1
|
Chamas A, Svensson CM, Maneira C, Sporniak M, Figge MT, Lackner G. Engineering Adhesion of the Probiotic Strain Escherichia coli Nissle to the Fungal Pathogen Candida albicans. ACS Synth Biol 2024; 13:4027-4039. [PMID: 39265099 DOI: 10.1021/acssynbio.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Engineering live biotherapeutic products against fungal pathogens such as Candida albicans has been suggested as a means to tackle the increasing threat of fungal infections and the development of resistance to classical antifungal treatments. One important challenge in the design of live therapeutics is to control their localization inside the human body. The specific binding capability to target organisms or tissues would greatly increase their effectiveness by increasing the local concentration of effector molecules at the site of infection. In this study, we utilized surface display of carbohydrate binding domains to enable the probiotic E. coli Nissle 1917 to adhere specifically to the pathogenic yeast Candida albicans. Binding was quantified using a newly developed method based on the automated analysis of microscopic images. In addition to a rationally selected chitin binding domain, a synthetic peptide of identical length but distinct sequence also conferred binding. Efficient binding was specific to fungal hyphae, the invasive form of C. albicans, while the yeast form, as well as abiotic cellulose and PET particles, was only weakly recognized.
Collapse
Affiliation(s)
- Alexandre Chamas
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Carl-Magnus Svensson
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Carla Maneira
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| | - Marta Sporniak
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller University Jena, Jena 07743, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology, Jena 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food Nutrition and Health, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
2
|
Ali J, Faridi S, Kashyap A, Shabnam, Noori R, Sardar M. Surface expression of carbonic anhydrase on E. coli as a sustainable approach for enzymatic CO 2 capture. Enzyme Microb Technol 2024; 176:110422. [PMID: 38402827 DOI: 10.1016/j.enzmictec.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The utilisation of carbonic anhydrase (CA) in CO2 sequestration is becoming prominent as an efficient, environment friendly and rapid catalyst for capturing CO2 from industrial emissions. However, the application of CA enzyme in soluble form is constrained due to its poor stability in operational conditions of CO2 capture and also production cost of the enzyme. Addressing these limitations, the present study focuses on the surface display of CA from Bacillus halodurans (BhCA) on E coli aiming to contribute to the cost-effectiveness of carbon capture through CA technology. This involved the fusion of the BhCA-encoding gene with the adhesion molecule involved in diffuse adherence (AIDA-I) autotransporter, resulting in the efficient display of BhCA (595 ± 60 U/gram dry cell weight). Verification of the surface display of BhCA was accomplished by conjugating with FITC labelled anti-his antibody followed by fluorescence-activated cell sorting (FACS) and cellular fractionation in conjunction with zymography. Biochemical characterisation of whole-cell biocatalyst revealed a noteworthy enhancement in thermostability, improvement in the thermostability with T1/2 of 90 ± 1.52 minutes at 50 ˚C, 36 ± 2.51 minutes at 60 ˚C and18 ± 1.52 minutes at 80˚C. Surface displayed BhCA displayed remarkable reusability retaining 100% activity even after 15 cycles. Surface displayed BhCA displayed highly alkali stable nature like free counterpart in solution. The alkali stability of the surface-displayed BhCA was comparable to its free counterpart in solution. Furthermore, the study investigated the impact of different metal ions, modulators, and detergents on the whole-cell biocatalysts. The present work represents the first report on surface display of CA utilising the AIDA-1 autotransporter.
Collapse
Affiliation(s)
- Juned Ali
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shazia Faridi
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Shabnam
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rubia Noori
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Meryam Sardar
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Szöllősi D, Hajdrik P, Tordai H, Horváth I, Veres DS, Gillich B, Shailaja KD, Smeller L, Bergmann R, Bachmann M, Mihály J, Gaál A, Jezsó B, Barátki B, Kövesdi D, Bősze S, Szabó I, Felföldi T, Oszwald E, Padmanabhan P, Gulyás BZ, Hamdani N, Máthé D, Varga Z, Szigeti K. Molecular imaging of bacterial outer membrane vesicles based on bacterial surface display. Sci Rep 2023; 13:18752. [PMID: 37907509 PMCID: PMC10618197 DOI: 10.1038/s41598-023-45628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Bernadett Gillich
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Kanni Das Shailaja
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Michael Bachmann
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Judith Mihály
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Bálint Jezsó
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- Centre for Ecological Research, Institute of Aquatic Ecology, 29 Karolina Road, Budapest, 1113, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology, and Embryology, Semmelweis University, 58 Tűzoltó Street, Budapest, 1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Balázs Zoltán Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, 1089, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- CROmed Translational Research Centers, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary.
| |
Collapse
|
4
|
Tayebinia M, Sharifzadeh S, Rafiei Dehbidi G, Zare F, Ranjbaran R, Rahimi A, Miri MR, Mirzakhani M, Behzad-Behbahania A. Expression of the Hepatitis C Virus core-NS3 Fusion Protein on the Surface of Bacterial Ghosts: Prospects for Vaccine Production. Avicenna J Med Biotechnol 2023; 15:173-179. [PMID: 37538239 PMCID: PMC10395460 DOI: 10.18502/ajmb.v15i3.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/26/2023] [Indexed: 08/05/2023] Open
Abstract
Background Antigen presentation using bacterial surface display systems, on one hand, has the benefits of bacterial carriers, including low-cost production and ease of manipulation. On the other hand, the bacteria can help in stimulating the immune system as an adjuvant. For example, using bacterial surface display technology, we developed a hepatitis C virus (HCV) multiple antigens displaying bacteria's surface and then turned it into a bacterial ghost. Methods The HCV core and NS3 proteins' conserved epitopes were cloned into the AIDA gene plasmid as an auto transporter. The recombinant plasmid was then transformed into Escherichia coli (E. coli) Bl21 (DE3). Recombinant bacteria were then turned into a bacterial ghost, an empty cell envelope. Whole-cell ELISA, flow cytometry, and Western blot techniques were used for monitoring the expression of proteins on the surface of bacteria. Results A fusion protein of HCV core-NS3-AIDA was successfully expressed on the E. coli Bl21 (DE3) surface and confirmed by western blotting, Enzyme-Linked Immunosorbent Assay (ELISA), and flow cytometry detection techniques. Conclusion The presence of HCV antigens on non-pathogen bacteria surfaces holds promise for developing safe and cost-benefit-accessible vaccines with optimal intrinsic adjuvant effects and exposure of heterologous antigens to the immune system.
Collapse
Affiliation(s)
- Minoosadat Tayebinia
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Rahimi
- Bioinfirmatic and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, the Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Abbas Behzad-Behbahania
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
VanArsdale E, Navid A, Chu MJ, Halvorsen TM, Payne GF, Jiao Y, Bentley WE, Yung MC. Electrogenetic signaling and information propagation for controlling microbial consortia via programmed lysis. Biotechnol Bioeng 2023; 120:1366-1381. [PMID: 36710487 DOI: 10.1002/bit.28337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
To probe signal propagation and genetic actuation in microbial consortia, we have coopted the components of both redox and quorum sensing (QS) signaling into a communication network for guiding composition by "programming" cell lysis. Here, we use an electrode to generate hydrogen peroxide as a redox cue that determines consortia composition. The oxidative stress regulon of Escherichia coli, OxyR, is employed to receive and transform this signal into a QS signal that coordinates the lysis of a subpopulation of cells. We examine a suite of information transfer modalities including "monoculture" and "transmitter-receiver" models, as well as a series of genetic circuits that introduce time-delays for altering information relay, thereby expanding design space. A simple mathematical model aids in developing communication schemes that accommodate the transient nature of redox signals and the "collective" attributes of QS signals. We suggest this platform methodology will be useful in understanding and controlling synthetic microbial consortia for a variety of applications, including biomanufacturing and biocontainment.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Fischell Institute of Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Ali Navid
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California, USA
| | - Monica J Chu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Fischell Institute of Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Tiffany M Halvorsen
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California, USA
| | - Gregory F Payne
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Fischell Institute of Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Yongqin Jiao
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Fischell Institute of Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Mimi C Yung
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California, USA
| |
Collapse
|
6
|
Engineering Ag43 Signal Peptides with Bacterial Display and Selection. Methods Protoc 2022; 6:mps6010001. [PMID: 36648950 PMCID: PMC9844295 DOI: 10.3390/mps6010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Protein display, secretion, and export in prokaryotes are essential for utilizing microbial systems as engineered living materials, medicines, biocatalysts, and protein factories. To select for improved signal peptides for Escherichia coli protein display, we utilized error-prone polymerase chain reaction (epPCR) coupled with single-cell sorting and microplate titer to generate, select, and detect improved Ag43 signal peptides. Through just three rounds of mutagenesis and selection using green fluorescence from the 56 kDa sfGFP-beta-lactamase, we isolated clones that modestly increased surface display from 1.4- to 3-fold as detected by the microplate plate-reader and native SDS-PAGE assays. To establish that the functional protein was displayed extracellularly, we trypsinized the bacterial cells to release the surface displayed proteins for analysis. This workflow demonstrated a fast and high-throughput method leveraging epPCR and single-cell sorting to augment bacterial surface display rapidly that could be applied to other bacterial proteins.
Collapse
|
7
|
Fragoso-Jiménez JC, Gutierrez-Rios RM, Flores N, Martinez A, Lara AR, Delvigne F, Gosset G. Glucose consumption rate-dependent transcriptome profiling of Escherichia coli provides insight on performance as microbial factories. Microb Cell Fact 2022; 21:189. [PMID: 36100849 PMCID: PMC9472385 DOI: 10.1186/s12934-022-01909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background The modification of glucose import capacity is an engineering strategy that has been shown to improve the characteristics of Escherichia coli as a microbial factory. A reduction in glucose import capacity can have a positive effect on production strain performance, however, this is not always the case. In this study, E. coli W3110 and a group of four isogenic derivative strains, harboring single or multiple deletions of genes encoding phosphoenolpyruvate:sugar phosphotransferase system (PTS)-dependent transporters as well as non-PTS transporters were characterized by determining their transcriptomic response to reduced glucose import capacity. Results These strains were grown in bioreactors with M9 mineral salts medium containing 20 g/L of glucose, where they displayed specific growth rates ranging from 0.67 to 0.27 h−1, and specific glucose consumption rates (qs) ranging from 1.78 to 0.37 g/g h. RNA-seq analysis revealed a transcriptional response consistent with carbon source limitation among all the mutant strains, involving functions related to transport and metabolism of alternate carbon sources and characterized by a decrease in genes encoding glycolytic enzymes and an increase in gluconeogenic functions. A total of 107 and 185 genes displayed positive and negative correlations with qs, respectively. Functions displaying positive correlation included energy generation, amino acid biosynthesis, and sugar import. Conclusion Changes in gene expression of E. coli strains with impaired glucose import capacity could be correlated with qs values and this allowed an inference of the physiological state of each mutant. In strains with lower qs values, a gene expression pattern is consistent with energy limitation and entry into the stationary phase. This physiological state could explain why these strains display a lower capacity to produce recombinant protein, even when they show very low rates of acetate production. The comparison of the transcriptomes of the engineered strains employed as microbial factories is an effective approach for identifying favorable phenotypes with the potential to improve the synthesis of biotechnological products. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01909-y.
Collapse
Affiliation(s)
- Juan Carlos Fragoso-Jiménez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | - Rosa María Gutierrez-Rios
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | - Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Ciudad de Mexico, México
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI) Gembloux Agro‑Bio Tech, University of Liège, Gembloux, Belgium
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
| |
Collapse
|
8
|
Saini K, Gupta R. Cell Surface Expression of γ-CGTase from Evansella caseinilytica on E. coli: Application in the enzymatic conversion of starch to γ-cyclodextrin. Enzyme Microb Technol 2022; 159:110066. [DOI: 10.1016/j.enzmictec.2022.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022]
|
9
|
VanArsdale E, Pitzer J, Wang S, Stephens K, Chen CY, Payne GF, Bentley WE. Electrogenetic Signal Transmission and Propagation in Coculture to Guide Production of a Small Molecule, Tyrosine. ACS Synth Biol 2022; 11:877-887. [PMID: 35113532 DOI: 10.1021/acssynbio.1c00522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are many strategies to actuate and control genetic circuits, including providing stimuli like exogenous chemical inducers, light, magnetic fields, and even applied voltage, that are orthogonal to metabolic activity. Their use enables actuation of gene expression for the production of small molecules and proteins in many contexts. Additionally, there are a growing number of reports wherein cocultures, consortia, or even complex microbiomes are employed for the production of biologics, taking advantage of an expanded array of biological function. Combining stimuli-responsive engineered cell populations enhances design space but increases complexity. In this work, we co-opt nature's redox networks and electrogenetically route control signals into a consortium of microbial cells engineered to produce a model small molecule, tyrosine. In particular, we show how electronically programmed short-lived signals (i.e., hydrogen peroxide) can be transformed by one population and propagated into sustained longer-distance signals that, in turn, guide tyrosine production in a second population building on bacterial quorum sensing that coordinates their collective behavior. Two design methodologies are demonstrated. First, we use electrogenetics to transform redox signals into the quorum sensing autoinducer, AI-1, that, in turn, induces a tyrosine biosynthesis pathway transformed into a second population. Second, we use the electrogenetically stimulated AI-1 to actuate expression of ptsH, boosting the growth rate of tyrosine-producing cells, augmenting both their number and metabolic activity. In both cases, we show how signal propagation within the coculture helps to ensure tyrosine production. We suggest that this work lays a foundation for employing electrochemical stimuli and engineered cocultures for production of molecular products in biomanufacturing environments.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Chen-yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Yesudhas AJR, Ganapathy Raman P, Thirumalai A, Saxena S, Subramanian R. Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Shuchi Saxena
- Centre for Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
11
|
Oloketuyi S, Dilkaute C, Mazzega E, Jose J, de Marco A. Purification-independent immunoreagents obtained by displaying nanobodies on bacteria surface. Appl Microbiol Biotechnol 2019; 103:4443-4453. [PMID: 30989251 DOI: 10.1007/s00253-019-09823-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
The availability of preimmune libraries of antibody fragments allows for the fast generation of binders which can be expressed in both eukaryotic and prokaryotic systems. We exploited the recombinant nature of antibody fragments to demonstrate the possibility of expressing them as functional proteins displayed on the surface of Escherichia coli and by such a way to generate living reagents ready-to-use for diagnostics. Such immunoreagents were effectively exploited without the necessity of any purification step to prepare immunocapture surfaces suitable for the diagnostic of both cancer cells and toxic microalgae. The same nanobody-displaying bacteria were also engineered to coexpress GFP in their cytoplasm. Suspensions of such living fluorescent immunoreagents effectively bound to eukaryotic cells making them visible and quantifiable by flow cytometry analysis and using 96-well plate readers. The collected data showed the suitability of such living immunoreagents for reproducible and inexpensive diagnostic applications.
Collapse
Affiliation(s)
- Sandra Oloketuyi
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Carina Dilkaute
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Elisa Mazzega
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia.
| |
Collapse
|
12
|
Lindroos M, Hörnström D, Larsson G, Gustavsson M, van Maris AJA. Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:74-80. [PMID: 30412809 DOI: 10.1016/j.jhazmat.2018.10.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 05/20/2023]
Abstract
Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 ± 2 treated reactor volumes (39 ± 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 ± 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low-pH regeneration released all chloroquine without apparent capacity loss over three consecutive cycles. This shows the potential of melanized cells for treatment of conventional wastewater or highly concentrated upstream sources such as hospitals or manufacturing sites.
Collapse
Affiliation(s)
- Magnus Lindroos
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - David Hörnström
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Gen Larsson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Martin Gustavsson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Antonius J A van Maris
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| |
Collapse
|
13
|
Expression of xylanase on Escherichia coli using a truncated ice nucleation protein of Erwinia ananas (InaA). Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Molecular optimization of autotransporter-based tyrosinase surface display. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:486-494. [DOI: 10.1016/j.bbamem.2018.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/16/2022]
|
15
|
Sankaran S, Zhao S, Muth C, Paez J, del Campo A. Toward Light-Regulated Living Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800383. [PMID: 30128245 PMCID: PMC6097140 DOI: 10.1002/advs.201800383] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Indexed: 05/12/2023]
Abstract
Living materials are an emergent material class, infused with the productive, adaptive, and regenerative properties of living organisms. Property regulation in living materials requires encoding responsive units in the living components to allow external manipulation of their function. Here, an optoregulated Escherichia coli (E. coli)-based living biomaterial that can be externally addressed using light to interact with mammalian cells is demonstrated. This is achieved by using a photoactivatable inducer of gene expression and bacterial surface display technology to present an integrin-specific miniprotein on the outer membrane of an endotoxin-free E. coli strain. Hydrogel surfaces functionalized with the bacteria can expose cell adhesive molecules upon in situ light-activation, and trigger cell adhesion. Surface immobilized bacteria are able to deliver a fluorescent protein to the mammalian cells with which they are interacting, indicating the potential of such a bacterial material to deliver molecules to cells in a targeted manner.
Collapse
Affiliation(s)
| | - Shifang Zhao
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Chemistry DepartmentSaarland University66123SaarbrückenGermany
| | - Christina Muth
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Julieta Paez
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
| | - Aránzazu del Campo
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrückenGermany
- Chemistry DepartmentSaarland University66123SaarbrückenGermany
| |
Collapse
|
16
|
Mei Y, Zhao L, Liu Y, Gong H, Song Y, Lei L, Zhu Y, Jin Z, Ma S, Hu B, Sun Q, Liu H. Combining DNA Vaccine and AIDA-1 in Attenuated Salmonella Activates Tumor-Specific CD4 + and CD8 + T-cell Responses. Cancer Immunol Res 2017; 5:503-514. [PMID: 28468915 DOI: 10.1158/2326-6066.cir-16-0240-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022]
Abstract
Stimulation of tumor-specific responses in both CD4+ and CD8+ T cells has been a challenge for effective tumor vaccines. We designed a vaccine vector containing the AIDA-1 autotransporter and DNA vaccine elements, generating a murine melanoma vaccine that was delivered by the attenuated Salmonella strain SL7207. Growth of murine subcutaneous melanoma was significantly inhibited by intranasal immunization with the Salmonella tumor vaccine. The vaccine activated tumor-specific CD4+ and CD8+ T-cell responses, with increased T-cell proliferation, tumor antigen-specific Th1 cytokine production, increased percentages of tetramer positive cells, and cytotoxicity. CD4+ or CD8+ T-cell depletion resulted in the loss of antitumor activity of the Salmonella tumor vaccine, suggesting that the efficacy of the vaccine was dependent on both CD4+ and CD8+ T cells. Lung metastasis of the tumor was also inhibited by vaccine treatment. Similarly, the percentages of tumor-specific Th1 cytokine production by CD4+ and CD8+ T cells in the spleen, tumor, and bronchoalveolar lavage were increased after vaccine treatment. Tumor-specific proliferation of CD4+ and CD8+ T cells was also promoted by the vaccine. Tetramer staining and cytotoxicity assay showed enhanced tumor-specific CD8+ T-cell response after vaccine treatment. Therefore, the Salmonella tumor vaccine could activate both tumor-specific CD4+ and CD8+ T-cell responses. This vaccine strategy may be widely applicable to the development of oral or nasal vaccines against tumors. Cancer Immunol Res; 5(6); 503-14. ©2017 AACR.
Collapse
Affiliation(s)
- Yu Mei
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou, P.R. China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Yuan Song
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Qing Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:104-116. [DOI: 10.1016/j.bbamem.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023]
|
18
|
Gustavsson M, Hörnström D, Lundh S, Belotserkovsky J, Larsson G. Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior. Sci Rep 2016; 6:36117. [PMID: 27782179 PMCID: PMC5080590 DOI: 10.1038/srep36117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/07/2016] [Indexed: 02/07/2023] Open
Abstract
Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants.
Collapse
Affiliation(s)
- Martin Gustavsson
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Albanova University Center, SE 10691 Stockholm, Sweden
| | - David Hörnström
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Albanova University Center, SE 10691 Stockholm, Sweden
| | - Susanna Lundh
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Albanova University Center, SE 10691 Stockholm, Sweden
| | - Jaroslav Belotserkovsky
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Albanova University Center, SE 10691 Stockholm, Sweden
| | - Gen Larsson
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Albanova University Center, SE 10691 Stockholm, Sweden
| |
Collapse
|
19
|
Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 2016; 234:83-89. [PMID: 27485812 DOI: 10.1016/j.jbiotec.2016.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
An important aspect related to infectious pathogens is their exceptional adaptability in developing resistance, which leads to a perpetual challenge in the discovery of antimicrobial drugs with novel mechanisms of action. Among them, antimicrobial peptides (AMPs) stand out as promising anti-infective molecules. In order to overcome the high costs associated with isolation from natural sources or chemical synthesis of AMPs we propose the expression of Pa-MAP 2, a polyalanine AMP. Pa-MAP 2 was fused to an ELP-intein tag where the ELP (Elastin-like polypeptide) was used to promote aggregation and fast and cost-effective isolation after expression, and the intein was used to stimulate a controlled AMP release. For these, the vector pET21a was used to produce Pa-MAP 2 fused to the N-termini region of a modified Mxe GyrA intein followed by 60 repetitions of ELP. Purified Pa-MAP 2 showed a MIC of 25μM against E. coli ATCC 8739. Batch fermentation demonstrated that Pa-MAP-2 can be produced in both rich and defined media at yields 50-fold higher than reported for other AMPs produced by the ELP-intein system, and in comparable yields to expression systems with protease or chemical cleavage.
Collapse
|
20
|
Gustavsson M, Do TH, Lüthje P, Tran NT, Brauner A, Samuelson P, Truong NH, Larsson G. Improved cell surface display of Salmonella enterica serovar Enteritidis antigens in Escherichia coli. Microb Cell Fact 2015; 14:47. [PMID: 25889453 PMCID: PMC4415288 DOI: 10.1186/s12934-015-0227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/12/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the β-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity. RESULTS H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8. CONCLUSIONS We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.
Collapse
Affiliation(s)
- Martin Gustavsson
- Royal Institute of Technology (KTH), Division of Industrial Biotechnology, AlbaNova University Center, SE 10691, Stockholm, Sweden.
| | - Thi-Huyen Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam.
| | - Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| | - Ngoc Tan Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam.
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| | - Patrik Samuelson
- Royal Institute of Technology (KTH), Division of Industrial Biotechnology, AlbaNova University Center, SE 10691, Stockholm, Sweden.
| | - Nam Hai Truong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam.
| | - Gen Larsson
- Royal Institute of Technology (KTH), Division of Industrial Biotechnology, AlbaNova University Center, SE 10691, Stockholm, Sweden.
| |
Collapse
|
21
|
Sichwart S, Tozakidis IEP, Teese M, Jose J. Maximized Autotransporter-Mediated Expression (MATE) for Surface Display and Secretion of Recombinant Proteins in Escherichia coli. Food Technol Biotechnol 2015; 53:251-260. [PMID: 27904356 DOI: 10.17113/ftb.53.03.15.3802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression). It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 µg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli.
Collapse
Affiliation(s)
- Shanna Sichwart
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany
| | - Iasson E P Tozakidis
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| | - Mark Teese
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; Present address: Technical University Munich, Weihenstephaner Berg 3, DE-85354 Freising, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| |
Collapse
|
22
|
Fleetwood F, Andersson KG, Ståhl S, Löfblom J. An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains. Microb Cell Fact 2014; 13:179. [PMID: 25547008 PMCID: PMC4304625 DOI: 10.1186/s12934-014-0179-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Background Cell display technologies (e.g. bacterial display) are attractive in directed evolution as they provide the option to use flow-cytometric cell sorting for selection from combinatorial libraries. The aim of this study was to engineer and investigate an expression vector system with dual functionalities: i) recombinant display of Affibody libraries on Escherichia coli for directed evolution and ii) small scale secreted production of candidate affinity proteins, allowing initial downstream characterizations prior to subcloning. Autotransporters form a class of surface proteins in Gram-negative bacteria that have potential for efficient translocation and tethering of recombinant passenger proteins to the outer membrane. We engineered a bacterial display vector based on the E. coli AIDA-I autotransporter for anchoring to the bacterial surface. Potential advantages of employing autotransporters combined with E. coli as host include: high surface expression level, high transformation frequency, alternative promoter systems available, efficient translocation to the outer membrane and tolerance for large multi-domain passenger proteins. Results The new vector was designed to comprise an expression cassette encoding for an Affibody molecule, three albumin binding domains for monitoring of surface expression levels, an Outer membrane Protease T (OmpT) recognition site for potential protease-mediated secretion of displayed affinity proteins and a histidine-tag for purification. A panel of vectors with different promoters were generated and evaluated, and suitable cultivation conditions were investigated. The results demonstrated a high surface expression level of the different evaluated Affibody molecules, high correlation between target binding and surface expression level, high signal-to-background ratio, efficient secretion and purification of binders in OmpT-positive hosts as well as tight regulation of surface expression for the titratable promoters. Importantly, a mock selection using FACS from a 1:100,000 background yielded around 20,000-fold enrichment in a single round and high viability of the isolated bacteria after sorting. Conclusions The new expression vectors are promising for combinatorial engineering of Affibody molecules and the strategy for small-scale production of soluble recombinant proteins has the potential to increase throughput of the entire discovery process. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0179-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Protein technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Ken G Andersson
- Division of Protein technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Stefan Ståhl
- Division of Protein technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - John Löfblom
- Division of Protein technology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
23
|
Muñoz-Gutiérrez I, Moss-Acosta C, Trujillo-Martinez B, Gosset G, Martinez A. Ag43-mediated display of a thermostable β-glucosidase in Escherichia coli and its use for simultaneous saccharification and fermentation at high temperatures. Microb Cell Fact 2014; 13:106. [PMID: 25078445 PMCID: PMC4347601 DOI: 10.1186/s12934-014-0106-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022] Open
Abstract
Background The autotransporter (AT) system can potentially be used in the secretion of saccharolytic enzymes for the production of lignocellulosic biofuels and chemicals using Escherichia coli. Although ATs share similar structural characteristics, their capacity for secreting heterologous proteins widely varies. Additionally, the saccharolytic enzyme selected to be secreted should match the cell growth or cell fermentation conditions of E. coli. Results In the search for an AT that suits the physiological performance of the homo-ethanologenic E. coli strain MS04, an expression plasmid based on the AT antigen 43 (Ag43) from E. coli was developed. The β-glucosidase BglC from the thermophile bacterium Thermobifida fusca was displayed on the outer membrane of the E. coli strain MS04 using the Ag43 system (MS04/pAg43BglC). This strain was used to hydrolyze and ferment 40 g/L of cellobiose in mineral media to produce 16.65 g/L of ethanol in 48 h at a yield of 81% of the theoretical maximum. Knowing that BglC shows its highest activity at 50°C and retains more than 70% of its activity at pH 6, therefore E. coli MS04/pAg43BglC was used to ferment crystalline cellulose (Avicel) in a simultaneous saccharification and fermentation (SSF) process using a commercial cocktail of cellulases (endo and exo) at pH 6 and at a relatively high temperature for E. coli (45°C). As much as 22 g/L of ethanol was produced in 48 h. Conclusions The Ag43-BglC system can be used in E. coli strains without commercial β-glucosidases, reducing the quantities of commercial enzymes needed for the SSF process. Furthermore, the present work shows that E. coli cells are able to ferment sugars at 45°C during the SSF process using 40 g/L of Avicel, reducing the gap between the working conditions of the commercial saccharolytic enzymes and ethanologenic E. coli.
Collapse
Affiliation(s)
- Iván Muñoz-Gutiérrez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México. .,Present address: Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Cessna Moss-Acosta
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Berenice Trujillo-Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A. P. 510-3, 62250, Cuernavaca, Mor, México.
| |
Collapse
|
24
|
Process optimization for increased yield of surface-expressed protein in Escherichia coli. Bioprocess Biosyst Eng 2014; 37:1685-93. [DOI: 10.1007/s00449-014-1141-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/28/2014] [Indexed: 12/26/2022]
|
25
|
Abstract
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.
Collapse
|
26
|
Pavankumar AR, Norén J, Singh L, Chandappa Gowda NK. Scaling-up the production of recombinant Moringa oleifera coagulant protein for large-scale water treatment applications. RSC Adv 2014. [DOI: 10.1039/c3ra46654j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Scaling-up the production of Moringa oleifera coagulant protein to industrial level reveals it multiple advantages over the usage of chemical disinfectants and serves as a natural remedy for water treatment processes.
Collapse
Affiliation(s)
- Asalapuram Ramachandran Pavankumar
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
- Lab4Life Bio-Research Private Limited
| | - Johan Norén
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
| | - Lakhvinder Singh
- Department of Industrial Biotechnology
- School of Biotechnology
- Royal Institute of Technology (KTH)
- 10691 Stockholm, Sweden
| | | |
Collapse
|
27
|
de Marco A. Recent contributions in the field of the recombinant expression of disulfide bonded proteins in bacteria. Microb Cell Fact 2012; 11:129. [PMID: 22978724 PMCID: PMC3462667 DOI: 10.1186/1475-2859-11-129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/03/2022] Open
Abstract
The production of heterologous disulfide bonded proteins in bacteria remains a biotechnological challenge. A rapid literature survey results in the identification of some interesting proposals, such as the option of producing functional proteins in the cytoplasm in the presence of sulfhydryl oxidases and isomerases. Furthermore, an ever-increasing number of applications refers to recombinant proteins displayed at the bacterial surface. Time will tell whether these developments will lead to universally accepted laboratory protocols.
Collapse
|
28
|
Jarmander J, Gustavsson M, Do TH, Samuelson P, Larsson G. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 2012; 11:118. [PMID: 22943700 PMCID: PMC3511212 DOI: 10.1186/1475-2859-11-118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/18/2012] [Indexed: 11/17/2022] Open
Abstract
Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.
Collapse
Affiliation(s)
- Johan Jarmander
- School of Biotechnology, Division of Bioprocess Technology, Royal Institute of Technology, KTH, Stockholm, SE, 106 91, Sweden
| | | | | | | | | |
Collapse
|