1
|
Liu C, Li X, Fu J, Chen K, Liao Q, Wang J, Chen C, Luo H, Jose PA, Yang Y, Yang J, Zeng C. Increased AT 1 receptor expression mediates vasoconstriction leading to hypertension in Snx1 -/- mice. Hypertens Res 2021; 44:906-917. [PMID: 33972750 PMCID: PMC8590203 DOI: 10.1038/s41440-021-00661-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023]
Abstract
Angiotensin II type 1 receptor (AT1R) is a vital therapeutic target for hypertension. Sorting nexin 1 (SNX1) participates in the sorting and trafficking of the renal dopamine D5 receptor, while angiotensin and dopamine are counterregulatory factors in the regulation of blood pressure. The effect of SNX1 on AT1R is not known. We hypothesized that SNX1, through arterial AT1R sorting and trafficking, is involved in blood pressure regulation. CRISPR/Cas9 system-generated SNX1-/- mice showed dramatic elevations in blood pressure compared to their wild-type littermates. The angiotensin II-mediated contractile reactivity of the mesenteric arteries and AT1R expression in the aortas were also increased. Moreover, immunofluorescence and immunoprecipitation analyses revealed that SNX1 and AT1R were colocalized and interacted in the aortas of wild-type mice. In vitro studies revealed that AT1R protein levels and downstream calcium signaling were upregulated in A10 cells treated with SNX1 siRNA. This may have resulted from decreased AT1R protein degradation since the AT1R mRNA levels showed no changes. AT1R protein was less degraded when SNX1 was downregulated, as reflected by a cycloheximide chase assay. Furthermore, proteasomal rather than lysosomal inhibition increased AT1R protein content, and this effect was accompanied by decayed binding of ubiquitin and AT1R after SNX1 knockdown. Confocal microscopy revealed that AT1R colocalized with PSMD6, a proteasomal marker, and the colocalization was reduced after SNX1 knockdown. These findings suggest that SNX1 sorts AT1R for proteasomal degradation and that SNX1 impairment increases arterial AT1R expression, leading to increased vasoconstriction and blood pressure.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingyue Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yongjian Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China.
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China.
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.
| |
Collapse
|
2
|
Zingales V, Torrisi SA, Leggio GM, Bucolo C, Drago F, Salomone S. Pharmacological and Genetic Evidence of Dopamine Receptor 3-Mediated Vasoconstriction in Isolated Mouse Aorta. Biomolecules 2021; 11:418. [PMID: 33799860 PMCID: PMC8001456 DOI: 10.3390/biom11030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Dopamine receptors (DRs) are generally considered as mediators of vasomotor functions. However, when used in pharmacological studies, dopamine and/or DR agonists may not discriminate among different DR subtypes and may even stimulate alpha1 and beta-adrenoceptors. Here, we tested the hypothesis that D2R and/or D3R may specifically induce vasoconstriction in isolated mouse aorta. Aorta, isolated from wild-type (WT) and D3R-/- mice, was mounted in a wire myograph and challenged with cumulative concentrations of phenylephrine (PE), acetylcholine (ACh), and the D3R agonist 7-hydrxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), with or without the D2R antagonist L741,626 and the D3R antagonist SB-277011-A. The vasoconstriction to PE and the vasodilatation to ACh were not different in WT and D3R-/-; in contrast, the contractile responses to 7-OH-DPAT were significantly weaker in D3R-/-, though not abolished. L741,626 did not change the contractile response induced by 7-OH-DPAT in WT or in D3R-/-, whereas SB-277011-A significantly reduced it in WT but did not in D3R-/-. D3R mRNA (assessed by qPCR) was about 5-fold more abundant than D2R mRNA in aorta from WT and undetectable in aorta from D3R-/-. Following transduction with lentivirus (72-h incubation) delivering synthetic microRNAs to specifically inactivate D2R (LV-miR-D2) or D3R (LV-miR-D3), the contractile response to 7-OH-DPAT was unaffected by LV-miR-D2, while it was significantly reduced by LV-miR-D3. These data indicate that, at least in mouse aorta, D3R stimulation induces vasoconstriction, while D2R stimulation does not. This is consistent with the higher expression level of D3R. The residual vasoconstriction elicited by high concentration D3R agonist in D3R-/- and/or in the presence of D3R antagonist is likely to be unrelated to DRs.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/physiology
- Indoles/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nitriles/pharmacology
- Piperidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Tetrahydroisoquinolines/pharmacology
- Tetrahydronaphthalenes/pharmacology
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia 97, 95123 Catania, Italy; (V.Z.); (S.A.T.); (G.M.L.); (C.B.); (F.D.)
| |
Collapse
|
3
|
Wang H, Yao Y, Liu J, Cao Y, Si C, Zheng R, Zeng C, Guan H, Li L. Dopamine D 4 receptor protected against hyperglycemia-induced endothelial dysfunction via PI3K /eNOS pathway. Biochem Biophys Res Commun 2019; 518:554-559. [PMID: 31447121 DOI: 10.1016/j.bbrc.2019.08.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Hyperglycemia-induced endothelial dysfunction is generally believed to be the basis of diabetic vascular complications. Dopamine receptors is known to play an important protective role in diabetes. However, the protective effect of dopamine receptors against hyperglycemia-induced endothelial damage in diabetic rats is still unknown. In the present study, we established a cell model of hyperglycemia-induced endothelial dysfunction by treating human umbilical vein endothelial cells (HUVEC) with high glucose. MTT and lactate dehydrogenase assays results showed that high glucose treatment significantly reduced the cell viability and down-regulated dopamine D4 receptor. Pre-treatment with PD168077, a specific D4 receptor agonist, greatly improved endothelial cell viability and decreased apoptosis. Furthermore, pharmacological inhibition of phosphoinositide 3-kinase (PI3K) and endothelial nitric oxide synthase (eNOS) eliminated the protective effect of D4 receptor against endothelial injury. More importantly, the expression level of D4 receptor was also dramatically down-regulated in the arterial endothelium of rats with streptozotocin-(STZ)-induced diabetes, and the STZ-induced impairment of acetylcholine-induced vasodilation was reversed by activation of D4 receptor. In conclusion, our results indicated that dopamine D4 receptor protected against hyperglycemia-induced endothelial dysfunction via the PI3K/eNOS pathway, which may provide a novel strategy in the treatment of diabetes.
Collapse
Affiliation(s)
- He Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, PR China; Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Yonggang Yao
- Department of Critical Care Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Juncheng Liu
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Yingjie Cao
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Chunying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Rongfei Zheng
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology, Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Huaimin Guan
- Department of Cardiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, PR China.
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan, PR China.
| |
Collapse
|
4
|
Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas. Pharmacol Ther 2019; 203:107392. [PMID: 31299315 DOI: 10.1016/j.pharmthera.2019.07.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/05/2019] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and DA receptors (DR) have been extensively studied in the central nervous system (CNS), but their role in the periphery is still poorly understood. Here we summarize data on DA and DRs in the eye, cardiovascular system and endocrine pancreas, three districts where DA and DA-related drugs have been studied and the expression of DR documented. In the eye, DA modulates ciliary blood flow and aqueous production, which impacts on intraocular pressure and glaucoma. In the cardiovascular system, DA increases blood pressure and heart activity, mostly through a stimulation of adrenoceptors, and induces vasodilatation in the renal circulation, possibly through D1R stimulation. In pancreatic islets, beta cells store DA and co-release it with insulin. D1R is mainly expressed in beta cells, where it stimulates insulin release, while D2R is expressed in both beta and delta cells (in the latter at higher level), where it inhibits, respectively, insulin and somatostatin release. The formation of D2R-somatostatin receptor 5 heteromers (documented in the CNS), might add complexity to the system. DA may exert both direct autocrine effects on beta cells, and indirect paracrine effects through delta cells and somatostatin. Bromocriptine, an FDA approved drug for diabetes, endowed with both D1R (antagonistic) and D2R (agonistic) actions, may exert complex effects, resulting from the integration of direct effects on beta cells and paracrine effects from delta cells. A full comprehension of peripheral DA signaling deserves further studies that may generate innovative therapeutic drugs to manage conditions such as glaucoma, cardiovascular diseases and diabetes.
Collapse
|
5
|
Sun D, Chen K, Wang J, Zhou L, Zeng C. In-utero cold stress causes elevation of blood pressure via impaired vascular dopamine D1 receptor in offspring. Clin Exp Hypertens 2019; 42:99-104. [PMID: 30698033 DOI: 10.1080/10641963.2019.1571603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dongdong Sun
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
6
|
Wang J, Deng Y, Zou X, Luo H, Jose PA, Fu C, Yang J, Zeng C. Long-term low salt diet increases blood pressure by activation of the renin-angiotensin and sympathetic nervous systems. Clin Exp Hypertens 2018; 41:739-746. [PMID: 30451012 DOI: 10.1080/10641963.2018.1545850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background The aim of this study was to investigate the effect of long-term low salt diet on blood pressure and its underlying mechanisms.Methods Male Sprague-Dawley (SD) rats were divided into normal salt diet group (0.4%) and low salt diet group (0.04%). Blood pressure was measured with the non-invasive tail-cuff method. The contractile response of isolated mesenteric arteries was measured using a small vessel myograph. The effects on renal function of the intrarenal arterial infusion of candesartan (10 μg/kg/min), an angiotensin II receptor type 1 (AT1R) antagonist, were also measured. The expressions of renal AT1R and mesenteric arterial α1A, α1B, and α1D adrenergic receptors were quantified by immunoblotting. Plasma levels of angiotensin II were also measured.Results Systolic blood pressure was significantly increased after 8 weeks of low salt diet. There were no obvious differences in the renal structure between the low and normal salt diet groups. However, the plasma angiotensin II levels and renal AT1R expression were higher in low than normal salt diet group. The intrarenal arterial infusion of candesartan increased urine flow and sodium excretion to a greater extent in the low than normal salt diet group. The expressions of α1A and α1D, but not α1B, adrenergic receptors, and phenylephrine-induced contraction were increased in mesenteric arteries from the low salt, relative to the normal salt diet group.Conclusion Activation of the renin-angiotensin and sympathetic nervous systems may be involved in the pathogenesis of long-term low salt diet-induced hypertension.
Collapse
Affiliation(s)
- Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Yi Deng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
7
|
Min J, Weitian Z, Peng C, Yan P, Bo Z, Yan W, Yun B, Xukai W. Correlation between insulin-induced estrogen receptor methylation and atherosclerosis. Cardiovasc Diabetol 2016; 15:156. [PMID: 27832775 PMCID: PMC5105242 DOI: 10.1186/s12933-016-0471-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 01/30/2023] Open
Abstract
Background Hyperinsulinemia and insulin resistance have been recently recognized as an important cause of atherosclerosis. Clinical studies have also found that expression of the estrogen receptor is closely related to the incidence of atherosclerosis. This study investigate the effects of insulin and estrogen receptor α (ER-α) in atherosclerosis. Methods Double knockout ApoE/Lepr mice were given intraperitoneal injections of insulin, and their aortae were harvested for hematoxylin-eosin staining and immunohistochemical analysis. In addition, vascular smooth muscle cells (VSMCs) were treated with insulin or infected with a lentivirus encoding exogenous ER-α, and changes in gene expression were detected by real-time polymerase chain reaction and western blotting. The methylation levels of the ER-α gene were tested using bisulfite sequencing PCR, and flow cytometry and EdU assay were used to measure VSMCs proliferation. Results Our results showed that insulin can induce the formation of atherosclerosis. Gene expression analysis revealed that insulin promotes the expression of DNA methyltransferases and inhibits ER-α expression, while 5-aza-2′-deoxycytidine can inhibit this effect of insulin. Bisulfite sequencing PCR analysis showed that methylation of the ER-α second exon region increased in VSMCs treated with insulin. The results also showed that ER-α can inhibit VSMCs proliferation. Conclusions Our data suggest that insulin promotes the expression of DNA methyltransferases, induces methylation of ER-α second exon region and decreases the expression of ER-α, thereby interfering with estrogen regulation of VSMCs proliferation, resulting in atherosclerosis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0471-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Min
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhong Weitian
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Cai Peng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Peng Yan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhang Bo
- Department of Medical Genetics, College of Basic Medicine, Third Military, Medical University, Chongqing, 400038, China
| | - Wang Yan
- Department of Medical Genetics, College of Basic Medicine, Third Military, Medical University, Chongqing, 400038, China
| | - Bai Yun
- Department of Medical Genetics, College of Basic Medicine, Third Military, Medical University, Chongqing, 400038, China.
| | - Wang Xukai
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
8
|
Fu J, Han Y, Wang J, Liu Y, Zheng S, Zhou L, Jose PA, Zeng C. Irisin Lowers Blood Pressure by Improvement of Endothelial Dysfunction via AMPK-Akt-eNOS-NO Pathway in the Spontaneously Hypertensive Rat. J Am Heart Assoc 2016; 5:e003433. [PMID: 27912206 PMCID: PMC5210324 DOI: 10.1161/jaha.116.003433] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exercise is a major nonpharmacological treatment for hypertension, but its underlying mechanisms are still not completely elucidated. Irisin, a polypeptide containing 112 amino acids, which is secreted mainly by skeletal muscle cells during exercise, exerts a protective role in metabolic diseases, such as diabetes mellitus and obesity. Because of the close relationship between irisin and metabolic diseases, we hypothesized that irisin may play a role in the regulation of blood pressure. METHODS AND RESULTS Blood pressures of male Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) were monitored through the carotid artery. Our study found that acute intravenous injection of irisin reduced blood pressure in SHRs, but not WKY rats. Irisin, by itself, had no direct vasorelaxing effect in phenylephrine-preconstricted mesenteric arteries from SHRs. However, irisin augmented the acetylcholine-induced vasorelaxation in mesenteric arteries from SHRs that could be reversed by Nω-nitro-l-arginine-methyl ester (L-NAME; 100 μmol/L), indicating a role of nitric oxide (NO) in this action. Indeed, irisin increased NO production and phosphorylation of endothelial nirtic oxide synthase (eNOS) in endothelial cells. 5'-AMP-activated protein kinase (AMPK) was involved in the vasorelaxing effect of irisin because compound C (20 μmol/L), an AMPK inhibitor, blocked the irisin-mediated increase in phosphorylation of eNOS and protein kinase B (Akt) in endothelial cells and vasodilation in mesenteric arteries. CONCLUSIONS We conclude that acute administration of irisin lowers blood pressure of SHRs by amelioration of endothelial dysfunction of the mesenteric artery through the AMPK-Akt-eNOS-NO signaling pathway.
Collapse
Affiliation(s)
- Jinjuan Fu
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Yu Han
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Chongqing Institute of Cardiology, The Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Chen YC, Yuan TY, Zhang HF, Wang DS, Niu ZR, Li L, Fang LH, Du GH. Fasudil evokes vasodilatation of rat mesenteric vascular bed via Ca(2+) channels and Rho/ROCK pathway. Eur J Pharmacol 2016; 788:226-233. [PMID: 27346833 DOI: 10.1016/j.ejphar.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
As a Rho kinase (ROCK) inhibitor, fasudil has been used in clinical trials of several cardiovascular diseases. This study was to investigate the vasorelaxant effect of fasudil on resistance arterial rings including mesenteric, renal, ventral tail and basilar artery. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. A DMT multiwire myograph system was used to test the tension of isolated small arteries. K(+) channel blockers, NO-cGMP pathway blockers and Ca(2+)-free physiological salt solution (PSS) were employed to verify the underlying mechanisms. Fasudil (10(-7)-10(-4)M) relaxed four types of small artery rings pre-contracted by 60mmol/l KCl (pEC50: 6.01±0.09, 5.47±0.03, 5.54±0.04, and 5.72±0.10 for mesenteric, renal, ventral tail and basilar artery rings, respectively). Pre-incubation with fasudil (1, 3, or 10μmol/l) attenuated KCl (10-60mmol/l) and angiotensin II (Ang II; 1μmol/l)-induced vasoconstriction in mesenteric artery rings. Fasudil at the concentration of 10(-6)mol/l showed different relaxant potency in endothelium intact (pEC50:6.01±0.09) or denued (5.75±0.06) mesenteric artery. The influx and release of Ca(2+) were inhibited by fasudil. In addition, fasudil could block the increased phosphorylation level of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by Ang II. However, pretreatment with various K(+) channel blockers did not affect the relaxant effects of fasudil remarkably. The present results demonstrate that fasudil has a vasorelaxant effect on isolated rat resistance arteries, including mesenteric, renal, ventral tail and basilar artery, and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Yu-Cai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Hui-Fang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Dan-Shu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Zi-Ran Niu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Yao Y, Wang W, Li M, Ren H, Chen C, Wang J, Wang WE, Yang J, Zeng C. Curcumin Exerts its Anti-hypertensive Effect by Down-regulating the AT1 Receptor in Vascular Smooth Muscle Cells. Sci Rep 2016; 6:25579. [PMID: 27146402 PMCID: PMC4857140 DOI: 10.1038/srep25579] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Curcumin exerts beneficial effects on cardiovascular diseases, including hypertension. However, its mechanisms are unknown. We propose that curcumin prevents the development of hypertension by regulating AT1 receptor (AT1R) expression in arteries. The present study examined how curcumin regulates AT1R expression in vascular smooth muscle cells and investigated the physiological significance of this regulation in angiotensin (Ang) II-induced hypertension. The results showed that curcumin decreased AT1R expression in a concentration- and time-dependent manner in vascular smooth muscle cells. Using luciferase reporters with an entire AT1 or a mutant AT1R in A10 cells, the AT1R promoter activity was inhibited by 10−6 M curcumin, and the proximal element (from −61 to +25 bp) of the AT1R promoter was crucial for curcumin-induced AT1R down-regulation. An electrophoretic mobility shift assay showed that curcumin decreased specificity protein 1 (SP1) binding with the AT1R promoter in A10 cells. Curcumin treatment reduced Ang II-induced hypertension in C57Bl/6J mice, which was accompanied by lower AT1R expression in the arteries and decreased Ang II-mediated vasoconstriction in the mesenteric artery. These findings indicate that curcumin down-regulates AT1R expression in A10 cells by affecting SP1/AT1R DNA binding, thus reducing AT1R-mediated vasoconstriction and subsequently prevents the development of hypertension in an Ang II-induced hypertensive model.
Collapse
Affiliation(s)
- Yonggang Yao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Meixiang Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China.,Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P. R. China.,Chongqing Institute of Cardiology, Chongqing, P. R. China
| |
Collapse
|
11
|
Armando I, Konkalmatt P, Felder RA, Jose PA. The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl Res 2015; 165:505-11. [PMID: 25134060 PMCID: PMC4305499 DOI: 10.1016/j.trsl.2014.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/15/2022]
Abstract
Salt sensitivity of blood pressure, whether in hypertensive or normotensive subjects, is associated with increased cardiovascular risk and overall mortality. Salt sensitivity can be treated by reducing NaCl consumption. However, decreasing salt intake in some may actually increase cardiovascular risk, including an increase in blood pressure, that is, inverse salt sensitivity. Several genes have been associated with salt sensitivity and inverse salt sensitivity. Some of these genes encode proteins expressed in the kidney that are needed to excrete a sodium load, for example, dopamine receptors and their regulators, G protein-coupled receptor kinase 4 (GRK4). We review here research in this field that has provided several translational opportunities, ranging from diagnostic tests to gene therapy, such as (1) a test in renal proximal tubule cells isolated from the urine of humans that may determine the salt-sensitive phenotype by analyzing the recruitment of dopamine D1 receptors to the plasma membrane; (2) the presence of common GRK4 gene variants that are not only associated with hypertension but may also be predictive of the response to antihypertensive therapy; (3) genetic testing for polymorphisms of the dopamine D2 receptor that may be associated with hypertension and inverse salt sensitivity and may increase the susceptibility to chronic kidney disease because of loss of the antioxidant and anti-inflammatory effects of the renal dopamine D2 receptor, and (4) in vivo renal selective amelioration of renal tubular genetic defects by a gene transfer approach, using adeno-associated viral vectors introduced to the kidney by retrograde ureteral infusion.
Collapse
Affiliation(s)
- Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Prasad Konkalmatt
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Robin A Felder
- Department of Pathology, The University of Virginia School of Medicine, Charlottesville, VA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|