1
|
Moka MK, K SD, George M. "Emerging clinical approaches in diabetic cardiomyopathy: insights from clinical trials and future directions". Acta Diabetol 2025; 62:1-10. [PMID: 39254745 DOI: 10.1007/s00592-024-02363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
AIM We aim to explore the potential of diverse treatments, including perhexiline, calcium channel blockers, anti-hypertensives, PDE5 inhibitors, anti-anginal drugs, aldose reductase inhibitors, and SGLT-2 inhibitors, supported by clinical evidence. Additionally, this review seeks to identify novel therapeutic targets and future avenues for improving cardiovascular outcomes in diabetic populations. METHOD We performed a comprehensive literature review of English-language studies across multiple electronic databases, such as PubMed, ScienceDirect, Scopus, and Google Scholar, focusing on clinical trials. The search utilized keywords including 'Anti-hyperglycaemic drug,' 'Diabetic cardiomyopathy,' 'DPP-4 inhibitors,' 'GLP-1 receptor agonists,' 'Heart failure,' and 'SGLT-2 inhibitors.' RESULT We assessed clinical investigations in the treatment of cardiomyopathy and diabetes mellitus (DM) that are enhancing our understanding through trials evaluating the Polypill, Perhexiline, Eplerenone, IMB-1018972, AT-001, tadalafil, and dapagliflozin inhibitors. The development of new targeted interventions is of paramount importance due to the overlooked early symptoms, the complexity of the cellular and molecular pathways involved, and the absence of effective drug therapies. CONCLUSION Pharmacological treatments like GLP-1 agonists, SGLT-2 inhibitors, NHE-1, NHE-3, and PPAR-γ agonists show promise for treating DCM. These treatments improve myocardial glucose absorption, address dysregulated glucose and lipid metabolism, and lower heart failure and cardiovascular events. Further research is needed to confirm effectiveness and safety.
Collapse
Affiliation(s)
- Murali Krishna Moka
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Sriram D K
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India.
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, Chennai, 600045, Tamil Nadu, India.
| |
Collapse
|
2
|
Nan W, Yin J, Hao W, Meng H, Wu J, Yin X, Wu H. Cardamonin protects against diabetic cardiomyopathy by activating macrophage NRF2 signaling through molecular interaction with KEAP1. Food Funct 2024; 15:11083-11095. [PMID: 39431579 DOI: 10.1039/d4fo03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Diabetic cardiomyopathy (DCM) contributes to a large proportion of heart failure incidents in the diabetic population, but effective therapeutic approaches are rare. Cardamonin (CAD), a flavonoid found in Alpinia, possesses anti-inflammatory and anti-oxidative activities. Here we report a profound protective effect of CAD on DCM in a mouse model of type 2 diabetes induced by streptozotocin and a high-fat diet, in which gavage with CAD improved hyperglycemia and glucose intolerance and mitigated diabetic cardiac injuries including cardiac dysfunction, hypertrophy, apoptotic cell death and infiltration of inflammatory cells, especially M1 polarized macrophages. To verify whether CAD could protect against cardiomyocyte injury through inhibiting macrophage M1 polarization, M1 polarized macrophages were treated with CAD, followed by washing out and co-culturing with cardiomyocytes, showing that CAD remarkably inhibited macrophage M1 polarization and the following cardiomyocyte injury, along with activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant signaling pathway. Molecular docking and surface plasmon resonance assays found Kelch-like ECH-associated protein 1 (KEAP1) as the molecular target of CAD. Both CAD and the Kelch domain inhibitor Ki696 promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2). This work may provide CAD as a novel NRF2 activator in future interventions for DCM.
Collapse
Affiliation(s)
- Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Xiao Yin
- Department of Endocrinology and Metabolic Diseases, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Xie L, Zang D, Yang J, Xue F, Sui W, Zhang Y. Combination of ADAM17 knockdown with eplerenone is more effective than single therapy in ameliorating diabetic cardiomyopathy. Front Pharmacol 2024; 15:1364827. [PMID: 38799171 PMCID: PMC11122002 DOI: 10.3389/fphar.2024.1364827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
Background The renin-angiotensin-aldosterone system (RAAS) members, especially Ang II and aldosterone, play key roles in the pathogenesis of diabetic cardiomyopathy (DCM). Angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers combined with aldosterone receptor antagonists (mineralocorticoid receptor antagonists) have substantially improved clinical outcomes in patients with DCM. However, the use of the combination has been limited due to its high risk of inducing hyperkalemia. Methods Type 1 diabetes was induced in 8-week-old male C57BL/6J mice by intraperitoneal injection of streptozotocin at a dose of 55 mg/kg for 5 consecutive days. Adeno-associated virus 9-mediated short-hairpin RNA (shRNA) was used to knock down the expression of ADAM17 in mice hearts. Eplerenone was administered via gavage at 200 mg/kg daily for 4 weeks. Primary cardiac fibroblasts were exposed to high glucose (HG) in vitro for 24 h to examine the cardiac fibroblasts to myofibroblasts transformation (CMT). Results Cardiac collagen deposition and CMT increased in diabetic mice, leading to cardiac fibrosis and dysfunction. In addition, ADAM17 expression and activity increased in the hearts of diabetic mice. ADAM17 inhibition and eplerenone treatment both improved diabetes-induced cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction, ADAM17 deficiency combined with eplerenone further reduced the effects of cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction compared with single therapy in vivo. High-glucose stimulation promotes CMT in vitro and leads to increased ADAM17 expression and activity. ADAM17 knockdown and eplerenone pretreatment can reduce the CMT of fibroblasts that is induced by high glucose levels by inhibiting TGFβ1/Smad3 activation; the combination of the two can further reduce CMT compared with single therapy in vitro. Conclusion Our findings indicated that ADAM17 knockout could improve diabetes-induced cardiac dysfunction and remodeling through the inhibition of RAAS overactivation when combined with eplerenone treatment, which reduced TGF-β1/Smad3 pathway activation-mediated CMT. The combined intervention of ADAM17 deficiency and eplerenone therapy provided additional cardiac protection compared with a single therapy alone without disturbing potassium level. Therefore, the combination of ADAM17 inhibition and eplerenone is a potential therapeutic strategy for human DCM.
Collapse
Affiliation(s)
- Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dejin Zang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
4
|
Oraii A, Healey JS, Kowalik K, Pandey AK, Benz AP, Wong JA, Conen D, McIntyre WF. Mineralocorticoid receptor antagonists and atrial fibrillation: a meta-analysis of clinical trials. Eur Heart J 2024; 45:756-774. [PMID: 38195054 DOI: 10.1093/eurheartj/ehad811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND AIMS Mineralocorticoid receptor antagonists (MRAs) improve cardiovascular outcomes in a variety of settings. This study aimed to assess whether cardioprotective effects of MRAs are modified by heart failure (HF) and atrial fibrillation (AF) status and to study their impact on AF events. METHODS MEDLINE, Embase, and Cochrane Central databases were searched to 24 March 2023 for randomized controlled trials evaluating the efficacy of MRAs as compared with placebo or usual care in reducing cardiovascular outcomes and AF events in patients with or at risk for cardiovascular diseases. Random-effects models and interaction analyses were used to test for effect modification. RESULTS Meta-analysis of seven trials (20 741 participants, mean age: 65.6 years, 32% women) showed that the efficacy of MRAs, as compared with placebo, in reducing a composite of cardiovascular death or HF hospitalization remains consistent across patients with HF [risk ratio = 0.81; 95% confidence interval (CI): 0.67-0.98] and without HF (risk ratio = 0.84; 95% CI: 0.75-0.93; interaction P = .77). Among patients with HF, MRAs reduced cardiovascular death or HF hospitalization in patients with AF (hazard ratio = 0.95; 95% CI: 0.54-1.66) to a similar extent as in those without AF (hazard ratio = 0.82; 95% CI: 0.63-1.07; interaction P = .65). Pooled data from 20 trials (21 791 participants, mean age: 65.2 years, 31.3% women) showed that MRAs reduce AF events (risk ratio = 0.76; 95% CI: 0.67-0.87) in both patients with and without prior AF. CONCLUSIONS Mineralocorticoid receptor antagonists are similarly effective in preventing cardiovascular events in patients with and without HF and most likely retain their efficacy regardless of AF status. Mineralocorticoid receptor antagonists may also be moderately effective in preventing incident or recurrent AF events.
Collapse
Affiliation(s)
- Alireza Oraii
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
| | - Jeff S Healey
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
- Division of Cardiology, Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Krzysztof Kowalik
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Avinash K Pandey
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexander P Benz
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
| | - Jorge A Wong
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
- Division of Cardiology, Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - David Conen
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
- Division of Cardiology, Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - William F McIntyre
- Population Health Research Institute, McMaster University, 237 Barton St East, DBVSRI C3-13A, Hamilton, ON L8L 2X2, Canada
- Division of Cardiology, Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
5
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
6
|
Li H, Li X, Guo J, Wu G, Dong C, Pang Y, Gao S, Wang Y. Identification of biomarkers and mechanisms of diabetic cardiomyopathy using microarray data. Cardiol J 2018; 27:807-816. [PMID: 30246236 DOI: 10.5603/cj.a2018.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/20/2018] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The study aimed to uncover the regulation mechanisms of diabetic cardiomyopathy (DCM) and provide novel prognostic biomarkers. METHODS The dataset GSE62203 downloaded from the Gene Expression Omnibus database was utilized in the present study. After pretreatment using the Affy package, differentially expressed genes (DEGs) were identified by the limma package, followed by functional enrichment analysis and protein- protein interaction (PPI) network analysis. Furthermore, module analysis was conducted using MCODE plug-in of Cytoscape, and functional enrichment analysis was also performed for genes in the modules. RESULTS A set of 560 DEGs were screened, mainly enriched in the metabolic process and cell cycle related process. Hub nodes in the PPI network were LDHA (lactate dehydrogenase A), ALDOC (aldolase C, fructose-bisphosphate) and ABCE1 (ATP Binding Cassette Subfamily E Member 1), which were also highlighted in Module 1 or Module 2 and predominantly enriched in the processes of glycolysis and ribosome biogenesis. Additionally, LDHA were linked with ALDOC in the PPI network. Besides, activating transcription factor 4 (ATF4) was prominent in Module 3; while myosin heavy chain 6 (MYH6) was highlighted in Module 4 and was mainly involved in muscle cells related biological processes. CONCLUSIONS Five potential biomarkers including LDHA, ALDOC, ABCE1, ATF4 and MYH6 were identified for DCM prognosis.
Collapse
Affiliation(s)
- Hui Li
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Xiaoyan Li
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Jian Guo
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Guifu Wu
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Chunping Dong
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Yaling Pang
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Shan Gao
- Department of Endocrinology, Shaanxi Provincial People's Hospital
| | - Yangwei Wang
- Department of Endocrinology, Shaanxi Provincial People's Hospital.
| |
Collapse
|
7
|
Liu W, Gong W, He M, Liu Y, Yang Y, Wang M, Wu M, Guo S, Yu Y, Wang X, Sun F, Li Y, Zhou L, Qin S, Zhang Z. Spironolactone Protects against Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2018; 2018:9232065. [PMID: 30406151 PMCID: PMC6204188 DOI: 10.1155/2018/9232065] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/16/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Spironolactone (SPR) has been shown to protect diabetic cardiomyopathy (DCM), but the specific mechanisms are not fully understood. Here, we determined the cardioprotective role of SPR in diabetic mice and further explored the potential mechanisms in both in vivo and in vitro models. Streptozotocin- (STZ-) induced diabetic rats were used as the in vivo model. After the onset of diabetes, rats were treated with either SPR (STZ + SPR) or saline (STZ + NS) for 12 weeks; nondiabetic rats were used as controls (NDCs). In vitro, H9C2 cells were exposed to aldosterone, with or without SPR. Cardiac structure was investigated with transmission electron microscopy and pathological examination; immunohistochemistry was performed to detect nitrotyrosine, collagen-1, TGF-β1, TNF-α, and F4/80 expression; and gene expression of markers for oxidative stress, inflammation, fibrosis, and energy metabolism was detected. Our results suggested that SPR attenuated mitochondrial morphological abnormalities and sarcoplasmic reticulum enlargement in diabetic rats. Compared to the STZ + NS group, cardiac oxidative stress, fibrosis, inflammation, and mitochondrial dysfunction were improved by SPR treatment. Our study showed that SPR had cardioprotective effects in diabetic rats by ameliorating mitochondrial dysfunction and reducing fibrosis, oxidative stress, and inflammation. This study, for the first time, indicates that SPR might be a potential treatment for DCM.
Collapse
Affiliation(s)
- Wenjuan Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Wei Gong
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Min He
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Yemei Liu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Department of Endocrinology, The Second People's Hospital, 4 Duchun Road, Wuhu, Anhui 241001, China
| | - Yeping Yang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Meng Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Meng Wu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, 1055 Sanxiang Rd, Suzhou, Jiangsu 215000, China
| | - Shizhe Guo
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Yifei Yu
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Xuanchun Wang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Fei Sun
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Yiming Li
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Linuo Zhou
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| | - Shengmei Qin
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Zhaoyun Zhang
- Division of Endocrinology and Metabolism, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
- Institute of Endocrinology and Diabetology, Fudan University, 12 Wulumuqi Road, Shanghai 200040, China
| |
Collapse
|
8
|
Hensen LCR, Delgado V, van Wijngaarden SE, Leung M, de Bie MK, Buiten MS, Schalij MJ, Van de Kerkhof JJ, Rabelink TJ, Rotmans JI, Jukema JW, Bax JJ. Echocardiographic associates of atrial fibrillation in end-stage renal disease. Nephrol Dial Transplant 2017; 32:1409-1414. [PMID: 27688260 DOI: 10.1093/ndt/gfw352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/28/2016] [Indexed: 11/13/2022] Open
Abstract
Background The prevalence of atrial fibrillation (AF) in end-stage renal disease (ESRD) patients is relatively high. The present study evaluated the association between left atrial (LA) remodelling, including an increased size and myocardial fibrosis, and slow LA conduction and the occurrence of AF. Methods In 171 ESRD patients enrolled in the Implantable Cardioverter Defibrillators in Dialysis patients (ICD2) trial, the LA dimensions, LA conduction delay [as reflected by the time difference between P-wave onset on surface electrocardiogram and A'-wave on tissue Doppler imaging (PA-TDI)] and LA function were compared between patients who exhibited AF versus patients without AF. Based on ICD remote monitoring or clinical records, the occurrence of AF was detected. Results Of 171 patients, 47 (27%) patients experienced AF. Despite comparable left ventricular ejection fraction and prevalence of significant mitral regurgitation, patients with AF had significantly larger LA volume index (mean ± standard deviation) (29 ± 11 versus 23 ± 10 mL/m2, P = 0.001), longer PA-TDI duration (144 ± 30 versus 131 ± 27 ms, P = 0.010) and reduced late diastolic mitral annular velocity (A') (7.1 ± 2.8 versus 8.2 ± 2.4 cm/s, P = 0.012) compared with patients without AF. On multivariable analysis, larger LA volume index [odds ratio (OR) 1.04, 95% confidence interval (CI) 1.01-1.08, P = 0.017], longer PA-TDI duration (OR 1.02, 95% CI 1.00-1.03, P = 0.025) and reduced A' (OR 0.84, 95% CI 0.72-0.98, P = 0.025) were independently associated with AF after adjusting for age and left ventricle diastolic relaxation. Conclusion ESRD patients with AF show more advanced changes in the LA substrate than ESRD patients without AF.
Collapse
Affiliation(s)
- Liselotte C R Hensen
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Melissa Leung
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mihaly K de Bie
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurits S Buiten
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Longitudinal myocardial strain alteration is associated with left ventricular remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 2014; 27:479-88. [PMID: 24508363 DOI: 10.1016/j.echo.2014.01.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND In normal subjects, left ventricular (LV) dimensions have been shown to decrease over time, while wall thickness is increasing. The aim of this study was to investigate LV remodeling in a cohort of patients with type 2 diabetes mellitus during a 3-year follow-up period and its potential association with decreased longitudinal systolic strain (εL). METHODS One hundred seventy-two patients with type 2 diabetes without overt heart disease were prospectively enrolled and underwent echocardiography with speckle-tracking imaging to assess global LV εL at baseline and at 3 years. The associations between alteration in εL (defined as |εL| < 18%), LV geometry at baseline, and LV remodeling over time were evaluated. RESULTS Among the 172 enrolled patients, 154 completed 3-year follow-up. At baseline, patients with εL alteration had higher LV end-systolic volumes (28 ± 11 vs 23 ± 9 mL, P < .001) and relative wall thicknesses (RWT; 0.44 ± 0.06 vs 0.40 ± 0.07, P = .008) compared with those with normal εL. At 3-year follow-up, RWTs remained stable in both groups. LV volumes significantly decreased in patients with normal εL but not in patients with εL alteration. Multivariate analysis showed that εL alteration was independently associated with LV end-systolic volume (β = 5.0, P = .006) and RWT (β = 0.03, P = .03) at baseline and with changes in both LV end-diastolic volume (β = 19.1, P = .001) and LV end-systolic volume (β = 2.6, P = .047) over 3 years. CONCLUSIONS In patients with type 2 diabetes, εL alteration was associated with higher RWT and LV volumes and with the absence of decreases in LV volumes over time, which might be an early sign of adverse LV remodeling.
Collapse
|