1
|
Mansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, et alMansoor R, Commons RJ, Douglas NM, Abuaku B, Achan J, Adam I, Adjei GO, Adjuik M, Alemayehu BH, Allan R, Allen EN, Anvikar AR, Arinaitwe E, Ashley EA, Ashurst H, Asih PBS, Bakyaita N, Barennes H, Barnes KI, Basco L, Bassat Q, Baudin E, Bell DJ, Bethell D, Bjorkman A, Boulton C, Bousema T, Brasseur P, Bukirwa H, Burrow R, Carrara VI, Cot M, D’Alessandro U, Das D, Das S, Davis TME, Desai M, Djimde AA, Dondorp AM, Dorsey G, Drakeley CJ, Duparc S, Espié E, Etard JF, Falade C, Faucher JF, Filler S, Fogg C, Fukuda M, Gaye O, Genton B, Ghulam Rahim A, Gilayeneh J, Gonzalez R, Grais RF, Grandesso F, Greenwood B, Grivoyannis A, Hatz C, Hodel EM, Humphreys GS, Hwang J, Ishengoma D, Juma E, Kachur SP, Kager PA, Kamugisha E, Kamya MR, Karema C, Kayentao K, Kazienga A, Kiechel JR, Kofoed PE, Koram K, Kremsner PG, Lalloo DG, Laman M, Lee SJ, Lell B, Maiga AW, Mårtensson A, Mayxay M, Mbacham W, McGready R, Menan H, Ménard D, Mockenhaupt F, Moore BR, Müller O, Nahum A, Ndiaye JL, Newton PN, Ngasala BE, Nikiema F, Nji AM, Noedl H, Nosten F, Ogutu BR, Ojurongbe O, Osorio L, Ouédraogo JB, Owusu-Agyei S, Pareek A, Penali LK, Piola P, Plucinski M, Premji Z, Ramharter M, Richmond CL, Rombo L, Roper C, Rosenthal PJ, Salman S, Same-Ekobo A, Sibley C, Sirima SB, Smithuis FM, Somé FA, Staedke SG, Starzengruber P, Strub-Wourgaft N, Sutanto I, Swarthout TD, Syafruddin D, Talisuna AO, Taylor WR, Temu EA, Thwing JI, Tinto H, Tjitra E, Touré OA, Tran TH, Ursing J, Valea I, Valentini G, van Vugt M, von Seidlein L, Ward SA, Were V, White NJ, Woodrow CJ, Yavo W, Yeka A, Zongo I, Simpson JA, Guerin PJ, Stepniewska K, Price RN. Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data. BMC Med 2022; 20:85. [PMID: 35249546 PMCID: PMC8900374 DOI: 10.1186/s12916-022-02265-9] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. METHODS Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. RESULTS A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0-19.7 g/dL) in Africa, 11.6 g/dL (range 5.0-20.0 g/dL) in Asia and 12.3 g/dL (range 6.9-17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39-3.05], p < 0.001). CONCLUSIONS In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery.
Collapse
|
2
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
4
|
Ding J, Coldiron ME, Assao B, Guindo O, Blessborn D, Winterberg M, Grais RF, Koscalova A, Langendorf C, Tarning J. Adherence and Population Pharmacokinetic Properties of Amodiaquine When Used for Seasonal Malaria Chemoprevention in African Children. Clin Pharmacol Ther 2019; 107:1179-1188. [PMID: 31652336 PMCID: PMC7232861 DOI: 10.1002/cpt.1707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/29/2019] [Indexed: 01/23/2023]
Abstract
Poor adherence to seasonal malaria chemoprevention (SMC) might affect the protective effectiveness of SMC. Here, we evaluated the population pharmacokinetic properties of amodiaquine and its active metabolite, desethylamodiaquine, in children receiving SMC under directly observed ideal conditions (n = 136), and the adherence of SMC at an implementation phase in children participating in a case‐control study to evaluate SMC effectiveness (n = 869). Amodiaquine and desethylamodiaquine concentration‐time profiles were described simultaneously by two‐compartment and three‐compartment disposition models, respectively. The developed methodology to evaluate adherence showed a sensitivity of 65–71% when the first dose of SMC was directly observed and 71–73% when no doses were observed in a routine programmatic setting. Adherence simulations and measured desethylamodiaquine concentrations in the case‐control children showed complete adherence (all doses taken) in < 20% of children. This result suggests that more efforts are needed urgently to improve the adherence to SMC among children in this area.
Collapse
Affiliation(s)
- Junjie Ding
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Children's Hospital of Fudan University, Shanghai, China
| | | | | | | | - Daniel Blessborn
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Markus Winterberg
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,The WorldWide Antimalarial Resistance Network, Oxford, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Gallay J, Pothin E, Mosha D, Lutahakana E, Mazuguni F, Zuakulu M, Decosterd LA, Genton B. Predictors of residual antimalarial drugs in the blood in community surveys in Tanzania. PLoS One 2018; 13:e0202745. [PMID: 30192770 PMCID: PMC6128528 DOI: 10.1371/journal.pone.0202745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023] Open
Abstract
Background Understanding pattern of antimalarials use at large scale helps ensuring appropriate use of treatments and preventing the spread of resistant parasites. We estimated the proportion of individuals in community surveys with residual antimalarials in their blood and identified the factors associated with the presence of the most commonly detected drugs, lumefantrine and/or desbutyl-lumefantrine (LF/DLF) or sulfadoxine-pyrimethamine (SP). Methods A cross-sectional survey was conducted in 2015 in three regions of Tanzania with different levels of malaria endemicity. Interviews were conducted and blood samples collected through household surveys for further antimalarial measurements using liquid chromatography coupled to tandem mass spectrometry. In addition, diagnosis and treatment availability was investigated through outlet surveys. Multilevel mixed effects logistic regression models were used to estimate odds ratios for having LF/DLF or SP in the blood. Results Amongst 6391 participants, 12.4% (792/6391) had LF/DLF and 8.0% (510/6391) SP in the blood. Factors associated with higher odds of detecting LF/DLF in the blood included fever in the previous two weeks (OR = 2.6, p<0.001), living in districts of higher malaria prevalence (OR = 1.5, p<0.001) and living in a ward in which all visited drug stores had artemisinin-based combination therapies in stocks (OR = 2.7, p = 0.020). Participants in older age groups were less likely to have LF/DLF in the blood (OR = 0.9, p<0.001). Factors associated with higher odds of having SP in the blood included being pregnant (OR = 4.6, p<0.001), living in Mwanza (OR = 3.9, p<0.001 compared to Mbeya), fever in the previous two weeks (OR = 1.7, p<0.001) and belonging to older age groups (OR = 1.2, p<0.001). Conclusion The most significant predictors identified were expected. History of fever in the past two weeks and young age were significant predictors of LF/DLF in the blood, which is encouraging. Antimalarial drug pressure was high and hence the use of recommended first-line drugs in combination with malaria Rapid Diagnostics Tests should be promoted to ensure appropriate treatment.
Collapse
Affiliation(s)
- Joanna Gallay
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Service and Laboratory of Clinical Pharmacology, University Hospital, Lausanne, Switzerland
- * E-mail:
| | - Emilie Pothin
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Blaise Genton
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Department of Community Health, University Hospital, Lausanne, Switzerland
| |
Collapse
|