1
|
Chronopoulou EG, Vlachakis D, Papageorgiou AC, Ataya FS, Labrou NE. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination. Biochim Biophys Acta Gen Subj 2019; 1863:565-576. [PMID: 30590099 DOI: 10.1016/j.bbagen.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
In the present work, a structure-based design approach was used for the generation of a novel variant of synthetic glutathione transferase (PvGmGSTU) with higher sensitivity towards pesticides. Molecular modelling studies revealed Phe117 as a key residue that contributes to the formation of the hydrophobic binding site (H-site) and modulates the affinity of the enzyme towards xenobiotic compounds. Site-saturation mutagenesis of position Phe117 created a library of PvGmGSTU variants with altered kinetic and binding properties. Screening of the library against twenty-five different pesticides, showed that the mutant enzyme Phe117Ile displays 3-fold higher catalytic efficiency and exhibits increased affinity towards α-endosulfan, compared to the wild-type enzyme. Based on these catalytic features the mutant enzyme Phe117Ile was explored for the development of an optical biosensor for α-endosulfan. The enzyme was entrapped in alkosixylane sol-gel system in the presence of two pH indicators (bromocresol purple and phenol red). The sensing signal was based on the inhibition of the sol-gel entrapped GST, with subsequent decrease of released [H+] by the catalytic reaction, measured by sol-gel entrapped indicators. The assay response at 562 nm was linear in the range pH = 4-7. Linear calibration curves were obtained for α-endosulfan in the range of 0-30 μΜ. The reproducibility of the assay response, expressed by relative standard deviation, was in the order of 4.1% (N = 28). The method was successfully applied to the determination of α-endosulfan in real water samples without sample preparation steps.
Collapse
Affiliation(s)
- Evangelia G Chronopoulou
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | | | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
2
|
Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. J Biol Chem 2019; 294:7002-7012. [PMID: 30770473 PMCID: PMC6497955 DOI: 10.1074/jbc.ra118.007141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein–protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.
Collapse
Affiliation(s)
- Barindra Sana
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sharon M Q Chee
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jantana Wongsantichon
- the Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand, and.,the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sarada Raghavan
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Robert C Robinson
- the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Farid J Ghadessy
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore,
| |
Collapse
|
3
|
Jones DD, Arpino JAJ, Baldwin AJ, Edmundson MC. Transposon-based approaches for generating novel molecular diversity during directed evolution. Methods Mol Biol 2014; 1179:159-172. [PMID: 25055777 DOI: 10.1007/978-1-4939-1053-3_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This chapter introduces a set of transposon-based methods that were developed to sample trinucleotide deletion, trinucleotide replacement, and domain insertion. Each approach has a common initial step that utilizes an engineered version of the Mu transposon called MuDel. The inherent low sequence specificity of MuDel results in its random insertion into target DNA during in vitro transposition. Removal of the transposon using a type IIS restriction endonuclease generates blunt-end random breaks at a frequency of one per target gene and the concomitant loss of 3 bp. Self-ligation or insertion of another DNA cassette results in the sampling of trinucleotide deletion or trinucleotide substitution/domain insertion, respectively.
Collapse
Affiliation(s)
- D Dafydd Jones
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, UK,
| | | | | | | |
Collapse
|
4
|
Shih PM, Liu TK, Tan KT. Fluorescence amplified detection of proteases by the catalytic activation of a semisynthetic sensor. Chem Commun (Camb) 2013; 49:6212-4. [DOI: 10.1039/c3cc42791a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Arpino JAJ, Czapinska H, Piasecka A, Edwards WR, Barker P, Gajda MJ, Bochtler M, Jones DD. Structural basis for efficient chromophore communication and energy transfer in a constructed didomain protein scaffold. J Am Chem Soc 2012; 134:13632-40. [PMID: 22822710 DOI: 10.1021/ja301987h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of useful functional biomolecular components not currently part of the natural repertoire is central to synthetic biology. A new light-capturing ultra-high-efficiency energy transfer protein scaffold has been constructed by coupling the chromophore centers of two normally unrelated proteins: the autofluorescent protein enhanced green fluorescent protein (EGFP) and the heme-binding electron transfer protein cytochrome b(562) (cyt b(562)). Using a combinatorial domain insertion strategy, a variant was isolated in which resonance energy transfer from the donor EGFP to the acceptor cyt b(562) was close to 100% as evident by virtually full fluorescence quenching on heme binding. The fluorescence signal of the variant was also sensitive to the reactive oxygen species H(2)O(2), with high signal gain observed due to the release of heme. The structure of oxidized holoprotein, determined to 2.75 Å resolution, revealed that the two domains were arranged side-by-side in a V-shape conformation, generating an interchromophore distance of ~17 Å (14 Å edge-to-edge). Critical to domain arrangement is the formation of a molecular pivot point between the two domains as a result of different linker sequence lengths at each domain junction and formation of a predominantly polar interdomain interaction surface. The retrospective structural analysis has provided an explanation for the basis of the observed highly efficient energy transfer through chromophore arrangement in the directly evolved protein scaffold and provides an insight into the molecular principles by which to design new proteins with coupled functions.
Collapse
Affiliation(s)
- James A J Arpino
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Structure of an engineered β-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 2012; 7:e39168. [PMID: 22720063 PMCID: PMC3375305 DOI: 10.1371/journal.pone.0039168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 11/21/2022] Open
Abstract
Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms.
Collapse
|
7
|
Hamorsky KT, Ensor CM, Pasini P, Daunert S. A protein switch sensing system for the quantification of sulfate. Anal Biochem 2011; 421:172-80. [PMID: 22067979 DOI: 10.1016/j.ab.2011.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 02/01/2023]
Abstract
Protein engineering has generated versatile methods and technologies that have been instrumental in advancements in the fields of sensing, therapeutics, and diagnostics. Herein, we demonstrate the employment of rational design to engineer a unique bioluminescence-based protein switch. A fusion protein switch combines two totally unrelated proteins, with distinct characteristics, in a manner such that the function of one protein is dependent on another. Herein we report a protein switch sensing system by insertion of the sulfate-binding protein (SBP) into the structure of the photoprotein aequorin (AEQ). In the presence of sulfate, SBP undergoes a conformational change bringing the two segments of AEQ together, "turning on" bioluminescence in a dose-dependent fashion, thus allowing quantitative detection of sulfate. A calibration plot was obtained by correlating the amount of bioluminescence generated with the concentration of sulfate present. The switch demonstrated selectivity and reproducibility, and a detection limit of 1.6×10(-4)M for sulfate. Moreover, the sensing system was validated by performing sulfate detection in clinical and environmental samples, such as, serum, urine, and tap water. The detection limits and working ranges in all three samples fall within the average normal/recommended sulfate levels in the respective matrices.
Collapse
|
8
|
Longjam N, Deb R, Sarmah AK, Tayo T, Awachat VB, Saxena VK. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011; 2011:905768. [PMID: 21776357 PMCID: PMC3135314 DOI: 10.4061/2011/905768] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/25/2011] [Accepted: 04/20/2011] [Indexed: 12/31/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the highly contagious diseases of domestic animals. Effective control of this disease needs sensitive, specific, and quick diagnostic tools at each tier of control strategy. In this paper we have outlined various diagnostic approaches from old to new generation in a nutshell. Presently FMD diagnosis is being carried out using techniques such as Virus Isolation (VI), Sandwich-ELISA (S-ELISA), Liquid-Phase Blocking ELISA (LPBE), Multiplex-PCR (m-PCR), and indirect ELISA (DIVA), and real time-PCR can be used for detection of antibody against nonstructural proteins. Nucleotide sequencing for serotyping, microarray as well as recombinant antigen-based detection, biosensor, phage display, and nucleic-acid-based diagnostic are on the way for rapid and specific detection of FMDV. Various pen side tests, namely, lateral flow, RT-LAMP, Immunostrip tests, and so forth. are also developed for detection of the virus in field condition.
Collapse
Affiliation(s)
- Neeta Longjam
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Rajib Deb
- Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - A. K. Sarmah
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Tilling Tayo
- Division of Animal Nutrition, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - V. B. Awachat
- Division of Poultry Science, Central Avian Research Institute (CARI), Izatnagar 243122, India
| | - V. K. Saxena
- Division of Veterinary Biochemistry and Physiology, Central Sheep and Wool Research Institute (CSWRI), Avikanagar, India
| |
Collapse
|
9
|
Volkov AN, Barrios H, Mathonet P, Evrard C, Ubbink M, Declercq JP, Soumillion P, Fastrez J. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase. Chembiochem 2011; 12:904-13. [PMID: 21425229 DOI: 10.1002/cbic.201000568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Indexed: 11/09/2022]
Abstract
Allosteric regulation of enzyme activity is a remarkable property of many biological catalysts. Up till now, engineering an allosteric regulation into native, unregulated enzymes has been achieved by the creation of hybrid proteins in which a natural receptor, whose conformation is controlled by ligand binding, is inserted into an enzyme structure. Here, we describe a monomeric enzyme, TEM1-β-lactamase, that features an allosteric aminoglycoside binding site created de novo by directed-evolution methods. β-Lactamases are highly efficient enzymes involved in the resistance of bacteria against β-lactam antibiotics, such as penicillin. Aminoglycosides constitute another class of antibiotics that prevent bacterial protein synthesis, and are neither substrates nor ligands of the native β-lactamases. Here we show that the engineered enzyme is regulated by the binding of kanamycin and other aminoglycosides. Kinetic and structural analyses indicate that the activation mechanism involves expulsion of an inhibitor that binds to an additional, fortuitous site on the engineered protein. These analyses also led to the defining of conditions that allowed an aminoglycoside to be detected at low concentration.
Collapse
Affiliation(s)
- Alexander N Volkov
- Laboratoire d'Ingénierie des Protéines et des Peptides, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Golynskiy MV, Koay MS, Vinkenborg JL, Merkx M. Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology. Chembiochem 2011; 12:353-61. [DOI: 10.1002/cbic.201000642] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Indexed: 12/31/2022]
|
11
|
Edwards WR, Williams AJ, Morris JL, Baldwin AJ, Allemann RK, Jones DD. Regulation of β-Lactamase Activity by Remote Binding of Heme: Functional Coupling of Unrelated Proteins through Domain Insertion. Biochemistry 2010; 49:6541-9. [DOI: 10.1021/bi100793y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Discriminating foot-and-mouth disease virus-infected and vaccinated animals by use of beta-galactosidase allosteric biosensors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1228-35. [PMID: 19553549 DOI: 10.1128/cvi.00139-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant beta-galactosidases accommodating one or two different peptides from the foot-and-mouth disease virus (FMDV) nonstructural protein 3B per enzyme monomer showed a drastic enzymatic activity reduction, which mainly affected proteins with double insertions. Recombinant beta-galactosidases were enzymatically reactivated by 3B-specific murine monoclonal and rabbit polyclonal antibodies. Interestingly, these recombinant beta-galactosidases, particularly those including one copy of each of the two 3B sequences, were efficiently reactivated by sera from infected pigs. We found reaction conditions that allowed differentiation between sera of FMDV-infected pigs, cattle, and sheep and those of naïve and conventionally vaccinated animals. These FMDV infection-specific biosensors can provide an effective and versatile alternative for the serological distinction of FMDV-infected animals.
Collapse
|
13
|
Ferraz RM, Rodríguez-Carmona E, Ferrer-Miralles N, Meyerhans A, Villaverde A. Screening HIV-1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. J Mol Recognit 2009; 22:255-60. [DOI: 10.1002/jmr.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Ferraz RM, Martínez MA, Cubarsi R, Villaverde A. Antiretroviral Therapy-Induced Functional Modification of IgG4 and IgM Responses in HIV-1–Infected Individuals Screened by an Allosteric Biosensor. ACTA ACUST UNITED AC 2008; 13:817-21. [DOI: 10.1177/1087057108323126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have explored the effect of antiretroviral drugs on the antiviral immune response in human immunodeficiency virus-1 (HIV-1)—infected patients by using an enzymatic immunosensor that detects epitope-modifying anti-gp41 antibodies. By this molecular sensing approach, we have identified an irreversible impact of drug administration on the functionality of IgG4 and IgM specific antibodies regarding the structural modification promoted on their target epitope. During the antiretroviral therapy, the prevalent induced fit promoted by IgM on the epitope was lost at the expense of that promoted by IgG4, suggesting alternative-ness in the neutralization potency of these antibody subpopulations. Because the particular drug composition of the antiretroviral treatment did not affect such immune shift, the obtained data strongly suggest that the drop in the viral load and the consequent lost of antigenemia are responsible for the functional adaptation observed in the humoral response. ( Journal of Biomolecular Screening 2008:817-821)
Collapse
Affiliation(s)
- Rosa María Ferraz
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Barcelona, Spain, Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain, CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Barcelona, Spain, CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain, , CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| |
Collapse
|
15
|
Teasley Hamorsky K, Ensor CM, Wei Y, Daunert S. A bioluminescent molecular switch for glucose. Angew Chem Int Ed Engl 2008; 47:3718-21. [PMID: 18383457 DOI: 10.1002/anie.200704440] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Edwards WR, Busse K, Allemann RK, Jones DD. Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 2008; 36:e78. [PMID: 18559359 PMCID: PMC2490766 DOI: 10.1093/nar/gkn363] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have successfully developed a new directed evolution method for generating integral protein fusions comprising of one domain inserted within another. Creating two connections between the insert and accepting parent domain can result in the inter-dependence of the separate protein activities, thus providing a general strategy for constructing molecular switches. Using an engineered transposon termed MuDel, contiguous trinucleotide sequences were removed at random positions from the bla gene encoding TEM-1 β-lactamase. The deleted trinucleotide sequence was then replaced by a DNA cassette encoding cytochrome b562 with differing linking sequences at each terminus and sampling all three reading frames. The result was a variety of chimeric genes encoding novel integral fusion proteins that retained TEM-1 activity. While most of the tolerated insertions were observed in loops, several also occurred close to the termini of α-helices and β-strands. Several variants conferred a switching phenotype on Escherichia coli, with bacterial tolerance to ampicillin being dependent on the presence of haem in the growth medium. The magnitude of the switching phenotype ranged from 4- to 128-fold depending on the insertion position within TEM-1 and the linker sequences that join the two domains.
Collapse
Affiliation(s)
- Wayne R Edwards
- School of Biosciences and School of Chemistry, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
17
|
Baldwin AJ, Busse K, Simm AM, Jones DD. Expanded molecular diversity generation during directed evolution by trinucleotide exchange (TriNEx). Nucleic Acids Res 2008; 36:e77. [PMID: 18559360 PMCID: PMC2490759 DOI: 10.1093/nar/gkn358] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trinucleotide exchange (TriNEx) is a method for generating novel molecular diversity during directed evolution by random substitution of one contiguous trinucleotide sequence for another. Single trinucleotide sequences were deleted at random positions in a target gene using the engineered transposon MuDel that were subsequently replaced with a randomized trinucleotide sequence donated by the DNA cassette termed SubSeq(NNN). The bla gene encoding TEM-1 beta-lactamase was used as a model to demonstrate the effectiveness of TriNEx. Sequence analysis revealed that the mutations were distributed throughout bla, with variants containing single, double and triple nucleotide changes. Many of the resulting amino acid substitutions had significant effects on the in vivo activity of TEM-1, including up to a 64-fold increased activity toward ceftazidime and up to an 8-fold increased resistance to the inhibitor clavulanate. Many of the observed amino acid substitutions were only accessible by exchanging at least two nucleotides per codon, including charge-switch (R164D) and aromatic substitution (W165Y) mutations. TriNEx can therefore generate a diverse range of protein variants with altered properties by combining the power of site-directed saturation mutagenesis with the capacity of whole-gene mutagenesis to randomly introduce mutations throughout a gene.
Collapse
|
18
|
Teasley Hamorsky K, Ensor C, Wei Y, Daunert S. A Bioluminescent Molecular Switch For Glucose. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Ferraz R, Aris A, González G, López-Santín J, Villaverde A, Álvaro G. Allosteric molecular sensing of anti-HIV antibodies by an immobilized engineered β-galactosidase. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Fernández G, Vera A, Villaverde A, Martínez MA. Analysis of recombinant protein toxicity in E. coli through a phage λ-based genetic screening system. Biotechnol Lett 2007; 29:1381-6. [PMID: 17479218 DOI: 10.1007/s10529-007-9390-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
The aspartic protease from the human immunodeficiency virus type 1 (HIV-1) is highly toxic to E. coli, thus impairing its yield in production processes. Proteolytic cleavage of essential cellular proteins is probably a major contributor to the bacteriocidal effect but this has not been proven. Through an adapted high-throughput lambda-based screening system, we have analyzed a set of HIV-1 protease mutants with distinguishable catalytic properties and we show that inactive enzymes are as toxic to E. coli cells as the wild-type enzyme. Together with additional data from directed molecular evolution approaches, these results indicate that the toxicity of the viral protease is not linked to its proteolytic activity. Our study also reveals that the lambda-based screening system is a robust new tool for the genetic analysis of highly toxic recombinant products in E. coli.
Collapse
Affiliation(s)
- Guerau Fernández
- Fundació irsiCaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Spain
| | | | | | | |
Collapse
|
21
|
Wright CM, Heins RA, Ostermeier M. As easy as flipping a switch? Curr Opin Chem Biol 2007; 11:342-6. [PMID: 17466569 DOI: 10.1016/j.cbpa.2007.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/17/2007] [Indexed: 11/15/2022]
Abstract
Proteins that behave as switches help to establish the complex molecular logic that is central to biological systems. Aspiring to be nature's equal, researchers have successfully created protein switches of their own design; in particular, numerous and varied zinc-triggered switches have been made. Recent studies in which such switches have been readily identified from combinatorial protein libraries support the notion that proteins are primed to show allosteric behavior and that newly created ligand-binding sites will often be functionally coupled to the original activity of the protein. If true, this notion suggests that switch engineering might be more tractable than previously thought, boding well for the basic science, sensing and biomedical applications for which protein switches hold much promise.
Collapse
Affiliation(s)
- Chapman M Wright
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA
| | | | | |
Collapse
|