1
|
Srivastava A, Idriss H, Homouz D. Structural Insights into Phosphorylation-Mediated Polymerase Function Loss for DNA Polymerase β Bound to Gapped DNA. Int J Mol Sci 2023; 24:ijms24108988. [PMID: 37240334 DOI: 10.3390/ijms24108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
DNA polymerase β is a member of the X-family of DNA polymerases, playing a critical role in the base excision repair (BER) pathway in mammalian cells by implementing the nucleotide gap-filling step. In vitro phosphorylation of DNA polymerase β with PKC on S44 causes loss in the enzyme's DNA polymerase activity but not single-strand DNA binding. Although these studies have shown that single-stranded DNA binding is not affected by phosphorylation, the structural basis behind the mechanism underlying phosphorylation-induced activity loss remains poorly understood. Previous modeling studies suggested phosphorylation of S44 was sufficient to induce structural changes that impact the enzyme's polymerase function. However, the S44 phosphorylated-enzyme/DNA complex has not been modeled so far. To address this knowledge gap, we conducted atomistic molecular dynamics simulations of pol β complexed with gapped DNA. Our simulations, which used explicit solvent and lasted for microseconds, revealed that phosphorylation at the S44 site, in the presence of Mg ions, induced significant conformational changes in the enzyme. Specifically, these changes led to the transformation of the enzyme from a closed to an open structure. Additionally, our simulations identified phosphorylation-induced allosteric coupling between the inter-domain region, suggesting the existence of a putative allosteric site. Taken together, our results provide a mechanistic understanding of the conformational transition observed due to phosphorylation in DNA polymerase β interactions with gapped DNA. Our simulations shed light on the mechanisms of phosphorylation-induced activity loss in DNA polymerase β and reveal potential targets for the development of novel therapeutics aimed at mitigating the effects of this post-translational modification.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Haitham Idriss
- School of Public Health, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
- Palestinian Neuroscience Initiative, Al-Quds University, Jerusalem 51000, Palestine
- Faculty of Health Sciences, Global University, Beirut 15-5085, Lebanon
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Lodato MA, Ziegenfuss JS. The two faces of DNA oxidation in genomic and functional mosaicism during aging in human neurons. FRONTIERS IN AGING 2022; 3:991460. [PMID: 36313183 PMCID: PMC9596766 DOI: 10.3389/fragi.2022.991460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
Abstract
Maintaining genomic integrity in post-mitotic neurons in the human brain is paramount because these cells must survive for an individual's entire lifespan. Due to life-long synaptic plasticity and electrochemical transmission between cells, the brain engages in an exceptionally high level of mitochondrial metabolic activity. This activity results in the generation of reactive oxygen species with 8-oxo-7,8-dihydroguanine (8-oxoG) being one of the most prevalent oxidation products in the cell. 8-oxoG is important for the maintenance and transfer of genetic information into proper gene expression: a low basal level of 8-oxoG plays an important role in epigenetic modulation of neurodevelopment and synaptic plasticity, while a dysregulated increase in 8-oxoG damages the genome leading to somatic mutations and transcription errors. The slow yet persistent accumulation of DNA damage in the background of increasing cellular 8-oxoG is associated with normal aging as well as neurological disorders such as Alzheimer's disease and Parkinson's disease. This review explores the current understanding of how 8-oxoG plays a role in brain function and genomic instability, highlighting new methods being used to advance pathological hallmarks that differentiate normal healthy aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Michael A. Lodato
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | | |
Collapse
|
3
|
Hanau S, Helliwell JR. 6-Phosphogluconate dehydrogenase and its crystal structures. Acta Crystallogr F Struct Biol Commun 2022; 78:96-112. [PMID: 35234135 PMCID: PMC8900737 DOI: 10.1107/s2053230x22001091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
6-Phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) catalyses the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate in the context of the oxidative part of the pentose phosphate pathway. Depending on the species, it can be a homodimer or a homotetramer. Oligomerization plays a functional role not only because the active site is at the interface between subunits but also due to the interlocking tail-modulating activity, similar to that of isocitrate dehydrogenase and malic enzyme, which catalyse a similar type of reaction. Since the pioneering crystal structure of sheep liver 6PGDH, which allowed motifs common to the β-hydroxyacid dehydrogenase superfamily to be recognized, several other 6PGDH crystal structures have been solved, including those of ternary complexes. These showed that more than one conformation exists, as had been suggested for many years from enzyme studies in solution. It is inferred that an asymmetrical conformation with a rearrangement of one of the two subunits underlies the homotropic cooperativity. There has been particular interest in the presence or absence of sulfate during crystallization. This might be related to the fact that this ion, which is a competitive inhibitor that binds in the active site, can induce the same 6PGDH configuration as in the complexes with physiological ligands. Mutagenesis, inhibitors, kinetic and binding studies, post-translational modifications and research on the enzyme in cancer cells have been complementary to the crystallographic studies. Computational modelling and new structural studies will probably help to refine the understanding of the functioning of this enzyme, which represents a promising therapeutic target in immunity, cancer and infective diseases. 6PGDH also has applied-science potential as a biosensor or a biobattery. To this end, the enzyme has been efficiently immobilized on specific polymers and nanoparticles. This review spans the 6PGDH literature and all of the 6PGDH crystal structure data files held by the Protein Data Bank.
Collapse
Affiliation(s)
- Stefania Hanau
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - John R. Helliwell
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
5
|
Abstract
7,8-Dihydro-8-oxoguanine (oxoG) is the most abundant oxidative DNA lesion with dual coding properties. It forms both Watson–Crick (anti)oxoG:(anti)C and Hoogsteen (syn)oxoG:(anti)A base pairs without a significant distortion of a B-DNA helix. DNA polymerases bypass oxoG but the accuracy of nucleotide incorporation opposite the lesion varies depending on the polymerase-specific interactions with the templating oxoG and incoming nucleotides. High-fidelity replicative DNA polymerases read oxoG as a cognate base for A while treating oxoG:C as a mismatch. The mutagenic effects of oxoG in the cell are alleviated by specific systems for DNA repair and nucleotide pool sanitization, preventing mutagenesis from both direct DNA oxidation and oxodGMP incorporation. DNA translesion synthesis could provide an additional protective mechanism against oxoG mutagenesis in cells. Several human DNA polymerases of the X- and Y-families efficiently and accurately incorporate nucleotides opposite oxoG. In this review, we address the mutagenic potential of oxoG in cells and discuss the structural basis for oxoG bypass by different DNA polymerases and the mechanisms of the recognition of oxoG by DNA glycosylases and dNTP hydrolases.
Collapse
|
6
|
Wu X, Karsili TNV, Domcke W. Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs. Molecules 2017; 22:molecules22010135. [PMID: 28098833 PMCID: PMC6155867 DOI: 10.3390/molecules22010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 11/16/2022] Open
Abstract
It has been reported that 8-oxo-7,8-dihydro-guanosine (8-oxo-G), which is the main product of oxidative damage of DNA, can repair cyclobutane pyrimidine dimer (CPD) lesions when incorporated into DNA or RNA strands in proximity to such lesions. It has therefore been suggested that the 8-oxo-G nucleoside may have been a primordial precursor of present-day flavins in DNA or RNA repair. Because the electron transfer leading to the splitting of a thymine-thymine pair in a CPD lesion occurs in the photoexcited state, a reasonably long excited-state lifetime of 8-oxo-G is required. The neutral (protonated) form of 8-oxo-G exhibits a very short (sub-picosecond) intrinsic excited-state lifetime which is unfavorable for repair. It has therefore been argued that the anionic (deprotonated) form of 8-oxo-G, which exhibits a much longer excited-state lifetime, is more likely to be a suitable cofactor for DNA repair. Herein, we have investigated the exited-state quenching mechanisms in the hydrogen-bonded complexes of deprotonated 8-oxo-G- with adenine (A) and cytosine (C) using ab initio wave-function-based electronic-structure calculations. The calculated reaction paths and potential-energy profiles reveal the existence of barrierless electron-driven inter-base proton-transfer reactions which lead to low-lying S₁/S₀ conical intersections. The latter can promote ultrafast excited-state deactivation of the anionic base pairs. While the isolated deprotonated 8-oxo-G- nucleoside may have been an efficient primordial repair cofactor, the excited states of the 8-oxo-G--A and 8-oxo-G--C base pairs are likely too short-lived to be efficient electron-transfer repair agents.
Collapse
Affiliation(s)
- Xiuxiu Wu
- Department of Chemistry, Technische Universitat Munchen, Lichtenbergstr. 4, Garching D-85747, Germany.
| | - Tolga N V Karsili
- Department of Chemistry, Temple University, 130 Beury Hall, 1901 N. 13th St., Philadelphia, PA 19122, USA.
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universitat Munchen, Lichtenbergstr. 4, Garching D-85747, Germany.
| |
Collapse
|
7
|
Kim T, Freudenthal BD, Beard WA, Wilson SH, Schlick T. Insertion of oxidized nucleotide triggers rapid DNA polymerase opening. Nucleic Acids Res 2016; 44:4409-24. [PMID: 27034465 PMCID: PMC4872097 DOI: 10.1093/nar/gkw174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022] Open
Abstract
A novel mechanism is unveiled to explain why a pro-mutagenic nucleotide lesion (oxidized guanine, 8-oxoG) causes the mammalian DNA repair polymerase-β (pol-β) to rapidly transition to an inactive open conformation. The mechanism involves unexpected features revealed recently in time-lapse crystallography. Specifically, a delicate water network associated with a lesion-stabilizing auxilliary product ion Mg(p) triggers a cascade of events that leads to poor active site geometry and the rupture of crucial molecular interactions between key residues in both the anti(8-oxoG:C) and syn(8-oxoG:A) systems. Once the base pairs in these lesioned systems are broken, dislocation of both Asp192 (a metal coordinating ligand) and the oxoG phosphate group (PO4) interfere with the hydrogen bonding between Asp192 and Arg258, whose rotation toward Asp192 is crucial to the closed-to-open enzyme transition. Energetically, the lesioned open states are similar in energy to those of the corresponding closed complexes after chemistry, in marked contrast to the unlesioned pol-β anti(G:C) system, whose open state is energetically higher than the closed state. The delicate surveillance system offers a fundamental protective mechanism in the cell that triggers DNA repair events which help deter insertion of oxidized lesions.
Collapse
Affiliation(s)
- Taejin Kim
- Department of Chemistry, New York University, 10th Floor Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | - Bret D Freudenthal
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 10th Floor Silver Center, 100 Washington Square East, New York, NY 10003, USA Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
8
|
Freudenthal BD, Beard WA, Perera L, Shock DD, Kim T, Schlick T, Wilson SH. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 2015; 517:635-9. [PMID: 25409153 PMCID: PMC4312183 DOI: 10.1038/nature13886] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.
Collapse
Affiliation(s)
- Bret D. Freudenthal
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - William A. Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - David D. Shock
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| | - Taejin Kim
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, North Carolina 27709-2233, USA
| |
Collapse
|
9
|
Sampoli Benítez B, Barbati ZR, Arora K, Bogdanovic J, Schlick T. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Biophys J 2014; 105:2559-68. [PMID: 24314086 DOI: 10.1016/j.bpj.2013.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022] Open
Abstract
The modified base 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxoG) is a common DNA adduct produced by the oxidation of DNA by reactive oxygen species. Kinetic data reveal that DNA polymerase X (pol X) from the African swine fever virus incorporates adenine (dATP) opposite to oxoG with higher efficiency than the non-damaged G:C basepair. To help interpret the kinetic data, we perform molecular dynamics simulations of pol X/DNA complexes, in which the template base opposite to the incoming dNTP (dCTP, dATP, dGTP) is oxoG. Our results suggest that pol X accommodates the oxoGsyn:A mispair by sampling closed active conformations that mirror those observed in traditional Watson-Crick complexes. Moreover, for both the oxoGsyn:A and oxoG:C ternary complexes, conformational sampling of the polymerase follows previously described large subdomain movements, local residue motions, and active site reorganization. Interestingly, the oxoGsyn:A system exhibits superior active site geometry in comparison to the oxoG:C system. Simulations for the other mismatch basepair complexes reveal large protein subdomain movement for all systems, except for oxoG:G, which samples conformations close to the open state. In addition, active site geometry and basepairing of the template base with the incoming nucleotide, reveal distortions and misalignments that range from moderate (i.e., oxoG:Asyn) to extreme (i.e., oxoGanti/syn:G). These results agree with the available kinetic data for pol X and provide structural insights regarding the mechanism by which this polymerase can accommodate incoming nucleotides opposite oxoG. Our simulations also support the notion that α-helix E is involved both in DNA binding and active site stabilization. Our proposed mechanism by which pol X can preferentially accommodate dATP opposite template oxoG further underscores the role that enzyme dynamics and conformational sampling operate in polymerase fidelity and function.
Collapse
|
10
|
Li Y, Freudenthal BD, Beard WA, Wilson SH, Schlick T. Optimal and variant metal-ion routes in DNA polymerase β's conformational pathways. J Am Chem Soc 2014; 136:3630-9. [PMID: 24511902 PMCID: PMC7032070 DOI: 10.1021/ja412701f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To interpret recent structures of the R283K mutant of human DNA repair enzyme DNA polymerase β (pol β) differing in the number of Mg(2+) ions, we apply transition path sampling (TPS) to assess the effect of differing ion placement on the transition from the open one-metal to the closed two-metal state. We find that the closing pathway depends on the initial ion position, both in terms of the individual transition states and associated energies. The energy barrier of the conformational pathway varies from 25 to 58 kJ/mol, compared to the conformational energy barrier of 42 kJ/mol for the wild-type pol β reported previously. Moreover, we find a preferred ion route located in the center of the enzyme, parallel to the DNA. Within this route, the conformational pathway is similar to that of the overall open to closed transition of pol β, but outside it, especially when the ion starts near active site residues Arg258 and Asp190, the conformational pathway diverges significantly. Our findings should apply generally to pol β, since R283K is relatively far from the active site; further experimental and computational work are required to confirm this. Our studies also underscore the common feature that less active mutants have less stable closed states than their open states, in marked contrast to the wild-type enzyme, where the closed state is significantly more stable than the open form.
Collapse
Affiliation(s)
- Yunlang Li
- Department of Chemistry and Courant Institute of
Mathematical Sciences, New York University, 251 Mercer Street, New York, NY
10012
| | - Bret D. Freudenthal
- Laboratory of Structural Biology, National
Institute of Environmental Health Sciences, National Institutes of Health, Bethesda,
Research Triangle Park, NC 27709
| | - William A. Beard
- Laboratory of Structural Biology, National
Institute of Environmental Health Sciences, National Institutes of Health, Bethesda,
Research Triangle Park, NC 27709
| | - Samuel H. Wilson
- Laboratory of Structural Biology, National
Institute of Environmental Health Sciences, National Institutes of Health, Bethesda,
Research Triangle Park, NC 27709
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of
Mathematical Sciences, New York University, 251 Mercer Street, New York, NY
10012
| |
Collapse
|
11
|
"Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides. PLoS Comput Biol 2013; 9:e1003074. [PMID: 23717197 PMCID: PMC3662701 DOI: 10.1371/journal.pcbi.1003074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these “gate-keeper” residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP<A(syn):dATP<T:dCTP<A:dGTP<A(syn):dGTP<A:dCTP<A:dATP. This sequence agrees with available kinetic data for non-cognate nucleotide insertions, with the exception of A:dGTP, which may be more sensitive to the template sequence. The structures and conformational aspects predicted here are experimentally testable. DNA polymerase μ (pol μ) is an enzyme that participates in DNA repair and thus has a central role in maintaining the integrity of genetic information. To efficiently repair the DNA, discriminating the cognate instead of non-cognate nucleotides (“fidelity-checking”) is required. Here we analyze molecular dynamics simulations of pol μ bound to different non-cognate nucleotides to study the structure-function relationships involved in the fidelity-checking mechanism of pol μ on the atomic level. Our results suggest that His329, Asp330, Trp436, Gln440, Glu443, and Arg444 are of great importance for pol μ's fidelity-checking mechanism. We also observe altered patterns of correlated motions within pol μ complex when non-cognate instead of cognate nucleotides are bound, which agrees with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies help interpret the available kinetic data of various non-cognate nucleotide insertions by pol μ. We also suggest experimentally testable predictions; for example, a point mutation like E443M may reduce the ability of pol μ to insert the cognate more than of non-cognate nucleotides. Our studies suggest an interesting relation to pol μ's unique ability to incorporate nucleotides when the upstream primer is not paired.
Collapse
|
12
|
Klvaňa M, Murphy DL, Jeřábek P, Goodman MF, Warshel A, Sweasy JB, Florián J. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment. Biochemistry 2012; 51:8829-43. [PMID: 23013478 DOI: 10.1021/bi300783t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods. Kinetic studies on five of the mutants have been published previously using different experimental conditions, e.g., primer-template sequences. We have performed a presteady kinetic analysis for the six mutants for comparison with wild-type Pol β using the same conditions, including the same primer/template DNA sequence proximal to the dNTP insertion site used for X-ray crystallographic studies. This consistent set of kinetic and structural data allowed us to eliminate the DNA sequence from the list of factors that can adversely affect calculated Ω values. The calculations using the FEP free energies scaled by 0.5 yielded 0.9 and 1.1 standard deviations from the experimental log Ω values for the insertion of the right and wrong dNTP, respectively. We examined a hybrid FEP/LIE method in which the FEP van der Waals term for the interaction of the mutated amino acid residue with its surrounding environment was replaced by the corresponding van der Waals term calculated using the LIE method, resulting in improved 0.4 and 1.0 standard deviations from the experimental log Ω values. These scaled FEP and FEP/LIE methods were also used to predict log Ω for R283A and R283L Pol β mutants.
Collapse
Affiliation(s)
- Martin Klvaňa
- Department of Chemistry, Loyola University, Chicago, Illinois 60626, United States
| | | | | | | | | | | | | |
Collapse
|
13
|
Li Y, Gridley CL, Jaeger J, Sweasy JB, Schlick T. Unfavorable electrostatic and steric interactions in DNA polymerase β E295K mutant interfere with the enzyme's pathway. J Am Chem Soc 2012; 134:9999-10010. [PMID: 22651551 PMCID: PMC3383778 DOI: 10.1021/ja300361r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mutations in DNA polymerase β (pol β) have been associated with approximately 30% of human tumors. The E295K mutation of pol β has been linked to gastric carcinoma via interference with base excision repair. To interpret the different behavior of E295K as compared to wild-type pol β in atomic and energetic detail, we resolve a binary crystal complex of E295K at 2.5 Å and apply transition path sampling (TPS) to delineate the closing pathway of the E295K pol β mutant. Conformational changes are important components in the enzymatic pathway that lead to and ready the enzyme for the chemical reaction. Our analyses show that the closing pathway of E295K mutant differs from the wild-type pol β in terms of the individual transition states along the pathway, associated energies, and the active site conformation in the final closed form of the mutant. In particular, the closed state of E295K has a more distorted active site than the active site in the wild-type pol β. In addition, the total energy barrier in the conformational closing pathway is 65 ± 11 kJ/mol, much higher than that estimated for both correct (e.g., G:C) and incorrect (e.g., G:A) wild-type pol β systems (42 ± 8 and 45 ± 7 kJ/mol, respectively). In particular, the rotation of Arg258 is the rate-limiting step in the conformational pathway of E295K due to unfavorable electrostatic and steric interactions. The distorted active site in the closed relative to open state and the high energy barrier in the conformational pathway may explain in part why the E295K mutant is observed to be inactive. Interestingly, however, following the closing of the thumb but prior to the rotation of Arg258, the E295K mutant complex has a similar energy level as compared to the wild-type pol β. This suggests that the E295K mutant may associate with DNA with similar affinity, but it may be hampered in continuing the process of chemistry. Supporting experimental data come from the observation that the catalytic activity of wild-type pol β is hampered when E295K is present: this may arise from the competition between E295K and wild-type enzyme for the DNA. These combined results suggest that the low insertion efficiency of E295K mutant as compared to wild-type pol β may be related to a closed form distorted by unfavorable electrostatic and steric interactions between Arg258 and other key residues. The active site is thus less competent for proceeding to the chemical reaction, which may also involve a higher reaction barrier than the wild-type or may not be possible in this mutant. Our analysis also suggests further experiments for other mutants to test the above hypothesis and dissect the roles of steric and electrostatic factors on enzyme behavior.
Collapse
Affiliation(s)
- Yunlang Li
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
| | - Chelsea L. Gridley
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Joachim Jaeger
- Department of Biomedical Sciences, School of Public Health, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
- Division of Genetics, Wadsworth Center NYS-DOH, New Scotland Avenue, Albany, NY 12208, USA
| | - Joann B. Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208040, New Haven, CT 06520, USA
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
| |
Collapse
|
14
|
Beckman J, Wang M, Blaha G, Wang J, Konigsberg WH. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine . Biochemistry 2010; 49:4116-25. [PMID: 20411947 PMCID: PMC2882254 DOI: 10.1021/bi100102s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accurate copying of the genome by DNA polymerases is challenging due in part to the continuous damage inflicted on DNA, which results from its contact with reactive oxygen species (ROS), producing lesions such as 7,8-dihydro-8-oxoguanine (8-oxoG). The deleterious effects of 8-oxoG can be attributed to its dual coding potential that leads to G --> T transversions. The wild-type (wt) pol alpha family DNA polymerase from bacteriophage RB69 (RB69pol) prefers to insert dCMP as opposed to dAMP when situated opposite 8-oxoG by >2 orders of magnitude as demonstrated using pre-steady-state kinetics (k(pol)/K(d,app)). In contrast, the Y567A mutant of RB69pol inserts both dCMP and dAMP opposite 8-oxoG rapidly and with equal efficiency. We have determined the structures of preinsertion complexes for the Y567A mutant with dATP and dCTP opposite a templating 8-oxoG in a 13/18mer primer-template (P/T) at resolutions of 2.3 and 2.1 A, respectively. Our structures show that the 8-oxoG residue is in the anti conformation when paired opposite dCTP, but it flips to a syn conformation forming a Hoogstein base pair with an incoming dATP. Although the Y567A substitution does not significantly change the volume of the pocket occupied by anti-8-oxoG, it does provide residue G568 the flexibility to move deeper into the minor groove of the P/T to accommodate, and stabilize, syn-8-oxoG. These results support the hypothesis that it is the flexibility of the nascent base pair binding pocket (NBP) in the Y567A mutant that allows efficient insertion of dAMP opposite 8-oxoG.
Collapse
Affiliation(s)
| | | | - Gregor Blaha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
15
|
Yamtich J, Sweasy JB. DNA polymerase family X: function, structure, and cellular roles. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1136-50. [PMID: 19631767 PMCID: PMC2846199 DOI: 10.1016/j.bbapap.2009.07.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
The X family of DNA polymerases in eukaryotic cells consists of terminal transferase and DNA polymerases beta, lambda, and mu. These enzymes have similar structural portraits, yet different biochemical properties, especially in their interactions with DNA. None of these enzymes possesses a proofreading subdomain, and their intrinsic fidelity of DNA synthesis is much lower than that of a polymerase that functions in cellular DNA replication. In this review, we discuss the similarities and differences of three members of Family X: polymerases beta, lambda, and mu. We focus on biochemical mechanisms, structural variation, fidelity and lesion bypass mechanisms, and cellular roles. Remarkably, although these enzymes have similar three-dimensional structures, their biochemical properties and cellular functions differ in important ways that impact cellular function.
Collapse
Affiliation(s)
- Jennifer Yamtich
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| | - Joann B. Sweasy
- Departments of Therapeutic Radiology and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520
| |
Collapse
|
16
|
Escobedo FA, Borrero EE, Araque JC. Transition path sampling and forward flux sampling. Applications to biological systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:333101. [PMID: 21828593 DOI: 10.1088/0953-8984/21/33/333101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The last decade has seen a rapid growth in the number of simulation methods and applications dealing with the sampling of transition pathways of rare nanoscale events. Such studies are crucial, for example, for understanding the mechanism and kinetics of conformational transitions and enzymatic events associated with the function of biomolecules. In this review, a broad account of transition path sampling approaches is provided, starting from the general concepts, progressing to the specific principles that underlie some of the most important methods, and eventually singling out the so-called forward flux sampling method for a more detailed description. This is done because forward flux sampling, despite its appealing simplicity and potential efficiency, has thus far received limited attention from practitioners. While path sampling methods have a widespread application to many types of rare transitional events, here only recent applications involving biomolecules are reviewed, including isomerization, protein folding, and enzyme catalysis.
Collapse
|
17
|
Sampoli Benítez BA, Arora K, Balistreri L, Schlick T. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. J Mol Biol 2008; 384:1086-97. [PMID: 18955064 PMCID: PMC2644343 DOI: 10.1016/j.jmb.2008.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X, compared to pol beta, allows pol X to accommodate bulkier mismatches such as guanine opposite guanine, while the more structured and organized pol beta active site imposes higher discrimination, which results in higher fidelity. The possibility of syn conformers resonates with other low-fidelity enzymes such as Dpo4 (from the Y family), which readily accommodate oxidative lesions.
Collapse
Affiliation(s)
- Benedetta A. Sampoli Benítez
- Department of Natural Sciences and Mathematics, Marymount Manhattan College 221 East 71st Street New York, NY 10021
| | - Karunesh Arora
- Department of Chemistry and Biophysics Program, 930 N. University Avenue, University of Michigan, Ann Arbor, MI 48109
| | - Lisa Balistreri
- Department of Natural Sciences and Mathematics, Marymount Manhattan College 221 East 71st Street New York, NY 10021
| | - Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street New York, NY 10012
| |
Collapse
|
18
|
MacKerell AD, Nilsson L. Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 2008; 18:194-9. [PMID: 18281210 PMCID: PMC2871683 DOI: 10.1016/j.sbi.2007.12.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Molecular dynamics simulation studies of protein-nucleic acid complexes are more complicated than studies of either component alone-the force field has to be properly balanced, the systems tend to become very large, and a careful treatment of solvent and of electrostatic interactions is necessary. Recent investigations into several protein-DNA and protein-RNA systems have shown the feasibility of the simulation approach, yielding results of biological interest not readily accessible to experimental methods.
Collapse
Affiliation(s)
- Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore MD 21201, USA
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 HUDDINGE, Sweden
| |
Collapse
|
19
|
Wang Y, Reddy S, Beard WA, Wilson SH, Schlick T. Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. Biophys J 2007; 92:3063-70. [PMID: 17293403 PMCID: PMC1852361 DOI: 10.1529/biophysj.106.092106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate how human DNA polymerase beta (pol beta) discriminates dATP from dCTP when processing 8-oxoguanine (8-oxoG), we analyze a series of dynamics simulations before and after the chemical step with dATP and dCTP opposite an 8-oxoG template started from partially open complexes of pol beta. Analyses reveal that the thumb closing of pol beta before chemistry is hampered when the incorrect nucleotide dATP is bound opposite 8-oxoG; the unfavorable interaction between active-site residue Tyr(271) and dATP that causes an anti to syn change in the 8-oxoG (syn):dATP complex explains this slow motion, in contrast to the 8-oxoG (anti):dCTP system. Such differences in conformational pathways before chemistry for mismatched versus matched complexes help explain the preference for correct insertion across 8-oxoG by pol beta. Together with reference studies with a nonlesioned G template, we propose that 8-oxoG leads to lower efficiency in pol beta's incorporation of dCTP compared with G by affecting the requisite active-site geometry for the chemical reaction before chemistry. Furthermore, because the active site is far from ready for the chemical reaction after partial closing or even full thumb closing, we suggest that pol beta is tightly controlled not only by the chemical step but also by a closely related requirement for subtle active-site rearrangements after thumb movement but before chemistry.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | | | | | | | | |
Collapse
|