1
|
da Silva JR, Castro-Amorim J, Mukherjee AK, Ramos MJ, Fernandes PA. The application of snake venom in anticancer drug discovery: an overview of the latest developments. Expert Opin Drug Discov 2025:1-19. [PMID: 40012249 DOI: 10.1080/17460441.2025.2465364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Snake venom is a rich source of toxins with great potential for therapeutic applications. In addition to its efficacy in treating hypertension, acute coronary syndrome, and other heart conditions, research has shown that this potent enzymatic cocktail is capable of selectively targeting and destroying cancer cells in many cases while sparing healthy cells. AREAS COVERED The authors begin by acknowledging the emerging trends in snake-derived targeted therapies in battling cancer. An extensive literature review examining the effects of various snake venom toxins on cancer cell lines, highlighting the specific cancer hallmarks each toxin targets is presented. Furthermore, the authors emphasize the emerging potential of artificial intelligence in accelerating snake venom-based drug discovery for cancer treatment, showcasing several innovative software applications in this field. EXPERT OPINION Research on snake venom toxins indicates promising potential for cancer treatment as many of the discussed toxins can specifically target cancer cells. Nevertheless, variations in the composition of venoms, ethical issues, and delivery barriers limit their development into effective therapies. Thus, advances in biotechnology, molecular engineering, in silico methods are crucial for the refinement of venom-derived compounds, improving their specificity, and overcoming these challenges, ultimately enhancing their therapeutic potential in cancer therapy.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ashis K Mukherjee
- Vigyan Path Garchuk, Paschim Boragaon institution, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
3
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
4
|
Chang Estrada JE, Guerrero TN, Reyes-Enríquez DF, Nardy ES, Guimarães Ferreira R, Ruiz Calderón CJ, Wellmann IA, Monteiro Espíndola KM, do Prado AF, Soares AM, Fontes MRDM, Chagas Monteiro M, Zingali RB. Potential Biotechnological Applications of Venoms from the Viperidae Family in Central America for Thrombosis. Toxins (Basel) 2024; 16:142. [PMID: 38535808 PMCID: PMC10975971 DOI: 10.3390/toxins16030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2025] Open
Abstract
Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.
Collapse
Affiliation(s)
- Jorge Eduardo Chang Estrada
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Taissa Nunes Guerrero
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Daniel Fernando Reyes-Enríquez
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Erica Santos Nardy
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Roseane Guimarães Ferreira
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Cristian José Ruiz Calderón
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Irmgardt A. Wellmann
- Postgraduate Program in Tropical Medicine, State University of Amazonas, Manaus 69005-010, AM, Brazil;
- Faculty of Medical Sciences, Universidad de San Carlos de Guatemala, Guatemala City 01015, Guatemala
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Andreimar Martins Soares
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ, RONDÔNIA, Federal University of Rondônia, UNIR, Porto Velho 76812-245, RO, Brazil;
- Sao Lucas University Center, SÃO LUCAS PVH, Porto Velho 76804-414, RO, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
| | - Marcos Roberto de Mattos Fontes
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
- Institute for Advanced Studies of the Sea (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente 11350-011, SP, Brazil
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| |
Collapse
|
5
|
Bialves TS, Bastos Junior CLQ, Cordeiro MF, Boyle RT. Snake venom, a potential treatment for melanoma. A systematic review. Int J Biol Macromol 2023; 231:123367. [PMID: 36690229 DOI: 10.1016/j.ijbiomac.2023.123367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Despite advances in treating patients with melanoma, there are still many treatment challenges to overcome. Studies with snake venom-derived proteins/peptides describe their binding potential, and inhibition of some proliferative mechanisms in melanoma. The combined use of these compounds with current therapies could be the strategic gap that will help us discover more effective treatments for melanoma. The present study aimed to carry out a systematic review identifying snake venom proteins and peptides described in the literature with antitumor, antimetastatic, or antiangiogenic effects on melanoma and determine the mechanisms of action that lead to these anti-tumor effects. Snake venoms contain proteins and peptides which are antiaggregant, antimetastatic, and antiangiogenic. The in vivo results are encouraging, considering the reduction of metastases and tumor size after treatment. In addition to these results, it was reported that these venom compounds could act in combination with chemotherapeutics (Acurhagin-C; Macrovipecetin), sensitizing and preparing tumor cells for treatment. There is a consensus that snake venom is a promising strategy for the improvement of antimelanoma therapies, but it has been little explored in the current context, combined with inhibitors, immunotherapy or tumor microenvironment, for example. We suggest Lebein as a candidate for combination therapy with BRAF inhibitors.
Collapse
Affiliation(s)
- Tatiane Senna Bialves
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil.
| | - Claudio L Q Bastos Junior
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Freitas Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina - UNOESC, Rua Roberto Trompovski 224, Joaçaba, Santa Catarina, CEP 89600-000, Brazil.
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande - FURG, Av. Itália, s/n - km 8 - Carreiros, Rio Grande, Rio Grande do Sul, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| |
Collapse
|
6
|
Reptiles as Promising Sources of Medicinal Natural Products for Cancer Therapeutic Drugs. Pharmaceutics 2022; 14:pharmaceutics14040874. [PMID: 35456708 PMCID: PMC9025323 DOI: 10.3390/pharmaceutics14040874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Natural products have historically played an important role as a source of therapeutic drugs for various diseases, and the development of medicinal natural products is still a field with high potential. Although diverse drugs have been developed for incurable diseases for several decades, discovering safe and efficient anticancer drugs remains a formidable challenge. Reptiles, as one source of Asian traditional medicines, are known to possess anticancer properties and have been used for a long time without a clarified scientific background. Recently, it has been reported that extracts, crude peptides, sera, and venom isolated from reptiles could effectively inhibit the survival and proliferation of various cancer cells. In this article, we summarize recent studies applying ingredients derived from reptiles in cancer therapy and discuss the difficulties and prospective development of natural product research.
Collapse
|
7
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Santos NFTD, Imberg ADS, Mariano DOC, Moraes ACD, Andrade-Silva J, Fernandes CM, Sobral AC, Giannotti KC, Kuwabara WMT, Pimenta DC, Maria DA, Sandoval MRL, Afeche SC. β-micrustoxin (Mlx-9), a PLA2 from Micrurus lemniscatus snake venom: biochemical characterization and anti-proliferative effect mediated by p53. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210094. [PMID: 35432496 PMCID: PMC9008913 DOI: 10.1590/1678-9199-jvatitd-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of β-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The β-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods β-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results Proteomic analysis revealed fragments on β-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. β-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion These findings indicate that β-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.
Collapse
|
9
|
Photobiomodulation reduces cell death and cytokine production in C2C12 cells exposed to Bothrops venoms. Lasers Med Sci 2019; 35:1047-1054. [PMID: 31754908 DOI: 10.1007/s10103-019-02884-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Snakebites caused by the genus Bothrops are often associated with severe and complex local manifestations such as edema, pain, hemorrhage, and myonecrosis. Conventional treatment minimizes the systemic effects of venom; however, their local action is not neutralized. The purpose of this study was to evaluate the effect of photobiomodulation (PBM) on C2C12 muscle cells exposed to B. jararaca, B. jararacussu, and B. moojeni venoms on events involved in cell death and the release of inflammatory mediators. Cells were exposed to venoms and immediately irradiated with low-level laser (LLL) application in continuous wave at the wavelength of 660 nm, energy density of 4.4 J/cm2, power of 10 mW, area of 0.045 cm2, and time of 20 s. Cell integrity was analyzed by phase contrast microscope and cell death was performed by flow cytometry. In addition, interleukin IL1-β, IL-6, and IL-10 levels were measured in the supernatant. Our results showed that the application of PBM increases cell viability and decreases cell death by apoptosis and necrosis. Moreover, the release of pro-inflammatory interleukins was also reduced. The data reported here indicate that PBM resulted in cytoprotection on myoblast C2C12 cells after venom exposure. This protection involves the modulation of cell death mechanism and decreased pro-inflammatory cytokine release.
Collapse
|
10
|
Abstract
Leucurogin is an ECD disintegrin-like protein, cloned from Bothrops leucurus venom gland. This new protein, encompassing the disintegrin region of a PIII metalloproteinase, is produced by recombinant technology and its biological and functional activity was partially characterized in this study. Biological activity was characterized in vitro using human fibroblasts. Functional activity of leucurogin was analysed in vitro and in vivo with murine B16F10 Nex-2 and human melanoma BLM cells. The results show that leucurogin inhibits cellular processes dependent on collagen type I. In a competition assay with collagen, leucurogin inhibits, in a dose-dependent manner, the adhesion of fibroblast to collagen. At 10 μM leucurogin reduces adhesion (40%) and migration (70%) of hFb and inhibits migration (32%) and proliferation (65%) of BLM cells. At 2.5 μM leucurogin inhibits 80% cell proliferation of B16F10 Nex-2 melanoma cells. At 4.8 μM leucurogin inhibits, in vitro, the vascular structures formation by endothelial cells by 66%. Leucurogin, injected intraperitoneally, i.p. (5 μg/animal, two-month old C57/Bl6 male mice) on alternate days for 15 days, inhibits lung metastasis of B16F10 Nex-2 cells by 70-75%. In the treatment of human melanoma, grafted intradermally in the nude mice flank, leucurogin (7.5 μg/kg in alternate days during 17 days) inhibits tumor growth by more than 40%. Leucurogin can be considered a promising agent for melanoma treatment.
Collapse
|
11
|
Cordeiro FA, Coutinho BM, Wiezel GA, Bordon KDCF, Bregge-Silva C, Rosa-Garzon NG, Cabral H, Ueberheide B, Arantes EC. Purification and enzymatic characterization of a novel metalloprotease from Lachesis muta rhombeata snake venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:32. [PMID: 30498508 PMCID: PMC6251203 DOI: 10.1186/s40409-018-0171-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Background Lachesis muta rhombeata (Lmr) is the largest venomous snake in Latin America and its venom contains mainly enzymatic components, such as serine and metalloproteases, L-amino acid oxidase and phospholipases A2. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation. This study aimed the isolation and enzymatic characterization of the first metalloprotease (Lmr-MP) from Lmr venom (LmrV). Methods and results Lmr-MP was purified through two chromatographic steps and submitted to enzymatic characterization. It showed proteolytic activity on azocasein with maximum activity at pH 7.0–9.0. It was inhibited by EDTA (a metal chelator that removes zinc, which is essential for enzymatic activity) and no effect was observed with PMSF, iodoacetic acid or pepstatin (inhibitors of serine, cysteine and aspartyl proteases, respectively). Ca2+, Mg2+ and Ba2+ ions increased its activity, while Al3+, Cu2+, Ni2+ and Zn2+ inhibited it. Additionally, ZnCl2 showed a dose dependent inhibition of the enzyme. Lmr-MP activity was also evaluated upon chromogenic substrates for plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) showing the highest activity on S-2302. The activity in different solutions (5 mM or 50 mM ammonium bicarbonate, pH 7.8; 0.1% trifluoroacetic acid + 50% acetonitrile; phosphate buffer saline, pH 7.4; 50 mM sodium acetate, pH 4.0 or ammonium acetate pH 4.5) was also evaluated and the results showed that its activity was abolished at acidic pHs. Its molecular mass (22,858 Da) was determined by MALDI-TOF and about 90% of its primary structure was verified by high-resolution mass spectrometry using HCD and ETD fragmentations and database search against the sequence of closely related species. It is a novel enzyme which shared high identity with other snake venom metalloproteases (svMPs) belonging to the P-I group. Conclusion The purification procedure achieved a novel pure highly active metalloprotease from LmrV. This new molecule can help to understand the metalloproteases mechanisms of action, the Lachesis envenoming, as well as to open new perspectives for its use as therapeutic tools.
Collapse
Affiliation(s)
- Francielle Almeida Cordeiro
- 1Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Bárbara Marques Coutinho
- 1Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Gisele Adriano Wiezel
- 1Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karla de Castro Figueiredo Bordon
- 1Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | | | - Nathalia Gonsales Rosa-Garzon
- 3Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Hamilton Cabral
- 3Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP Brazil
| | - Beatrix Ueberheide
- 4Proteomics Resource Center, New York University Langone Medical Center, 430 East 29th St, New York City, 10016 USA
| | - Eliane Candiani Arantes
- 1Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
12
|
Ferreira BA, Deconte SR, de Moura FBR, Tomiosso TC, Clissa PB, Andrade SP, Araújo FDA. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol 2018; 119:1179-1187. [PMID: 30102981 DOI: 10.1016/j.ijbiomac.2018.08.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Jararhagin, a metalloprotease from Bothrops jararaca snake venom, is a toxin containing the metalloproteinase, disintegrin-like and cysteine-rich domains; it causes acute inflammation and damage to vascular tissue. However, the actions of these domains on key components of chronic inflammation have not been determined. Our aim was to investigate the effects of jararhagin (Jar), jararhagin-C (Jar-C) and o-phenantrolin-treated jararhagin (Jar-Phe), on inflammatory response, blood vessel formation and extracellular matrix deposition in the murine sponge model. The polyether-polyurethane sponge matrix was implanted into Balb/c mice and injected daily with Jar (400 ng), Jar-Phe (400 ng), Jar-C (200 ng) or saline (control). Nine days after implantation, the sponge discs were removed and processed. In the Jar-treated implants, some of inflammatory markers (N-acetyl-β-d-glucosaminidase activity, CCL2 and TNF-α) and TGF-β1 levels were higher compared with the control group. In the Jar-C group, the inflammatory markers myeloperoxidase activity and CXCL1 were higher compared with the control. In this group, VEGF levels and collagen deposition were also higher. Jar-Phe treatment was able to inhibit the activity and/or production of MPO, CXCL1, CCL2 and TGF-β. The differential effects of these proteins in modulating the main components of fibrovascular tissue may be exploited in the management fibroproliferative diseases.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa de Moura
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Van de Velde AC, Gay CC, Moritz MNDO, Dos Santos PK, Bustillo S, Rodríguez JP, Acosta OC, Biscoglio MJ, Selistre-de-Araujo HS, Leiva LC. Purification of a fragment obtained by autolysis of a PIIIb-SVMP from Bothrops alternatus venom. Int J Biol Macromol 2018; 113:205-211. [PMID: 29471097 DOI: 10.1016/j.ijbiomac.2018.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Carolina Van de Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina.
| | | | | | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Ofelia Cristina Acosta
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | - Laura Cristina Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
14
|
Moga MA, Dimienescu OG, Arvătescu CA, Ifteni P, Pleş L. Anticancer Activity of Toxins from Bee and Snake Venom-An Overview on Ovarian Cancer. Molecules 2018; 23:E692. [PMID: 29562696 PMCID: PMC6017821 DOI: 10.3390/molecules23030692] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 11/16/2022] Open
Abstract
Cancer represents the disease of the millennium, a major problem in public health. The proliferation of tumor cells, angiogenesis, and the relationship between the cancer cells and the components of the extracellular matrix are important in the events of carcinogenesis, and these pathways are being used as targets for new anticancer treatments. Various venoms and their toxins have shown possible anticancer effects on human cancer cell lines, providing new perspectives in drug development. In this review, we observed the effects of natural toxins from bee and snake venom and the mechanisms through which they can inhibit the growth and proliferation of cancer cells. We also researched how several types of natural molecules from venom can sensitize ovarian cancer cells to conventional chemotherapy, with many toxins being helpful for developing new anticancer drugs. This approach could improve the efficiency of standard therapies and could allow the administration of decreased doses of chemotherapy. Natural toxins from bee and snake venom could become potential candidates for the future treatment of different types of cancer. It is important to continue these studies concerning therapeutic drugs from natural resource and, more importantly, to investigate their mechanism of action on cancer cells.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Cristian Andrei Arvătescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Petru Ifteni
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleş
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
15
|
Nemopilema nomurai jellyfish venom exerts an anti-metastatic effect by inhibiting Smad- and NF-κB-mediated epithelial-mesenchymal transition in HepG2 cells. Sci Rep 2018; 8:2808. [PMID: 29434219 PMCID: PMC5809415 DOI: 10.1038/s41598-018-20724-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key initial step in metastasis for malignant cancer cells to obtain invasive and motile properties. Inhibiting EMT has become a new strategy for cancer therapy. In our previous in vivo study, Nemopilema nomurai jellyfish venom (NnV) -treated HepG2 xenograft mice group showed that E-cadherin expression was strongly detected compared with non-treated groups. Therefore, this study aimed to determine whether NnV could inhibit the invasive and migratory abilities of HepG2 human hepatocellular carcinoma cells and to examine its effect on EMT. Our results revealed that transforming growth factor (TGF)-β1 induced cell morphological changes and downregulated E-cadherin and β-catenin expression, but upregulated N-cadherin and vimentin expression through the Smad and NF-κB pathways in HepG2 cells. Treatment of TGF-β1-stimulated HepG2 cells with NnV reversed the EMT-related marker expression, thereby inhibiting cell migration and invasion. NnV also significantly suppressed the activation of p-Smad3, Smad4, and p-NF-κB in a dose-dependent manner. These data indicated that NnV can significantly suppress cell migration and invasion by inhibiting EMT in HepG2 cells, and therefore might be a promising target for hepatocellular carcinoma therapeutics.
Collapse
|
16
|
Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget 2017; 8:100908-100930. [PMID: 29246030 PMCID: PMC5725072 DOI: 10.18632/oncotarget.21740] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
The 5-year relative survival rate of all types of cancer has increased significantly over the past three decades partly due to the targeted therapy. However, still there are many targeted therapy drugs could play a role only in a portion of cancer patients with specific molecular alternation. It is necessary to continue to develop new biological agents which could be used alone and/or in combination with current FDA approved drugs to treat complex cancer diseases. Venom-based drugs have been used for hundreds of years in human history. Nevertheless, the venom-origin of the anti-cancer drug do rarely appear in the pharmaceutical market; and this is due to the fact that the mechanism of action for a large number of the venom drug such as venom-based peptide is not clearly understood. In this review, we focus on discussing some identified venom-based peptides and their anti-cancer mechanisms including the blockade of cancer cell proliferation, invasion, angiogenesis, and metastasis (hallmarks of cancer) to fulfill the gap which is hindering their use in cancer therapy. Furthermore, it also highlights the importance of immunotherapy based on venom peptide. Overall, this review provides readers for further understanding the mechanism of venom peptide and elaborates on the need to explore peptide-based therapeutic strategies.
Collapse
Affiliation(s)
- Rui Ma
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Ravikiran Mahadevappa
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| |
Collapse
|
17
|
Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2752716. [PMID: 28785288 PMCID: PMC5530421 DOI: 10.1155/2017/2752716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells.
Collapse
|
18
|
Guimarães DDO, Lopes DS, Azevedo FVPV, Gimenes SNC, Silva MA, Achê DC, Gomes MSR, Vecchi L, Goulart LR, Yoneyama KAG, Rodrigues RS, Rodrigues VDM. In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothrops pauloensis snake venom. Int J Biol Macromol 2017; 97:770-777. [DOI: 10.1016/j.ijbiomac.2017.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
19
|
Bustillo S, Van de Velde AC, Matzner Perfumo V, Gay CC, Leiva LC. Apoptosis induced by a snake venom metalloproteinase from Bothrops alternatus venom in C2C12 muscle cells. Apoptosis 2017; 22:491-501. [DOI: 10.1007/s10495-017-1350-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1574971. [PMID: 28050190 PMCID: PMC5168552 DOI: 10.1155/2016/1574971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/06/2016] [Indexed: 01/15/2023]
Abstract
Bothrops jararaca (BJ) and Bothrops erythromelas (BE) are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123), nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.
Collapse
|
21
|
Chaisakul J, Hodgson WC, Kuruppu S, Prasongsook N. Effects of Animal Venoms and Toxins on Hallmarks of Cancer. J Cancer 2016; 7:1571-8. [PMID: 27471574 PMCID: PMC4964142 DOI: 10.7150/jca.15309] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Animal venoms are a cocktail of proteins and peptides, targeting vital physiological processes. Venoms have evolved to assist in the capture and digestion of prey. Key venom components often include neurotoxins, myotoxins, cardiotoxins, hematoxins and catalytic enzymes. The pharmacological activities of venom components have been investigated as a source of potential therapeutic agents. Interestingly, a number of animal toxins display profound anticancer effects. These include toxins purified from snake, bee and scorpion venoms effecting cancer cell proliferation, migration, invasion, apoptotic activity and neovascularization. Indeed, the mechanism behind the anticancer effect of certain toxins is similar to that of agents currently used in chemotherapy. For example, Lebein is a snake venom disintegrin which generates anti-angiogenic effects by inhibiting vascular endothelial growth factors (VEGF). In this review article, we highlight the biological activities of animal toxins on the multiple steps of tumour formation or hallmarks of cancer. We also discuss recent progress in the discovery of lead compounds for anticancer drug development from venom components.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- 1. Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Wayne C Hodgson
- 2. Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sanjaya Kuruppu
- 2. Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.; 3. Department of Biochemistry & Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Naiyarat Prasongsook
- 4. Division of Medical Oncology, Department of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand
| |
Collapse
|