1
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
3
|
Gergova R, Muhtarova A, Mitov I, Setchanova L, Mihova K, Kaneva R, Markovska R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect Dis (Lond) 2019; 51:668-675. [DOI: 10.1080/23744235.2019.1638964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Raina Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Adile Muhtarova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivan Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Lena Setchanova
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Abraham T, Sistla S. Decoding the molecular epidemiology of group A streptococcus - an Indian perspective. J Med Microbiol 2019; 68:1059-1071. [PMID: 31192782 DOI: 10.1099/jmm.0.001018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Unlike western countries the knowledge of group A streptococcus (GAS) epidemiology in India remains patchy and incomplete. Typing is crucial for surveillance as well as in predicting the efficacy of multivalent M protein vaccine. The present study aimed to explore the emm types of 206 invasive and non-invasive GAS isolates from South India as well as reviewing all the published literature on GAS molecular epidemiology from India thereby generating a pan-Indian data to predict the conjectural coverage of the 30-valent M-protein vaccine in this population. METHODOLOGY emm typing and superantigen (SAg) profiling of GAS along with reviewing literatures on GAS molecular epidemiology from India. RESULTS This study revealed a high diversity of emm types with emm 63, 82, 183, 85, 92, 169, 42, 44, 106, 74, 12 being frequently encountered, belonging to twenty emm clusters. The pan-Indian data on prevalent emm types further supports our study findings with 135 emm different types. Six clusters dominated accounting for 80 % of the GAS isolates: E3(26 %), E6(20 %), E2(11 %), E4(10 %), D4(7 %), E1(6 %). No significant association was noted between emm types and the nature of infection (P≥0.05) while a few SAg profiles were significantly associated with certain emm types. Pan Indian data revealed that only 16 % of the emm types encountered were included in proposed 30-valent M protein based vaccine. CONCLUSION The coverage among the South Indian GAS isolates was 28.2 % which increased to only 46.6 % with the cross-opsonic effect, thus highlighting the importance of developing a specific multivalent vaccine including the prevalent emm types in India or considering the use of conserved C-repeat vaccines and non-M protein based vaccines.
Collapse
Affiliation(s)
- Tintu Abraham
- Department of Microbiology, JIPMER, Puducherry, India
| | | |
Collapse
|
5
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
6
|
Zheng PX, Chan YC, Chiou CS, Hsieh CL, Chiang-Ni C, Wu JJ. Highly prevalent emmSTG840.0 and emmSTC839.0 types of erythromycin non-susceptible group G Streptococcus isolated from bacteremia in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:831-838. [PMID: 28711431 DOI: 10.1016/j.jmii.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/09/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE Group G Streptococcus (GGS) infections in human have increased. Treatment relied on antibiotic therapy, including erythromycin. However, information regarding the dominant strains and erythromycin susceptibility in GGS bacteremia is limited. METHODS A total of 134 GGS were isolated from patients with bacteremia in a university hospital of southern Taiwan during 1993-2010. The erythromycin susceptibility was determined by disc diffusion and agar dilution assays. The bacterial species was determined by MALDI-TOF. The presence of erythromycin-resistant genes and emm types were determined by polymerase chain reaction and sequence. The clonal spreading was analyzed by pulsed-field gel electrophoresis with SmaI or SgrAI digestion. RESULTS The annual erythromycin non-susceptible rate varied, with an average of 40.3%. All erythromycin non-susceptible strains belonged to the Streptococcus dysgalactiae. No erythromycin non-susceptible strains belong to the anginosus group. The most prevalent erythromycin-resistant gene was mefA (57.4%), followed by ermB (37%), and ermA (3.7%). The N terminal hyper variable region of emm was sequenced to determine the emm type, and only S. dysgalactiae had the emm gene. The most prevalent emm types were emmSTG840.0 (17.2%), emmSTG485.0 (10.4%), and emmSTC839.0 (9.0%). 73% and 47% of the strains with only mefA and ermB belonged to emmSTG840.0 and emmSTC839.0 types, respectively. Pulsed-field gel electrophoresis showed that different clones of emmSTG840.0 and emmSTC839.0 strains were spread in this region during the 18 years of surveillance. CONCLUSION Our data indicate that there were dominant emm types with erythromycin non-susceptibility in S. dysgalactiae isolated from bacteremia in Taiwan, and thus constant surveillance is warranted.
Collapse
Affiliation(s)
- Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yuen-Chi Chan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Shun Chiou
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jiunn-Jong Wu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
7
|
Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes. Int J Med Microbiol 2017; 307:174-181. [DOI: 10.1016/j.ijmm.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/15/2016] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
|
8
|
Devi U, Borah PK, Malik V, Parida P, Mahanta J. M types & toxin gene profile of group A streptococci isolated from children in Dibrugarh district of Assam, India. Indian J Med Res 2016; 143:659-62. [PMID: 27488011 PMCID: PMC4989841 DOI: 10.4103/0971-5916.187116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Utpala Devi
- Regional Medical Research Centre, NE Region (ICMR), Post Box-105, Dibrugarh 786 001, Assam, India
| | - Prasanta Kumar Borah
- Regional Medical Research Centre, NE Region (ICMR), Post Box-105, Dibrugarh 786 001, Assam, India
| | - Vinita Malik
- Regional Medical Research Centre, NE Region (ICMR), Post Box-105, Dibrugarh 786 001, Assam, India
| | - Pratap Parida
- Regional Medical Research Centre, NE Region (ICMR), Post Box-105, Dibrugarh 786 001, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE Region (ICMR), Post Box-105, Dibrugarh 786 001, Assam, India
| |
Collapse
|
9
|
Srifuengfung S, Tribuddharat C, Sapcharoen S, Nitayanon P. Prevalence of the M Protein Gene in Group C and Group G Streptococci Isolated from Patients in Thailand. Jpn J Infect Dis 2016; 70:108-110. [PMID: 27169946 DOI: 10.7883/yoken.jjid.2015.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We surveyed group C and group G β-hemolytic streptococci for emm and emmL (emm -like) genes which encode the M protein, as well as determined their antimicrobial susceptibilities. A total of 97 isolates 79 GCS/GGS isolates and 18 isolates from other groups were tested for the M protein gene by PCR. Focusing on invasive infections with group A (GAS), group C (GCS), and group G (GGS) β-hemolytic streptococci isolated from blood, the M protein gene was found in 90.0%, 84.6%, and 78.3% of isolates, respectively. The hypervariable N terminal region of the emm was sequenced from 62 isolates, and 26 types of the emm gene were identified. Based on these results, type emm222.2 may be endemic to Thailand. The results of antimicrobial susceptibility testing of groups C, G, and non-groups A to G isolates indicated high susceptibility (range 82-100%) to penicillin, cefotaxime, chloramphenicol, clindamycin, erythromycin, linezolid, ofloxacin, and vancomycin, whereas the isolates showed low susceptibility (range 0-15.6%) to tetracycline.
Collapse
Affiliation(s)
- Somporn Srifuengfung
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | | | | | | |
Collapse
|
10
|
Korem M, Hidalgo-Grass C, Michael-Gayego A, Nir-Paz R, Salameh S, Moses AE. Streptococcal pyrogenic exotoxin G gene in blood and pharyngeal isolates of Streptococcus dysgalactiae subspecies equisimilis has a limited role in pathogenesis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 47:292-6. [DOI: 10.1016/j.jmii.2012.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
|
11
|
Mathur P, Bhardwaj N, Gupta G, Punia P, Tak V, Misra MC. Beta-hemolytic streptococcal infections in trauma patients. Eur J Trauma Emerg Surg 2014; 40:175-81. [PMID: 26815898 DOI: 10.1007/s00068-013-0326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE β-hemolytic streptococci (βHS) causes a diverse array of human infections. The molecular epidemiology of β-hemolytic streptococcal infections in trauma patients has not been studied. This study reports the molecular and clinical epidemiology of β-hemolytic streptococcal infections at a level 1 trauma centre of India. METHODS A total of 117 isolates of βHS were recovered from clinical samples of trauma patients. The isolates were identified to species level and subjected to antimicrobial susceptibility testing. Polymerase chain reaction (PCR) assay was done to detect exotoxin virulence genes. The M protein gene (emm gene) types of GAS strains were ascertained by sequencing. RESULTS Group A Streptococcus (GAS) was the most common isolate (64 %), followed by group G Streptococcus (23 %). A large proportion of GAS produced speB (99 %), smeZ (91 %), speF (95 %) and speG (87 %). smeZ was produced by 22 % of GGS. A total of 25 different emm types/subtypes were seen in GAS, with emm 11 being the most common. Resistance to tetracycline (69 %) and erythromycin (33 %) was commonly seen in GAS. CONCLUSIONS β-hemolytic streptococcal infections in Indian trauma patients are caused by GAS and non-GAS strains alike. A high diversity of emm types was seen in GAS isolates, with high macrolide and tetracycline resistance. SpeA was less commonly seen in Indian GAS isolates. There was no association between disease severity and exotoxin gene production.
Collapse
Affiliation(s)
- P Mathur
- Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - N Bhardwaj
- Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - G Gupta
- Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - P Punia
- Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - V Tak
- Department of Laboratory Medicine, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - M C Misra
- Department of Surgery, Jai Prakash Narain Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
12
|
Seroprevalence of Streptococcal Inhibitor of Complement (SIC) suggests association of streptococcal infection with chronic kidney disease. BMC Nephrol 2013; 14:101. [PMID: 23642030 PMCID: PMC3651410 DOI: 10.1186/1471-2369-14-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) is an etiological agent for the immune mediated sequela post streptococcal glomerulonephritis (PSGN). In some populations PSGN is recognized as a risk factor for chronic kidney disease (CKD) and end-stage renal disease (ESRD). It was found that a significantly greater proportion of subjects with past history of PSGN than without the history exhibited seroreactions to streptococcal antigens called streptococcal inhibitor of complement (SIC) and to distantly related SIC (DRS). These antigens are expressed by major PSGN-associated GAS types. We therefore predicted that in populations such as India, which is endemic for streptococcal diseases and which has high prevalence of CKD and ESRD, greater proportions of CKD and ESRD patients exhibit seroreaction to SIC and DRS than healthy controls. METHODS To test this we conducted a SIC and DRS seroprevalence study in subjects from Mumbai area. We recruited 100 CKD, 70 ESRD and 70 healthy individuals. RESULTS Nineteen and 35.7% of CKD and ESRD subjects respectively were SIC antibody-positive, whereas only 7% of healthy cohort was seropositive to SIC. Furthermore, significantly greater proportion of the ESRD patients than the CKD patients is seropositive to SIC (p=0.02; odds ratio 2.37). No association was found between the renal diseases and DRS-antibody-positivity. CONCLUSIONS Past infection with SIC-positive GAS is a risk factor for CKD and ESRD in Mumbai population. Furthermore, SIC seropositivity is predictive of poor prognosis of CKD patients.
Collapse
|