1
|
Moreno-Domínguez A, Colinas O, Arias-Mayenco I, Cabeza JM, López-Ogayar JL, Chandel NS, Weissmann N, Sommer N, Pascual A, López-Barneo J. Hif1α-dependent mitochondrial acute O 2 sensing and signaling to myocyte Ca 2+ channels mediate arterial hypoxic vasodilation. Nat Commun 2024; 15:6649. [PMID: 39103356 PMCID: PMC11300585 DOI: 10.1038/s41467-024-51023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José M Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan L López-Ogayar
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Gullapalli P, Fossati N, Stamenkovic D, Haque M, Cattano D. Tale of Two Cities: narrative review of oxygen. F1000Res 2023; 12:246. [PMID: 37224313 PMCID: PMC10189297 DOI: 10.12688/f1000research.130592.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
The human brain contributes 2% of the body weight yet receives 15% of cardiac output and demands a constant supply of oxygen (O 2) and nutrients to meet its metabolic needs. Cerebral autoregulation is responsible for maintaining a constant cerebral blood flow that provides the supply of oxygen and maintains the energy storage capacity. We selected oxygen administration-related studies published between 1975-2021 that included meta-analysis, original research, commentaries, editorial, and review articles. In the present narrative review, several important aspects of the oxygen effects on brain tissues and cerebral autoregulation are discussed, as well the role of exogenous O 2 administration in patients with chronic ischemic cerebrovascular disease: We aimed to revisit the utility of O 2 administration in pathophysiological situations whether or not being advantageous. Indeed, a compelling clinical and experimental body of evidence questions the utility of routine oxygen administration in acute and post-recovery brain ischemia, as evident by studies in neurophysiology imaging. While O 2 is still part of common clinical practice, it remains unclear whether its routine use is safe.
Collapse
Affiliation(s)
- Pranathi Gullapalli
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| | - Nicoletta Fossati
- Department of Anaesthesia, St George’s Hospital and Medical School, London, UK
| | | | - Muhammad Haque
- Department of Neurology, McGovern Medical School UTHealth, Houston, USA
| | - Davide Cattano
- Department of Anesthesiology, McGovern Medical School UTHealth, Hosuton, USA
| |
Collapse
|
3
|
Hirunpattarasilp C, Barkaway A, Davis H, Pfeiffer T, Sethi H, Attwell D. Hyperoxia evokes pericyte-mediated capillary constriction. J Cereb Blood Flow Metab 2022; 42:2032-2047. [PMID: 35786054 PMCID: PMC9580167 DOI: 10.1177/0271678x221111598] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oxygen supplementation is regularly prescribed to patients to treat or prevent hypoxia. However, excess oxygenation can lead to reduced cerebral blood flow (CBF) in healthy subjects and worsen the neurological outcome of critically ill patients. Most studies on the vascular effects of hyperoxia focus on arteries but there is no research on the effects on cerebral capillary pericytes, which are major regulators of CBF. Here, we used bright-field imaging of cerebral capillaries and modeling of CBF to show that hyperoxia (95% superfused O2) led to an increase in intracellular calcium level in pericytes and a significant capillary constriction, sufficient to cause an estimated 25% decrease in CBF. Although hyperoxia is reported to cause vascular smooth muscle cell contraction via generation of reactive oxygen species (ROS), endothelin-1 and 20-HETE, we found that increased cytosolic and mitochondrial ROS levels and endothelin release were not involved in the pericyte-mediated capillary constriction. However, a 20-HETE synthesis blocker greatly reduced the hyperoxia-evoked capillary constriction. Our findings establish pericytes as regulators of CBF in hyperoxia and 20-HETE synthesis as an oxygen sensor in CBF regulation. The results also provide a mechanism by which clinically administered oxygen can lead to a worse neurological outcome.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Anna Barkaway
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Harvey Davis
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Thomas Pfeiffer
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Huma Sethi
- Division of Neurosurgery, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
4
|
Jackson WF. Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On! Front Physiol 2021; 12:699517. [PMID: 34366889 PMCID: PMC8339585 DOI: 10.3389/fphys.2021.699517] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Resistance arteries and downstream arterioles in the peripheral microcirculation contribute substantially to peripheral vascular resistance, control of blood pressure, the distribution of blood flow to and within tissues, capillary pressure, and microvascular fluid exchange. A hall-mark feature of these vessels is myogenic tone. This pressure-induced, steady-state level of vascular smooth muscle activity maintains arteriolar and resistance artery internal diameter at 50–80% of their maximum passive diameter providing these vessels with the ability to dilate, reducing vascular resistance, and increasing blood flow, or constrict to produce the opposite effect. Despite the central importance of resistance artery and arteriolar myogenic tone in cardiovascular physiology and pathophysiology, our understanding of signaling pathways underlying this key microvascular property remains incomplete. This brief review will present our current understanding of the multiple mechanisms that appear to underlie myogenic tone, including the roles played by G-protein-coupled receptors, a variety of ion channels, and several kinases that have been linked to pressure-induced, steady-state activity of vascular smooth muscle cells (VSMCs) in the wall of resistance arteries and arterioles. Emphasis will be placed on the portions of the signaling pathways underlying myogenic tone for which there is lack of consensus in the literature and areas where our understanding is clearly incomplete.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Smit B, Smulders YM, Eringa EC, Gelissen HPMM, Girbes ARJ, de Grooth HJS, Schotman HHM, Scheffer PG, Oudemans-van Straaten HM, Spoelstra-de Man AME. Hyperoxia does not affect oxygen delivery in healthy volunteers while causing a decrease in sublingual perfusion. Microcirculation 2018; 25. [PMID: 29210137 PMCID: PMC5838560 DOI: 10.1111/micc.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Objective To determine the human dose‐response relationship between a stepwise increase in arterial oxygen tension and its associated changes in DO2 and sublingual microcirculatory perfusion. Methods Fifteen healthy volunteers breathed increasing oxygen fractions for 10 minutes to reach arterial oxygen tensions of baseline (breathing air), 20, 40, 60 kPa, and max kPa (breathing oxygen). Systemic hemodynamics were measured continuously by the volume‐clamp method. At the end of each period, the sublingual microcirculation was assessed by SDF. Results Systemic DO2 was unchanged throughout the study (Pslope = .8). PVD decreased in a sigmoidal fashion (max −15% while breathing oxygen, SD18, Pslope = .001). CI decreased linearly (max −10%, SD10, Pslope < .001) due to a reduction in HR (max −10%, SD7, Pslope = .009). There were no changes in stroke volume or MAP. Most changes became apparent above an arterial oxygen tension of 20 kPa. Conclusions In healthy volunteers, supraphysiological arterial oxygen tensions have no effect on systemic DO2. Sublingual microcirculatory PVD decreased in a dose‐dependent fashion. All hemodynamic changes appear negligible up to an arterial oxygen tension of 20 kPa.
Collapse
Affiliation(s)
- Bob Smit
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Harry P M M Gelissen
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Armand R J Girbes
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm-Jan S de Grooth
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans H M Schotman
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter G Scheffer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Smit B, Smulders YM, Eringa EC, Oudemans - van Straaten HM, Girbes ARJ, Wever KE, Hooijmans CR, Spoelstra - de Man AME. Effects of hyperoxia on vascular tone in animal models: systematic review and meta-analysis. Crit Care 2018; 22:189. [PMID: 30075723 PMCID: PMC6091089 DOI: 10.1186/s13054-018-2123-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Arterial hyperoxia may induce vasoconstriction and reduce cardiac output, which is particularly undesirable in patients who already have compromised perfusion of vital organs. Due to the inaccessibility of vital organs in humans, vasoconstrictive effects of hyperoxia have primarily been studied in animal models. However, the results of these studies vary substantially. Here, we investigate the variation in magnitude of the hyperoxia effect among studies and explore possible sources of heterogeneity, such as vascular region and animal species. METHOD Pubmed and Embase were searched for eligible studies up to November 2017. In vivo and ex vivo animal studies reporting on vascular tone changes induced by local or systemic normobaric hyperoxia were included. Experiments with co-interventions (e.g. disease or endothelium removal) or studies focusing on lung, brain or fetal vasculature or the ductus arteriosus were not included. We extracted data pertaining to species, vascular region, blood vessel characteristics and method of hyperoxia induction. Overall effect sizes were estimated with a standardized mean difference (SMD) random effects model. RESULTS We identified a total of 60 studies, which reported data on 67 in vivo and 18 ex vivo experiments. In the in vivo studies, hyperoxia caused vasoconstriction with an SMD of - 1.42 (95% CI - 1.65 to - 1.19). Ex vivo, the overall effect size was SMD - 0.56 (95% CI - 1.09 to - 0.03). Between-study heterogeneity (I2) was high for in vivo (72%, 95% CI 62 to 85%) and ex vivo studies (86%, 95% CI 78 to 98%). In vivo, in comparison to the overall effect size, hyperoxic vasoconstriction was less pronounced in the intestines and skin (P = 0.03) but enhanced in the cremaster muscle region (P < 0.001). Increased constriction was seen in vessels 15-25 μm in diameter. Hyperoxic constriction appeared to be directly proportional to oxygen concentration. For ex vivo studies, heterogeneity could not be explained with subgroup analysis. CONCLUSION The effect of hyperoxia on vascular tone is substantially higher in vivo than ex vivo. The magnitude of the constriction is most pronounced in vessels ~ 15-25 μm in diameter and is proportional to the level of hyperoxia. Relatively increased constriction was seen in muscle vasculature, while reduced constriction was seen in the skin and intestines.
Collapse
Affiliation(s)
- Bob Smit
- Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
| | - Yvo M. Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C. Eringa
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Armand R. J. Girbes
- Department of Intensive Care, VU University Medical Center, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands
| | - Kimberley E. Wever
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlijn R. Hooijmans
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
7
|
Attaye I, Smulders YM, de Waard MC, Oudemans-van Straaten HM, Smit B, Van Wijhe MH, Musters RJ, Koolwijk P, Spoelstra-de Man AME. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensive Care Med Exp 2017; 5:22. [PMID: 28409476 PMCID: PMC5391371 DOI: 10.1186/s40635-017-0135-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O2, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC). METHODS hMVEC of the systemic circulation were exposed to graded oxygen fractions of 20, 30, 50, and 95% O2 for 8, 24, and 72 h. These fractions correspond to 152, 228, 380, and 722 mmHg, respectively. Cell proliferation and viability was measured via a proliferation assay, peroxynitrite formation via anti-nitrotyrosine levels, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) levels via q-PCR and western blot analysis. RESULTS Exposing hMVEC to 50 and 95% O2 for more than 24 h impaired cell viability and proliferation. Hyperoxia did not significantly affect nitrotyrosine levels, nor eNOS mRNA and protein levels, regardless of the exposure time or oxygen concentration used. Phosphorylation of eNOS at the serine 1177 (S1177) residue and ET-1 mRNA levels were also not significantly affected. CONCLUSIONS Exposure of isolated human microvascular endothelial cells to marked hyperoxia for more than 24 h decreases cell viability and proliferation. Our results do not support a role of eNOS mRNA and protein or ET-1 mRNA in the potential vasoconstrictive effects of hyperoxia on isolated hMVEC.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique C de Waard
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bob Smit
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel H Van Wijhe
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rene J Musters
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Hyperoxia does not directly affect vascular tone in isolated arteries from mice. PLoS One 2017; 12:e0182637. [PMID: 28796814 PMCID: PMC5552161 DOI: 10.1371/journal.pone.0182637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/22/2017] [Indexed: 01/10/2023] Open
Abstract
Hospitalized patients often receive oxygen supplementation, which can lead to a supraphysiological oxygen tension (hyperoxia). Hyperoxia can have hemodynamic effects, including an increase in systemic vascular resistance. This increase suggests hyperoxia-induced vasoconstriction, yet reported direct effects of hyperoxia on vessel tone have been inconsistent. Furthermore, hyperoxia-induced changes in vessel diameter have not been studied in mice, currently the most used mammal model of disease. In this study we set out to develop a pressure-myograph model using isolated vessels from mice for investigation of pathways involved in hyperoxic vasoconstriction. Isolated conduit and resistance arteries (femoral artery and gracilis arteriole, respectively) from C57BL/6 mice were exposed to normoxia (PO2 of 80 mmHg) and three levels of hyperoxia (PO2 of 215, 375 and 665 mmHg) in a no-flow pressure myograph setup. Under the different PO2 levels, dose-response agonist induced endothelium-dependent vasodilation (acetylcholine, arachidonic acid), endothelium-independent vasodilation (s-nitroprusside), as well as vasoconstriction (norepinephrine, prostaglandin F2α) were examined. The investigated arteries did not respond to oxygen by a change in vascular tone. In the dose-response studies, maximal responses and EC50 values to any of the aforementioned agonists were not affected by hyperoxia either. We conclude that arteries and arterioles from healthy mice are not intrinsically sensitive to hyperoxic conditions. The present ex-vivo model is therefore not suitable for further research into mechanisms of hyperoxic vasoconstriction.
Collapse
|
9
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Jackson WF. Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action? J Physiol 2016; 594:5055-77. [PMID: 27324312 PMCID: PMC5023707 DOI: 10.1113/jp270192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/13/2016] [Indexed: 01/02/2023] Open
Abstract
Arterioles in the peripheral microcirculation are exquisitely sensitive to changes in PO2 in their environment: increases in PO2 cause vasoconstriction while decreases in PO2 result in vasodilatation. However, the cell type that senses O2 (the O2 sensor) and the signalling pathway that couples changes in PO2 to changes in arteriolar tone (the mechanism of action) remain unclear. Many (but not all) ex vivo studies of isolated cannulated resistance arteries and large, first-order arterioles support the hypothesis that these vessels are intrinsically sensitive to PO2 with the smooth muscle, endothelial cells, or red blood cells serving as the O2 sensor. However, in situ studies testing these hypotheses in downstream arterioles have failed to find evidence of intrinsic O2 sensitivity, and instead have supported the idea that extravascular cells sense O2 . Similarly, ex vivo studies of isolated, cannulated resistance arteries and large first-order arterioles support the hypotheses that O2 -dependent inhibition of production of vasodilator cyclooxygenase products or O2 -dependent destruction of nitric oxide mediates O2 reactivity of these upstream vessels. In contrast, most in vivo studies of downstream arterioles have disproved these hypotheses and instead have provided evidence supporting the idea that O2 -dependent production of vasoconstrictors mediates arteriolar O2 reactivity, with significant regional heterogeneity in the specific vasoconstrictor involved. Oxygen-induced vasoconstriction may serve as a protective mechanism to reduce the oxidative burden to which a tissue is exposed, a process that is superimposed on top of the local mechanisms which regulate tissue blood flow to meet a tissue's metabolic demand.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
12
|
Marshall JM. Interactions between local dilator and sympathetic vasoconstrictor influences in skeletal muscle in acute and chronic hypoxia. Exp Physiol 2015; 100:1400-11. [DOI: 10.1113/ep085139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Janice M. Marshall
- School of Clinical & Experimental Medicine; Centre for Cardiovascular Science, University of Birmingham; B15 2TT UK
| |
Collapse
|
13
|
Reglin B, Pries AR. Metabolic control of microvascular networks: oxygen sensing and beyond. J Vasc Res 2014; 51:376-92. [PMID: 25531863 DOI: 10.1159/000369460] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/04/2014] [Indexed: 11/19/2022] Open
Abstract
The metabolic regulation of blood flow is central to guaranteeing an adequate supply of blood to the tissues and microvascular network stability. It is assumed that vascular reactions to local oxygenation match blood supply to tissue demand via negative-feedback regulation. Low oxygen (O2) levels evoke vasodilatation, and thus an increase of blood flow and oxygen supply, by increasing (decreasing) the release of vasodilatory (vasoconstricting) metabolic signal substances with decreasing partial pressure of O2. This review analyses the principles of metabolic vascular control with a focus on the prevailing feedback regulations. We propose the following hypotheses with respect to vessel diameter adaptation. (1) In addition to O2-dependent signaling, metabolic vascular regulation can be effected by signal substances produced independently of local oxygenation (reflecting the presence of cells) due to the dilution effect. (2) Control of resting vessel tone, and thus perfusion reserve, could be explained by a vascular activity/hypoxia memory. (3) Vasodilator but not vasoconstrictor signaling can prevent shunt perfusion via signal conduction upstream to feeding arterioles. (4) For low perfusion heterogeneity in the steady state, metabolic signaling from the vessel wall or a perivascular tissue sleeve is optimal. (5) For amplification of perfusion during transient increases of tissue demand, red blood cell-derived vasodilators or vasoconstrictors diluted in flowing blood may be relevant.
Collapse
|