1
|
Mohammedali A, Biernacka K, Barker RM, Holly JMP, Perks CM. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers (Basel) 2024; 16:2113. [PMID: 38893232 PMCID: PMC11171178 DOI: 10.3390/cancers16112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
Collapse
Affiliation(s)
- Alaa Mohammedali
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Kalina Biernacka
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Jeff M. P. Holly
- Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK;
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| |
Collapse
|
2
|
Chen X, Zhang Y, Zhang P, Wei M, Tian T, Guan Y, Han C, Wei W, Ma Y. IGFBP2 drives epithelial-mesenchymal transition in hepatocellular carcinoma via activating the Wnt/β-catenin pathway. Infect Agent Cancer 2023; 18:73. [PMID: 37957694 PMCID: PMC10644524 DOI: 10.1186/s13027-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
Metastasis has emerged as a major impediment to achieve successful therapeutic outcomes in hepatocellular carcinoma (HCC). Nonetheless, the intricate molecular mechanisms governing the progression of HCC remain elusive. Herein, we present evidence highlighting the influence exerted by insulin-like growth factor-binding protein 2 (IGFBP2) as a potent oncogene driving the malignant phenotype. Our investigation reveals a marked elevation of IGFBP2 expression in primary tumors, concomitant with the presence of mesenchymal biomarkers in HCC. Through in vitro and in vivo experimentation, we demonstrate that the overexpression of IGFBP2 expedites the progression of epithelial-mesenchymal transition (EMT) and facilitates the metastatic potential of HCC cells, chiefly mediated by the Wnt/β-catenin signaling pathway. Notably, knockdown of IGFBP2 significantly decreased the expression of total and nuclear β-catenin, N-cadherin and vimentin in the treatment of the specific activator of Wnt/β-catenin CHIR-99021. Collectively, our findings identify IGFBP2 as a pivotal regulator within the HCC EMT axis, whereby its overexpression confers the distinctly aggressive clinical features characteristic of the disease.
Collapse
Grants
- 82104187 National Natural Science Foundation of China
- 82104187 National Natural Science Foundation of China
- 82104187 National Natural Science Foundation of China
- 1308085QH130 the Natural Science Foundation of Anhui Province
- 1308085QH130 the Natural Science Foundation of Anhui Province
- JKZD20212 the Open Project Program of MOE Key Laboratory of Population Health Across Life Cycle
- JKZD20212 the Open Project Program of MOE Key Laboratory of Population Health Across Life Cycle
- KFJJ-2020-12 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education
- KFJJ-2020-12 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education
- KFJJ-2021-9 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education, China
- KFJJ-2021-9 the Open Fund of Key Laboratory of Anti Inflammatory and Immune Medicine, Ministry of Education, China
- AYPYS2021-2 the Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China
- AYPYS2021-2 the Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China
Collapse
Affiliation(s)
- Xiu Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Mengzhu Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Tian Tian
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Liu M, Yan W, Chen D, Luo J, Dai L, Chen H, Chen KN. IGFBP1 hiWNT3A lo Subtype in Esophageal Cancer Predicts Response and Prolonged Survival with PD-(L)1 Inhibitor. BIOLOGY 2022; 11:biology11111575. [PMID: 36358276 PMCID: PMC9687176 DOI: 10.3390/biology11111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
PD-(L)1 inhibitor could improve the survival of locally advanced esophageal cancer (ESCA) patients, but we cannot tailor the treatment to common biomarkers. WNT signaling activation was associated with primary resistance to immunotherapy. In this study, we used our two clinical cohorts (BJCH n = 95, BJIM n = 21) and three public cohorts to evaluate and verify a new immunotherapeutic biomarker based on WNT signaling in ESCA patients. Our findings showed that WNT signaling-related genes stratified TCGA patients into Cluster 1, 2, and 3, among which, Cluster 3 had the worst prognosis. The most up- and down-regulated genes in Cluster 3 were IGFBP1 and WNT3A. Further analysis validated that IGFBP1hiWNT3Alo ESCA patients had significantly poor RFS and OS in the TCGA and BJCH cohorts. Interestingly, IGFBP1hiWNT3Alo patients had a good response and prognosis with immunotherapy in three independent cohorts, exhibiting better predictive value than PD-L1 expression (signature AUC = 0.750; PD-L1 AUC = 0.571). Moreover, IGFBP1hiWNT3Alo patients may benefit more from immunotherapy than standard treatment (p = 0.026). Immune cell infiltration analysis revealed a significant increase in DC infiltration in IGFBP1hiWNT3Alo patients post-immunotherapy (p = 0.022), which may enhance immune response. The IGFBP1hiWNT3Alo signature could predict patients who benefited from PD-(L)1 inhibitor treatment and may serve as a biomarker in ESCA.
Collapse
Affiliation(s)
- Meichen Liu
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Wanpu Yan
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jiancheng Luo
- Aiyi Technology Co., Ltd., Room 1004, Building 3, Greenland Qihang, Biomedical Industry Base, Daxing District, Beijing 102629, China
| | - Liang Dai
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Correspondence: (H.C.); (K.-N.C.)
| | - Ke-Neng Chen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
- Correspondence: (H.C.); (K.-N.C.)
| |
Collapse
|
4
|
Nivetha R, Arvindhvv S, Baba AB, Gade DR, Gopal G, K C, Kallamadi KPR, Reddy GB, Nagini S. Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signaling. Anticancer Agents Med Chem 2022; 22:2619-2636. [DOI: 10.2174/1871520622666220204115151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Background & Objectives:
There is growing evidence to implicate the insulin/IGF-1R/PI3K/Akt signaling cascade in breast cancer development and the central role of aldose reductase (AR) in mediating the crosstalk between this pathway and angiogenesis. The current study was designed to investigate whether nimbolide, a neem limonoid, targets this oncogenic signaling network to prevent angiogenesis in breast cancer.
Methods:
Breast cancer cells (MCF-7, MDA-MB-231), EAhy926 endothelial cells, MDA-MB-231 xenografted nude mice, and tumour tissues from breast cancer patients were used for the study. Expression of AR and key players in IGF-1/PI3K/Akt signaling and angiogenesis was evaluated by qRT-PCR, immunoblotting, and immunohistochemistry. Molecular docking and simulation, overexpression, and knockdown experiments were performed to determine whether nimbolide targets AR and IGF-1R
Results:
Nimbolide inhibited AR with consequent blockade of the IGF-1/PI3K/Akt and HIF-1/VEGF signaling circuit by influencing the phosphorylation and intracellular localisation of key signaling molecules. Downregulation of DNMT-1, HDAC-6, miR-21, HOTAIR, and H19 with upregulation of miR-148a/miR-152 indicated that nimbolide regulates AR and IGF-1/PI3K/Akt signaling via epigenetic modifications. Coadministration of nimbolide with metformin and the chemotherapeutic drugs tamoxifen/cisplatin displayed higher efficacy than single agents in inhibiting IGF-1/PI3K/Akt/AR signaling. Grade-wise increases in IGF-1R and AR expression in breast cancer tissues underscore their value as biomarkers of progression.
Conclusions:
This study provides evidence for the anticancer effects of nimbolide in cellular and mouse models of breast cancer besides providing leads for new drug combinations. It has also opened up avenues for investigating potential molecules such as AR for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Ramesh Nivetha
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Soundararajan Arvindhvv
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Abdul Basit Baba
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Deepak Reddy Gade
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, Tamil Nadu, India
| | - Chitrathara K
- Department of Surgical & Gynecologic Oncology, VPS Lakeshore Hospital, Nettoor, Maradu, Kochi, Kerala 682040
| | | | - G. Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad-500007, India
| | - Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| |
Collapse
|
5
|
Verma BK, Kondaiah P. Regulation of β-catenin by IGFBP2 and its cytoplasmic actions in glioma. J Neurooncol 2020; 149:209-217. [PMID: 32803659 DOI: 10.1007/s11060-020-03596-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE IGFBP2 is one of the highly expressed genes in glioblastoma (GBM). It has both IGF dependent and independent activities. IGF independent actions are mediated by the activation of integrin signalling through its RGD motif present at C-terminal domain. One of the actions of IGFBP2 is to regulate β-catenin by the inactivation of GSK3β, which preferentially accumulates in the cytoplasm. The mechanism of nuclear β-catenin regulation by IGFBP2 and role of cytoplasmic β-catenin is not clear. We aimed to understand the mechanism in GBM cell lines. METHODS The gene expression studies were performed by RT-PCR, western blot analysis; the knockdown of genes was performed by shRNA transfection; RNAIP and luciferase reporter assays were utilized to study the cytoplasmic regulation of genes by β-catenin; neurosphere assays were performed to study the stemness of cells. RESULTS IGFBP2 overexpression or treatment in GBM cells regulates β-catenin, TRIM33 (E3 ubiquitin ligase) and Oct4 genes. TRIM33 was induced by IGFBP2. β-catenin was found to accumulate predominantly in the cytoplasm and nuclear β-catenin was depleted by IGFBP2 induced TRIM33. IGFBP2 regulated cytoplasmic β-catenin binds to 3' UTR of Oct4 RNA. IGFBP2 was also able to induce stemness of glioma cells. CONCLUSIONS IGFBP2 induces TRIM33 which regulates the nuclear β-catenin protein. In addition, IGFBP2 stabilizes the cytoplasmic β-catenin which is involved in the regulation of Oct4 transcript and consequently induction of stemness of glioma cells.
Collapse
Affiliation(s)
- Brijesh Kumar Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Biological Sciences Building, Bangalore, 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Biological Sciences Building, Bangalore, 560012, India.
| |
Collapse
|
6
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
7
|
Hu X, Chen M, Liu W, Li Y, Fu J. Preoperative plasma IGFBP2 is associated with nodal metastasis in patients with penile squamous cell carcinoma. Urol Oncol 2019; 37:452-461. [DOI: 10.1016/j.urolonc.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
|
8
|
Overexpression of IGFBP2 mRNA predicts poor survival in patients with glioblastoma. Biosci Rep 2019; 39:BSR20190045. [PMID: 31138764 PMCID: PMC6567677 DOI: 10.1042/bsr20190045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
The prognosis of patients with glioblastoma (GBM) is dismal. It has been reported that Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) is associated with the mobility and invasion of tumor cells. We investigated the expression of IGFBP2 mRNA in GBMs and its clinical relevance, using tissue microarrays and RNAscope in situ hybridization in 180 GBMs and 13 normal or edematous tissues. The correlations between the expression and clinical pathological parameters as well as some other biomarkers were analyzed. Overexpression of IGFBP2 mRNA was observed in 23.9% of tumors tested. No expression of IGFBP2 mRNA was detected in normal or edematous tissues. Kaplan–Meier survival analysis showed that the survival time of all the patients with high IGFBP2 tumors had shorter survival than those with low IGFBP2 (P<0.01). Univariate regression and multivariate regression both indicated that the expression of IGFBP2 transcript level was an independent prognostic factor (P=0.008 and 0.007, respectively). Furthermore, expression of IGFBP2 mRNA was related to the occurrence of isocitrate dehydrogenase 1 (IDH1) mutation, high heat shock protein 27 (Hsp27) expression and telomerase reverse transcriptase (TERT) promoter mutation (TERTp+) (P=0.013, 0.015 and 0.016, respectively), and patients with TERTp+/IGFBP2high showed the shortest survival. In conclusion, IGFBP2 mRNA expression status is an independent prognostic biomarker in GBMs, and the combination of IGFBP2 mRNA and TERTp status might serve as a prognostic indicator in patients with GBM.
Collapse
|
9
|
Upregulation of MIIP regulates human breast cancer proliferation, invasion and migration by mediated by IGFBP2. Pathol Res Pract 2019; 215:152440. [PMID: 31078343 DOI: 10.1016/j.prp.2019.152440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Abstract
AIMS The migration and invasion inhibitory protein (MIIP) was initially discovered in a yeast two-hybrid screen for proteins that interact and inhibit the migration and invasion-promoting protein insulin-like growth factor binding protein 2 (IGFBP2). This study aims to evaluate the biological effects of MIIP in breast cancer by targeting IGFBP2. MATERIALS AND METHODS Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were used to evaluate the abnormal expression of MIIP and IGFBP2 in breast cancer tissue or breast cancer cell lines. Transfection assay was used to overexpress MIIP protein in breast cancer cells. MTT assay and colony formation assay were used to detect cell viability of breast cancer cells after MIIP overexpression. Transwell and wound-healing assays were used to detect cell invasion and migration after MIIP overexpression. RESULTS MIIP was significantly decreased and IGFBP2 was significantly increased in breast cancer tissues versus para cancerous. Breast cancer tissues of HER2 overexpression and Basal-like were more significant than Luminal A and Luminal B. MIIP was obviously downregulated and IGFBP2 was upregulated in MDA-MB-231, SKBR3 and MCF-7 versus MCF-10A especially in MDA-MB-231. Cell proliferation, cell migration and cell invasion were significantly inhibited after overexpression of MIIP. IGFBP2 was downregulated after overexpression of MIIP. The effects of MIIP on cell proliferation, cell migration and invasion were significantly reversed by IGFBP2. CONCLUSION The abnormal expression of MIIP in breast cancer affects the cell biological effects. IGFBP2 was regulated via MIIP which may be associated with these biological effects. These results reveal that MIIP can be a potential target for breast cancer treatment.
Collapse
|
10
|
Zhao S, Wu L, Kuang Y, Su J, Luo Z, Wang Y, Li J, Zhang J, Chen W, Li F, He Y, Tao J, Zhou J, Xu X, Peng C, Chen X. Downregulation of CD147 induces malignant melanoma cell apoptosis via the regulation of IGFBP2 expression. Int J Oncol 2018; 53:2397-2408. [PMID: 30272281 PMCID: PMC6203154 DOI: 10.3892/ijo.2018.4579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Cluster of differentiation (CD)147, as a transmembrane glycoprotein, is highly expressed in a variety of tumors. Accumulating evidence has demonstrated that CD147 serves critical roles in tumor cell death and survival; however, the underlying mechanism requires further investigation. In the present study, it was revealed that CD147 knockdown significantly increased melanoma cell apoptosis. In addition, downregulation of CD147 reversed the malignant phenotype of melanoma, as demonstrated by the induction of tumor cell apoptosis in a xenograft mouse model. In addition, a human apoptosis antibody array was performed and 9 differentially expressed apoptosis-related proteins associated with CD147 were identified, including insulin-like growth factor-binding protein 2 (IGFBP2). Additionally, CD147 knockdown was observed to significantly decreased IGFBP2 expression at the mRNA and protein levels in melanoma cells. Providing that IGFBP2 is a downstream molecule in the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, the effects of CD147 on this particular pathway were investigated. Interestingly, the expression of phosphorylated (p)-AKT and p‑mechanistic target of rapamycin was attenuated, whereas PTEN was markedly upregulated in CD147-underexpressing melanoma cells. Furthermore, application of a PI3K‑specific inhibitor also decreased IGFBP2 expression. Importantly, IGFBP2 was highly expressed in clinical tissues of melanoma compared with the control group, and its expression exhibited a positive association with CD147. The present study revealed that CD147 served a critical role in mediating the apoptosis of melanoma cells via IGFBP2 and the PTEN/PI3K/AKT signaling pathway. IGFBP2 and CD147 were observed to be overexpressed in clinical melanoma tissues; IGFBP2 was shown to be positively associated with CD147 expression, suggesting that CD147 may be considered as a potential therapeutic target for chemotherapy or prevention for in melanoma.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Lisha Wu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Juan Su
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Fangfang Li
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Yijing He
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030
| | - Jianda Zhou
- Department of Plastic Surgery of The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Xiaowei Xu
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| |
Collapse
|
11
|
Insulin growth factor binding protein 2 mediates the progression of lymphangioleiomyomatosis. Oncotarget 2018; 8:36628-36638. [PMID: 28410230 PMCID: PMC5482682 DOI: 10.18632/oncotarget.16695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease that almost exclusively affects women. LAM cells migrate to the lungs, where they cause cystic destruction of lung parenchyma. Mutations in TSC1 or TSC2 lead to the activation of the mammalian target of rapamycin complex-1, a kinase that regulates growth factor-dependent protein translation, cell growth, and metabolism. Insulin-like growth factor binding protein 2 (IGFBP2) binds insulin, IGF1 and IGF2 in circulation, thereby modulating cell survival, migration, and invasion in neoplasms. In this study, we identified that IGFBP2 primarily localized in the nucleus of TSC2-null LAM patient-derived cells in vitro and in vivo. We also showed that nuclear accumulation of IGFBP2 is closely associated with estrogen receptor alpha (ERa) expression. Furthermore, estrogen treatment induced IGFBP2 nuclear translocation in TSC2-null LAM patient-derived cells. Importantly, depletion of IGFBP2 by siRNA reduced cell proliferation, enhanced apoptosis, and decreased migration and invasion of TSC2-null LAM patient-derived cells. More interestingly, depletion of IGFBP2 markedly decreased the phosphorylation of MAPK in LAM patient-derived TSC2-null cells. Collectively, these results suggest that IGFBP2 plays an important role in promoting tumorigenesis, through estrogen and ERalpha signaling pathway. Thus, targeting IGFBP2 may serve as a potential therapeutic strategy for women with LAM and other female gender specific neoplasms.
Collapse
|
12
|
Gao C, Zhang RS, Zheng N, Wang C. Adeno-associated virus type 2-mediated gene transfer of a short hairpin-RNA targeting human IGFBP-2 suppresses the proliferation and invasion of MDA-MB-468 cells. Mol Med Rep 2018; 17:4383-4391. [PMID: 29344663 PMCID: PMC5802212 DOI: 10.3892/mmr.2018.8434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/14/2017] [Indexed: 01/25/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is prepotent in the biological treatment of breast tumor because of its low pathogenicity and immunogenicity. Our previous study demonstrated that insulin‑like growth factor‑binding protein 2 (IGFBP‑2) was highly expressed in patients with breast metastasis. In the present study, the effects of recombinant AAV2 on the growth and metastasis of breast cancer cells were determined in vitro, and in vivo. rAAV2-ZsGreen-shRNA-scramble and rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2 were used to transfect MDA‑MB‑468, and MCF‑10A cells respectively, and observed that these virus could not penetrate the normal human breast epithelia MCF‑10A cell line. To investigate the effect of the recombinant virus on chemotherapeutics, paclitaxel was added to MDA‑MB‑468 cells and it was demonstrated that rAAV2‑ZsGreen‑shRNA‑hIGFBP-2-infected MDA-MB-468 cells were highly chemosensitive to paclitaxel compared with rAAV2‑ZsGreen‑shRNA‑scramble‑injected cells. In addition, it was demonstrated that the invasive ability of rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2‑infected MDA-MB-468 cells was highly impaired compared with the rAAV2‑ZsGreen‑shRNA‑scramble group. In the nude mice xenografts, the rAAV2‑ZsGreen‑shRNA‑hIGFBP‑2 injection inhibited tumor growth and Ki‑67 expression was significantly downregulated compared with the scramble group. Following IGFBP‑2 knockdown using rAAV2-ZsGreen-shRNA-hIGFBP‑2, matrix metalloproteinase‑2 expression was significantly reduced in tumor tissues compared with that in rAAV2‑ZsGreen‑shRNA‑scramble treated tumor tissues. These findings have provided a direction for the application of novel AAV2‑based therapeutics for treating aggressive triple‑negative breast cancer types.
Collapse
Affiliation(s)
- Chao Gao
- The Center for Clinical Reproductive Medicine, Jiangsu Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ru-Song Zhang
- The Pathology Department, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu 210002, P.R. China
| | - Nan Zheng
- State Key Laboratory of Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chen Wang
- State Key Laboratory of Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
13
|
Hawsawi Y, Humphries MP, Wright A, Berwick A, Shires M, Al-Kharobi H, El-Gendy R, Jove M, Twelves C, Speirs V, Beattie J. Deregulation of IGF-binding proteins -2 and -5 contributes to the development of endocrine resistant breast cancer in vitro. Oncotarget 2017; 7:32129-43. [PMID: 27050076 PMCID: PMC5078002 DOI: 10.18632/oncotarget.8534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022] Open
Abstract
Tamoxifen (TAM) remains the adjuvant therapy of choice for pre-menopausal women with ERα-positive breast cancer. Resistance and recurrence remain, however, a major challenge with many women relapsing and subsequently dying. The insulin-like growth factor (IGF) axis is involved in breast cancer pathogenesis and progression to endocrine resistant disease, but there is very little data on the expression and potential role of IGF-binding proteins (IGFBP) during acquisition of the resistant phenotype. The aim of this study was to determine the expression and functional role of IGFBP-2 and -5 in the development of TAM resistance (TamR) in vitro and to test retrospectively whether they were predictive of resistance in a tissue microarray of 77 women with primary breast cancers who relapsed on/after endocrine therapy and 193 who did not with long term follow up. Reciprocal expression of IGFBP-2 and IGFBP-5 was observed at both mRNA and protein level in TamR cells. IGFBP-2 expression was increased by 10-fold while IGFBP-5 was decreased by 100-fold, compared to TAM-sensitive control cells. shRNA-mediated silencing of IGFBP-2 in TamR cells restored TAM sensitivity suggesting a causal role for this gene in TamR. While silencing of IGFBP-5 in control cells had no effect on TAM sensitivity, it significantly increased the migratory capacity of these cells. Quantitative image analysis of immunohistochemical data failed, however, to demonstrate an effect of IGFBP2 expression in endocrine-relapsed patients. Likewise, IGFBP-2 and IGFBP-5 expression failed to show any significant associations with survival either in patients relapsing or those not relapsing on/after endocrine therapy. By contrast, in silico mining of a separate published dataset showed that in patients who received endocrine treatment, loss of expression of IGBP-5 was significantly associated with worse survival. Overall these data suggest that co-ordinated and reciprocal alteration in IGFBP-2 and −5 expression may play a role in the acquisition of endocrine resistance.
Collapse
Affiliation(s)
- Yousef Hawsawi
- Department of Oral Biology, St James's University Hospital, Leeds, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, UK.,Current address: Department of Breast Medical Oncology, MD Anderson Cancer Centre, University of Texas, Houston, USA
| | | | - Alexander Wright
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Angelene Berwick
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Mike Shires
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Hanaa Al-Kharobi
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| | - Reem El-Gendy
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| | - Maria Jove
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK
| | - Chris Twelves
- St James's Institute of Oncology, St James's University Hospital, Leeds, UK.,Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, UK
| | - James Beattie
- Department of Oral Biology, St James's University Hospital, Leeds, UK
| |
Collapse
|
14
|
Andergassen U, Kölbl AC, Mumm JN, Mahner S, Jeschke U. Triple-negative breast cancer: New therapeutic options via signalling transduction cascades. Oncol Rep 2017; 37:3055-3060. [PMID: 28440460 DOI: 10.3892/or.2017.5512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer is a highly aggressive type of mammalian carcinoma. It is defined by a rather weak expression of estrogen-, progesterone- and Her2-receptor, and is thus difficult to treat, resulting in low disease-free and overall survival rates of the affected patients. Hence it is important to find new therapeutic options. To this aim we analysed the incidence of some molecules from different signal transduction cascades by immunohistochemistry, which are known to correlate with triple-negative breast cancer, and correlated the expression of these molecules to different tumour traits, such as size, grading, menopausal stage, histology, lymph node affection, remote metastasis formation, and to the incidence of local and lymph node recurrence and metastasis by statistical analysis. Statistically significant correlations were found for a number of tumour characteristics and signalling molecules: HIF1α is correlated to tumour grading, β-catenin to the menopausal state of the patient, and for Notch1 a relation to lymph node affection is seen. In terms of different recurrences, a correlation of β-catenin to metastasis formation and lymph node affection could be shown, as well as coherences between XBP1 and lymph node recurrence, Notch1 and metastasis formation and FOXP3 and the occurrence of local recurrence. The presented results are in accordance with formerly published studies and therefore might comprise opportunities to develop new therapeutical strategies, which could help to handle this aggressive form of breast cancer in a manner, by which side effects would be reduced and therapeutical efficiency is increased.
Collapse
Affiliation(s)
- Ulrich Andergassen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Alexandra C Kölbl
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Jan-Niclas Mumm
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| |
Collapse
|
15
|
Zhao JW, Fang F, Guo Y, Zhu TL, Yu YY, Kong FF, Han LF, Chen DS, Li F. HPV16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:180. [PMID: 27884161 PMCID: PMC5123399 DOI: 10.1186/s13046-016-0454-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Background The integration of human papilloma virus (HPV) into host genome is one of the critical steps that lead to the progression of precancerous lesion into cancer. However, the mechanisms and consequences of such integration events are poorly understood. This study aims to explore those questions by studying high risk HPV16 integration in women with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (SCC). Methods Specifically, HPV integration status of 13 HPV16-infected patients were investigated by ligation-mediated PCR (DIPS-PCR) followed by DNA sequencing. Results In total, 8 HPV16 integration sites were identified inside or around genes associated with cancer development. In particular, the well-studied tumor suppressor genes SCAI was found to be integrated by HPV16, which would likely disrupt its expression and therefore facilitate the migration of tumor. On top of that, we observed several cases of chromosome translocation events coincide with HPV integration, which suggests the existence of chromosome instability. Additionally, short overlapping sequences were observed between viral derived and host derived fragments in viral-cellular junctions, indicating that integration was mediated by micro homology-mediated DNA repair pathway. Conclusions Overall, our study suggests a model in which HPV16 might contribute to oncogenesis not only by disrupting tumor suppressor genes, but also by inducing chromosome instability. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0454-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Wei Zhao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Fang Fang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Yi Guo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Tai-Lin Zhu
- Abbey College Cambridge, Homerton Gardens, Cambridge, CB2 8EB, UK
| | - Yun-Yun Yu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Fan-Fei Kong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Ling-Fei Han
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Dong-Sheng Chen
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK. .,Fitzwilliam College, University of Cambridge, Storey's Way, Cambridge, CB3 0DG, UK.
| | - Fang Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
16
|
Myers AL, Lin L, Nancarrow DJ, Wang Z, Ferrer-Torres D, Thomas DG, Orringer MB, Lin J, Reddy RM, Beer DG, Chang AC. IGFBP2 modulates the chemoresistant phenotype in esophageal adenocarcinoma. Oncotarget 2016; 6:25897-916. [PMID: 26317790 PMCID: PMC4694874 DOI: 10.18632/oncotarget.4532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) patients commonly present with advanced stage disease and demonstrate resistance to therapy, with response rates below 40%. Understanding the molecular mechanisms of resistance is crucial for improvement of clinical outcomes. IGFBP2 is a member of the IGFBP family of proteins that has been reported to modulate both IGF and integrin signaling and is a mediator of cell growth, invasion and resistance in other tumor types. In this study, high IGFBP2 expression was observed in a subset of primary EACs and was found to be significantly higher in patients with shorter disease-free intervals as well as in treatment-resistant EACs as compared to chemonaive EACs. Modulation of IGFBP2 expression in EAC cell lines promoted cell proliferation, migration and invasion, implicating a role in the metastatic potential of these cells. Additionally, knockdown of IGFBP2 sensitized EAC cells to cisplatin in a serum-dependent manner. Further in vitro exploration into this chemosensitization implicated both the AKT and ERK pathways. Silencing of IGFBP2 enhanced IGF1-induced immediate activation of AKT and reduced cisplatin-induced ERK activation. Addition of MEK1/2 (selumetinib or trametinib) or AKT (AKT Inhibitor VIII) inhibitors enhanced siIGFBP2-induced sensitization of EAC cells to cisplatin. These results suggest that targeted inhibition of IGFBP2 alone or together with either the MAPK or PI3K/AKT signaling pathway in IGFBP2-overexpressing EAC tumors may be an effective approach for sensitizing resistant EACs to standard neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Amy L Myers
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lin Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhuwen Wang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mark B Orringer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jules Lin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - David G Beer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Patil SS, Gokulnath P, Bashir M, Shwetha SD, Jaiswal J, Shastry AH, Arimappamagan A, Santosh V, Kondaiah P. Insulin-like growth factor binding protein-2 regulates β-catenin signaling pathway in glioma cells and contributes to poor patient prognosis. Neuro Oncol 2016; 18:1487-1497. [PMID: 27044294 DOI: 10.1093/neuonc/now053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Upregulation of insulin-like growth factor binding protein 2 (IGFBP-2) is often associated with aggressiveness of glioblastoma (GBM) and contributes to poor prognosis for GBM patients. In view of the regulation of β-catenin by IGFBP-2 in breast cancer and the crucial role of β-catenin pathway in glioma invasion, proliferation and maintenance of glioma stem cells, the mechanism of regulation of β-catenin by IGFBP-2, and its role in GBM prognosis was studied. METHODS Regulation of the β-catenin pathway was studied by immunocytochemistry, Western blot analysis, luciferase assays, and real-time RT-PCR. The role of IGFBP-2 was studied by subcutaneous tumor xenografts in immunocompromised mice using glioma cells engineered to express IGFBP-2 and its domains. GBM patient tumor tissues (n = 112) were analyzed for expression of IGFBP-2 and β-catenin by immunohistochemistry. Survival analysis was performed employing Cox regression and Kaplan-Meier survival analyses. RESULTS IGFBP-2 knockdown in U251, T98G, and U373 or overexpression in LN229 and U87 cells revealed a role for IGFBP-2 in stabilization of β-catenin and regulation of its nuclear functions involving integrin-mediated inactivation of GSK3β. Similar results were obtained upon overexpression of the C-terminal domain of IGFBP-2 but not the N-terminal domain. Subcutaneous xenograft tumors overexpressing either full-length or the C-terminal domain of IGFBP-2 showed larger volume as compared with controls. Coexpression of high levels of IGFBP-2 and β-catenin was associated with worse prognosis (P = .001) in GBM patients. CONCLUSION IGFBP-2 potentiates GBM tumor growth by the activation of the β-catenin pathway through its C-terminal domain, and their coexpression possibly contributes to worse patient prognosis.
Collapse
Affiliation(s)
- Shilpa S Patil
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Priyanka Gokulnath
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Mohsin Bashir
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Shivayogi D Shwetha
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Janhvi Jaiswal
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Arun H Shastry
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Arivazhagan Arimappamagan
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Vani Santosh
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| | - Paturu Kondaiah
- Molecular Reproduction, Development and Genetics department, Indian Institute of Science, Bangalore, India (S.S.P., P.G., M.B., P.K.); Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India (S.D.S., J.J., V.S.); Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.H.S.); Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, India (A.A.)
| |
Collapse
|
18
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
19
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
20
|
Pant I, Kumar N, Khan I, Rao SG, Kondaiah P. Role of Areca Nut Induced TGF-β and Epithelial-Mesenchymal Interaction in the Pathogenesis of Oral Submucous Fibrosis. PLoS One 2015; 10:e0129252. [PMID: 26107172 PMCID: PMC4479469 DOI: 10.1371/journal.pone.0129252] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/06/2015] [Indexed: 12/01/2022] Open
Abstract
Areca nut consumption has been implicated in the progression of Oral Submucous fibrosis (OSF); an inflammatory precancerous fibrotic condition. Our previous studies have demonstrated the activation of TGF-β signaling in epithelial cells by areca nut components and also propose a role for epithelial expressed TGF-β in the pathogenesis of OSF. Although the importance of epithelial cells in the manifestation of OSF has been proposed, the actual effectors are fibroblast cells. However, the role of areca nut and TGF-β in the context of fibroblast response has not been elucidated. Therefore, to understand their role in the context of fibroblast response in OSF pathogenesis, human gingival fibroblasts (hGF) were treated with areca nut and/or TGF-β followed by transcriptome profiling. The gene expression profile obtained was compared with the previously published transcriptome profiles of OSF tissues and areca nut treated epithelial cells. The analysis revealed regulation of 4666 and 1214 genes by areca nut and TGF-β treatment respectively. The expression of 413 genes in hGF cells was potentiated by areca nut and TGF-β together. Further, the differentially expressed genes of OSF tissues compared to normal tissues overlapped significantly with areca nut and TGF-β induced genes in epithelial and hGF cells. Several positively enriched pathways were found to be common between OSF tissues and areca nut +TGF-β treated hGF cells. In concordance, areca nut along with TGF-β enhanced fibroblast activation as demonstrated by potentiation of αSMA, γSMA and collagen gel contraction by hGF cells. Furthermore, TGF-β secreted by areca nut treated epithelial cells influenced fibroblast activation and other genes implicated in fibrosis. These data establish a role for areca nut influenced epithelial cells in OSF progression by activation of fibroblasts and emphasizes the importance of epithelial-mesenchymal interaction in OSF.
Collapse
Affiliation(s)
- Ila Pant
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Neeraj Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Imran Khan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Somanahalli Girish Rao
- Department of Oral and Maxillofacial Surgery, D.A. Pandu Memorial-R.V. Dental College and Hospital, Bangalore, Karnataka, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
21
|
Gao B, Ning S, Li J, Liu H, Wei W, Wu F, Tang Y, Feng Y, Li K, Zhang L. Integrated analysis of differentially expressed mRNAs and miRNAs between hepatocellular carcinoma and their matched adjacent normal liver tissues. Oncol Rep 2015; 34:325-33. [PMID: 26062888 DOI: 10.3892/or.2015.3968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma has a high mortality rate, thus, there is a need for improvement of prognosis of such patients. The aim of the present study was to identify differentially expressed mRNAs and miRNAs between hepatocellular carcinoma tissues and their matched adjacent normal liver tissues, and to carry out a bioinformatics analysis. Agilent 8x60K microarray technology was used to detect the changes of mRNA and miRNA expression between hepatocellular carcinoma tissues and their matched adjacent normal liver tissues. To select differentially expressed mRNAs and miRNAs, gene ontology (GO) and pathway analysis were performed using bioinformatics methods. qPCR was used to verify the microarray data. As a result, 924 mRNAs and 21 miRNAs exhibited a higher expression in the hepatocellular carcinoma tissue than their matched adjacent normal liver tissue. In comparison with the adjacent normal tissue, the carcinoma tissue showed a downregulated expression of 1,770 mRNAs and 12 miRNAs. The GO and pathway analysis showed that these RNAs were involved in the transcription process, REDOX, signal transduction, ion transport, immune response, cell adhesion and binding functions. A total of 572 target genes of 14 miRNAs were identified, most of which were involved in tumors. The results of qPCR were in concordance with the microarray results. In summary, the differentially expressed mRNAs and miRNAs that include signal transduction, immune response and many other key links may provide novel targets for early diagnosis and therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bing Gao
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shufang Ning
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jilin Li
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haizhou Liu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wene Wei
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Feixiang Wu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yanping Tang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Feng
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kezhi Li
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
22
|
Patil SS, Railkar R, Swain M, Atreya HS, Dighe RR, Kondaiah P. Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J Neurooncol 2015; 123:225-35. [PMID: 25944386 DOI: 10.1007/s11060-015-1800-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface α5β1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 × 10(8)) and Tomlinson J (Library size 1.37 × 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Collapse
Affiliation(s)
- Shilpa S Patil
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | | | | | |
Collapse
|
23
|
Zhou SM, Cheng L, Guo SJ, Wang Y, Czajkowsky DM, Gao H, Hu XF, Tao SC. Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer. Breast Cancer Res 2015; 17:36. [PMID: 25848723 PMCID: PMC4384317 DOI: 10.1186/s13058-015-0544-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 03/02/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) patients often face a high risk of early relapse characterized by extensive metastasis. Previous works have shown that aberrant cell surface glycosylation is associated with cancer metastasis, suggesting that altered glycosylations might serve as diagnostic signatures of metastatic potential. To address this question, we took TNBC as an example and analyzed six TNBC cell lines, derived from a common progenitor, that differ in metastatic potential. Methods We used a microarray with 91 lectins to screen for altered lectin bindings to the six TNBC cell lines. Candidate lectins were then verified by lectin-based flow cytometry and immunofluorescent staining assays using both TNBC/non-TNBC cancer cells. Patient-derived tissue microarrays were then employed to analyze whether the staining of Ricinus communis agglutinin I (RCA-I), correlated with TNBC severity. We also carried out real-time cell motility assays in the presence of RCA-I. Finally, liquid chromatography-mass spectrometry/tandem spectrometry (LC-MS/MS) was employed to identify the membrane glycoproteins recognized by RCA-I. Results Using the lectin microarray, we found that the bindings of RCA-I to TNBC cells are proportional to their metastatic capacity. Tissue microarray experiments showed that the intensity of RCA-I staining is positively correlated with the TNM grades. The real-time cell motility assays clearly demonstrated RCA-I inhibition of adhesion, migration, and invasion of TNBC cells of high metastatic capacity. Additionally, a membrane glycoprotein, POTE ankyrin domain family member F (POTEF), with different galactosylation extents in high/low metastatic TNBC cells was identified by LC-MS/MS as a binder of RCA-I. Conclusions We discovered RCA-I, which bound to TNBC cells to a degree that is proportional to their metastatic capacities, and found that this binding inhibits the cell invasion, migration, and adhesion, and identified a membrane protein, POTEF, which may play a key role in mediating these effects. These results thus indicate that RCA-I-specific cell surface glycoproteins may play a critical role in TNBC metastasis and that the extent of RCA-I cell binding could be used in diagnosis to predict the likelihood of developing metastases in TNBC patients. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0544-9) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 2015; 14:43. [PMID: 25743390 PMCID: PMC4335664 DOI: 10.1186/s12943-015-0291-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
IGF-1 is a potent mitogen of major importance in the mammary gland. IGF-1 binding to the cognate receptor, IGF-1R, triggers a signaling cascade leading to proliferative and anti-apoptotic events. Although many of the relevant molecular pathways and intracellular cascades remain to be elucidated, a growing body of evidence points to the important role of the IGF-1 system in breast cancer development, progression and metastasis. IGF-1 is a point of convergence for major signaling pathways implicated in breast cancer growth. In this review, we provide an overview and concise update on the function and regulation of IGF-1 as well as the role it plays in breast malignancies.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| | - Pavlos Msaouel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Koutsilieris
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Goudi, Athens, Greece.
| |
Collapse
|
25
|
Beattie J, Hawsawi Y, Alkharobi H, El-Gendy R. IGFBP-2 and -5: important regulators of normal and neoplastic mammary gland physiology. J Cell Commun Signal 2015; 9:151-8. [PMID: 25645979 DOI: 10.1007/s12079-015-0260-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 01/16/2023] Open
Abstract
The insulin-like growth factor (IGF) axis plays an important role in mammary gland physiology. In addition, dysregulation of this molecular axis may have a causal role in the aetiology and development of breast cancer (BC). This report discusses the IGF axis in normal and neoplastic mammary gland with special reference to IGF binding proteins (IGFBPs) -2 and -5. We describe how these high affinity binders of IGF-1 and IGF-2 may regulate local actions of growth factors in an autocrine and/or paracrine manner and how they also have IGF-independent effects in mammary gland. We discuss clinical studies which investigate both the prognostic value of IGFBP-2 and -5 expression in BC and possible involvement of these genes in the development of resistance to adjuvant endocrine therapies.
Collapse
Affiliation(s)
- James Beattie
- Department of Oral Biology, School of Dentistry, St James University Hospital, Level 7, Wellcome Trust Brenner Building, Leeds, LS9 7TF, UK,
| | | | | | | |
Collapse
|
26
|
Hamilton N, Márquez-Garbán D, Mah V, Elshimali Y, Elashoff D, Garon E, Vadgama J, Pietras R. Estrogen Receptor-β and the Insulin-Like Growth Factor Axis as Potential Therapeutic Targets for Triple-Negative Breast Cancer. Crit Rev Oncog 2015; 20:373-90. [PMID: 27279236 PMCID: PMC5495464 DOI: 10.1615/critrevoncog.v20.i5-6.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers (TNBCs) lack estrogen receptor-α (ERα), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) amplification and account for almost half of all breast cancer deaths. This breast cancer subtype largely affects women who are premenopausal, African-American, or have BRCA1/2 mutations. Women with TNBC are plagued with higher rates of distant metastasis that significantly diminish their overall survival and quality of life. Due to their poor response to chemotherapy, patients with TNBC would significantly benefit from development of new targeted therapeutics. Research suggests that the insulin-like growth factor (IGF) family and estrogen receptor beta-1 (ERβ1), due to their roles in metabolism and cellular regulation, might be attractive targets to pursue for TNBC management. Here, we review the current state of the science addressing the roles of ERβ1 and the IGF family in TNBC. Further, the potential benefit of metformin treatment in patients with TNBC as well as areas of therapeutic potential in the IGF-ERβ1 pathway are highlighted.
Collapse
Affiliation(s)
- Nalo Hamilton
- UCLA School of Nursing, Los Angeles, CA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Diana Márquez-Garbán
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Vei Mah
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Yayha Elshimali
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of General Internal Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Edward Garon
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Jaydutt Vadgama
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA
| | - Richard Pietras
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
- Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
27
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|