and Probiotics for Animal Health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:37-74. [PMID: 28215328 DOI: 10.1016/bs.afnr.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microorganisms have been recognized as potential sources of novel enzymes because they are relatively more stable than the corresponding enzymes derived from plants and animals. Enzymes from marine microorganisms also differ from homologous enzymes in terrestrial microorganisms based on salinity, pressure, temperature, and lighting conditions. Marine microbial enzymes can be used in diverse industrial applications. This chapter will focus on the biotechnological applications of marine enzymes and also their use as a tool of marine probiotics to improve host digestion (food digestion, food absorption, and mucus utilization) and cleave molecular signals involved in quorum sensing in pathogens to control disease in aquaculture.
Collapse
Affiliation(s)
- T H Nguyen
- Faculty of Food Technology, Nha Trang University, Nha Trang, Vietnam.
| | - V D Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam.
| |
Collapse
|
13
|
Zhang Y, Li ZH, Zheng W, Tang ZX, Zhang ZL, Shi LE. Enzyme activity and thermostability of a non-specific nuclease from Yersinia enterocolitica subsp. palearctica by site-directed mutagenesis. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Huang KW, Hsu KC, Chu LY, Yang JM, Yuan HS, Hsiao YY. Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES). J Med Chem 2016; 59:8019-29. [PMID: 27529560 DOI: 10.1021/acs.jmedchem.6b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DEDDh family of exonucleases plays essential roles in DNA and RNA metabolism in all kingdoms of life. Several viral and human DEDDh exonucleases can serve as antiviral drug targets due to their critical roles in virus replication. Here using RNase T and CRN-4 as the model systems, we identify potential inhibitors for DEDDh exonucleases. We further show that two of the inhibitors, ATA and PV6R, indeed inhibit the exonuclease activity of the viral protein NP exonuclease of Lassa fever virus in vitro. Moreover, we determine the crystal structure of CRN-4 in complex with MES that reveals a unique inhibition mechanism by inducing the general base His179 to shift out of the active site. Our results not only provide the structural basis for the inhibition mechanism but also suggest potential lead inhibitors for the DEDDh exonucleases that may pave the way for designing nuclease inhibitors for biochemical and biomedical applications.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , Taipei 11031, Taiwan
| | - Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Nankang, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University , 101 Kuang-Fu Road Section 2, Hsinchu 30013, Taiwan
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Center for Bioinformatics Research, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica , Taipei 11529, Taiwan, ROC
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung University , Hsinchu 30068, Taiwan, ROC.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University , Hsinchu, 30050, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| |
Collapse
|
15
|
Song C, Li H, Sheng L, Zhang X. Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 2015; 568:1-7. [PMID: 25958347 DOI: 10.1016/j.gene.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Thermophiles are attractive microorganisms to study the adaptation of life in high temperature environment. It is revealed that superoxide dismutase (SOD) is essential for thermoadaptation of thermophiles. However, the SOD-mediated pathway of thermoadaptation remains unclear. To address this issue, the proteins interacted with SOD were characterized in Thermus thermophilus in this study. Based on co-immunoprecipitation and Western blot analyses, the results showed that 2-oxoisovalerate dehydrogenase α subunit was bound to SOD. The isothermal titration calorimetry analysis showed the existence of the interaction between SOD and 2-oxoisovalerate dehydrogenase α subunit. The bacterial two-hybrid data indicated that SOD was directly interacted with 2-oxoisovalerate dehydrogenase α subunit. Gene site-directed mutagenesis analysis revealed that the intracellular interaction between SOD and 2-oxoisovalerate dehydrogenase α subunit was dependent on their whole molecules. Therefore our study presented a novel aspect of SOD in the thermoadaptation of thermophiles by interaction with dehydrogenase, a key enzyme of tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Chongfu Song
- Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; School of Chemistry and Material Engineering, Fuyang Teachers College, Fuyang 236037, People's Republic of China
| | - Hebin Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering, Fuyang Teachers College, Fuyang 236037, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
16
|
van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI. Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch Virol 2015; 160:2269-82. [PMID: 26123922 DOI: 10.1007/s00705-015-2497-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022]
Abstract
The study of extremophilic phages may reveal new phage families as well as different mechanisms of infection, propagation and lysis to those found in phages from temperate environments. We describe a novel siphovirus, GVE3, which infects the thermophile Geobacillus thermoglucosidasius. The genome size is 141,298 bp (G+C 29.6%), making it the largest Geobacillus spp-infecting phage known. GVE3 appears to be most closely related to the recently described Bacillus anthracis phage vB_BanS_Tsamsa, rather than Geobacillus-infecting phages described thus far. Tetranucleotide usage deviation analysis supports this relationship, showing that the GVE3 genome sequence correlates best with B. anthracis and Bacillus cereus genome sequences, rather than Geobacillus spp genome sequences.
Collapse
Affiliation(s)
- Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, South Africa,
| | | | | | | | | |
Collapse
|
17
|
Zhang C, Kim SK. Research and application of marine microbial enzymes: status and prospects. Mar Drugs 2010; 8:1920-34. [PMID: 20631875 PMCID: PMC2901830 DOI: 10.3390/md8061920] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 11/16/2022] Open
Abstract
Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Key laboratory of Molecular Enzymology and Enzyme Engineering of Ministry Education, Jilin University, Changchun, 130023, China; E-Mail:
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Korea
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Korea
- *Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82 -51-629-7099
| |
Collapse
|
18
|
Functional viral metagenomics and the next generation of molecular tools. Trends Microbiol 2009; 18:20-9. [PMID: 19896852 DOI: 10.1016/j.tim.2009.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 12/13/2022]
Abstract
The enzymes of bacteriophages and other viruses have been essential research tools since the first days of molecular biology. However, the current repertoire of viral enzymes only hints at their overall potential. The most commonly used enzymes are derived from a surprisingly small number of cultivated viruses, which is remarkable considering the extreme abundance and diversity of viruses revealed over the past decade by metagenomic analysis. To access the treasure trove of enzymes hidden in the global virosphere and develop them for research, therapeutic and diagnostic uses, improvements are needed in our ability to rapidly and efficiently discover, express and characterize viral genes to produce useful proteins. In this paper, we discuss improvements to sampling and cloning methods, functional and genomics-based screens, and expression systems, which should accelerate discovery of new enzymes and other viral proteins for use in research and medicine.
Collapse
|
19
|
Marbouty M, Saguez C, Chauvat F. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain. BMC STRUCTURAL BIOLOGY 2009; 9:54. [PMID: 19698108 PMCID: PMC2736966 DOI: 10.1186/1472-6807-9-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. RESULTS In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. CONCLUSION Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette CEDEX, France.
| | | | | |
Collapse
|
20
|
Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact 2008; 7:27. [PMID: 18717988 PMCID: PMC2538500 DOI: 10.1186/1475-2859-7-27] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 08/21/2008] [Indexed: 11/11/2022] Open
Abstract
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments.
Collapse
Affiliation(s)
- Jonathan Kennedy
- Environmental Research Institute, University College Cork, National University of Ireland, Lee Road, Cork, Ireland.
| | | | | |
Collapse
|