1
|
Ma W, Li C. Enhancing postmenopausal osteoporosis: a study of KLF2 transcription factor secretion and PI3K-Akt signaling pathway activation by PIK3CA in bone marrow mesenchymal stem cells. Arch Med Sci 2024; 20:918-937. [PMID: 39050179 PMCID: PMC11264107 DOI: 10.5114/aoms/171785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Mesenchymal stem cells can develop into osteoblasts, making them a promising cell-based osteoporosis treatment. Despite their therapeutic potential, their molecular processes are little known. Bioinformatics and experimental analysis were used to determine the molecular processes of bone marrow mesenchymal stem cell (BMSC) therapy for postmenopausal osteoporosis (PMO). Material and methods We used weighted gene co-expression network analysis (WGCNA) to isolate core gene sets from two GEO microarray datasets (GSE7158 and GSE56815). GeneCards found PMO-related genes. GO, KEGG, Lasso regression, and ROC curve analysis refined our candidate genes. Using the GSE105145 dataset, we evaluated KLF2 expression in BMSCs and examined the link between KLF2 and PIK3CA using Pearson correlation analysis. We created a protein-protein interaction network of essential genes involved in osteoblast differentiation and validated the functional roles of KLF2 and PIK3CA in BMSC osteoblast differentiation in vitro. Results We created 6 co-expression modules from 10 419 differentially expressed genes (DEGs). PIK3CA, the key gene in the PI3K-Akt pathway, was among 197 PMO-associated DEGs. KLF2 also induced PIK3CA transcription in PMO. BMSCs also expressed elevated KLF2. BMSC osteoblast differentiation involved the PI3K-Akt pathway. In vitro, KLF2 increased PIK3CA transcription and activated the PI3K-Akt pathway to differentiate BMSCs into osteoblasts. Conclusions BMSCs release KLF2, which stimulates the PIK3CA-dependent PI3K-Akt pathway to treat PMO. Our findings illuminates the involvement of KLF2 and the PI3K-Akt pathway in BMSC osteoblast development, which may lead to better PMO treatments.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chen Li
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Rossi FM, McBee DP, Trybala TN, Hulsey ZN, Gonzalez Curbelo C, Mazur W, Baccile JA. Membrane Permeant Analogs for Independent Cellular Introduction of the Terpene Precursors Isopentenyl- and Dimethylallyl-Pyrophosphate. Chembiochem 2023; 24:e202200512. [PMID: 36354788 DOI: 10.1002/cbic.202200512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) are the central five-carbon precursors to all terpenes. Despite their significance, exogenous, independent delivery of IPP and DMAPP to cells is impossible as the negatively charged pyrophosphate makes these molecules membrane impermeant. Herein, we demonstrate a facile method to circumvent this challenge through esterification of the β-phosphate with two self-immolative esters (SIEs) that neutralize the negatively charged pyrophosphate to yield membrane-permeant analogs of IPP and DMAPP. Following cellular incorporation, general esterase activity initiates cleavage of the SIEs, resulting in traceless release of IPP and DMAPP for metabolic utilization. Addition of the synthesized IPP and DMAPP precursor analogs rescued cell growth of glioblastoma (U-87MG) cancer cells concurrently treated with the HMG-CoA reductase inhibitor pitavastatin, which otherwise abrogates cell growth via blocking production of IPP and DMAPP. This work demonstrates a new application of a prodrug strategy to incorporate a metabolic intermediate and promises to enable future interrogation of the distinct biological roles of IPP and DMAPP.
Collapse
Affiliation(s)
- Francis M Rossi
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA.,Department of Chemistry SUNY Cortland, Cortland, NY, USA
| | - Dillon P McBee
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Thomas N Trybala
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Zackary N Hulsey
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | | | - William Mazur
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
3
|
Borges R, Pelosine AM, de Souza ACS, Machado J, Justo GZ, Gamarra LF, Marchi J. Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9082. [PMID: 36556893 PMCID: PMC9781635 DOI: 10.3390/ma15249082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 05/20/2023]
Abstract
The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments. Drugs used in combination with bioactive glasses can be classified into cancer-target, osteoclast-target, and new therapies (such as gene delivery and bioinorganic). Microparticulated, nanoparticulated, or mesoporous bioactive glasses have been used as drug-delivery systems. Additionally, surface modification through functionalization or the production of composites based on polymers and hydrogels has been employed to improve drug-release kinetics. Overall, although different drugs and drug delivery systems have been developed, there is still room for new studies involving kinase inhibitors or antibody-conjugated drugs, as these drugs have been poorly explored in combination with bioactive glasses.
Collapse
Affiliation(s)
- Roger Borges
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Agatha Maria Pelosine
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | | | - Joel Machado
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema 05508-070, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 05508-070, Brazil
| | | | - Juliana Marchi
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| |
Collapse
|
4
|
Plesselova S, Garcia-Cerezo P, Blanco V, Reche-Perez FJ, Hernandez-Mateo F, Santoyo-Gonzalez F, Giron-Gonzalez MD, Salto-Gonzalez R. Polyethylenimine-Bisphosphonate-Cyclodextrin Ternary Conjugates: Supramolecular Systems for the Delivery of Antineoplastic Drugs. J Med Chem 2021; 64:12245-12260. [PMID: 34369757 PMCID: PMC8477368 DOI: 10.1021/acs.jmedchem.1c00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bisphosphonates (BPs) are bone-binding molecules that provide targeting capabilities to bone cancer cells when conjugated with drug-carrying polymers. This work reports the design, synthesis, and biological evaluation of polyethyleneimine-BP-cyclodextrin (PEI-BP-CD) ternary conjugates with supramolecular capabilities for the loading of antineoplastic drugs. A straightforward, modular, and versatile strategy based on the click aza-Michael addition reaction of vinyl sulfones (VSs) allows the grafting of BPs targeting ligands and βCD carrier appendages to the PEI polymeric scaffold. The in vitro evaluation (cytotoxicity, cellular uptake, internalization routes, and subcellular distribution) for the ternary conjugates and their doxorubicin inclusion complexes in different bone-related cancer cell lines (MC3T3-E1 osteoblasts, MG-63 sarcoma cells, and MDA-MB-231 breast cancer cells) confirmed specificity, mitochondrial targeting, and overall capability to mediate a targeted drug transport to those cells. The in vivo evaluation using xenografts of MG-63 and MDA-MB-231 cells on mice also confirmed the targeting of the conjugates.
Collapse
Affiliation(s)
- Simona Plesselova
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Pablo Garcia-Cerezo
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Victor Blanco
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Francisco J Reche-Perez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Fernando Hernandez-Mateo
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Biotechnology Institute, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Department of Organic Chemistry, School of Sciences, University of Granada, E-18071 Granada, Spain.,Biotechnology Institute, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - María Dolores Giron-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| | - Rafael Salto-Gonzalez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, E-18071 Granada, Spain
| |
Collapse
|
5
|
Uwada J, Mukai S, Terada N, Nakazawa H, Islam MS, Nagai T, Fujii M, Yamasaki K, Taniguchi T, Kamoto T, Yazawa T. Pleiotropic effects of probenecid on three-dimensional cultures of prostate cancer cells. Life Sci 2021; 278:119554. [PMID: 33932444 DOI: 10.1016/j.lfs.2021.119554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/30/2022]
Abstract
AIMS Chemoresistance remains a persistent challenge in advanced prostate cancer therapy. Probenecid reportedly inhibits multiple drug-efflux transporters; hence, it can be employed as a potential sensitizer for chemotherapy. In the present study, we evaluated the effects of probenecid on three-dimensional (3D)-cultures of prostate cancer cells. MAIN METHODS Prostate cancer cell lines, 22Rv1 and PC-3 were cultured as multicellular tumor spheroids. The effects of probenecid were evaluated using the MTT assay for viability, microscopy for spheroid size, and soft agar colony formation assay for anchorage-independent growth. KEY FINDINGS The 3D-cultured 22Rv1 cells were less sensitive to cisplatin and doxorubicin than two-dimensional (2D) cell culture. Co-administration of probenecid at a low (100 or 300 μM), but not high (500 μM), concentration increased the sensitivity to cisplatin or doxorubicin in 22Rv1 spheroids. Probenecid increased the expression of ABCG2, a multidrug resistance transporter, in a dose-dependent manner. Furthermore, treatment with probenecid alone reduced the growth of 22Rv1 spheroids. Conversely, probenecid inhibited spheroid compaction rather than growth inhibition in 3D-cultured PC-3 cells. Moreover, probenecid inhibited colony formation of 22Rv1 and PC-3 cells in soft agar, as well as downregulated focal adhesion kinase (FAK), a crucial factor in anchorage-independent growth. SIGNIFICANCE In 3D-cultured prostate cancer cells, probenecid demonstrated pleiotropic effects such as chemosensitization, growth suppression, inhibition of spheroid compaction, and suppression of anchorage-independent growth. Elucidating the detailed mechanism underlying these probenecid actions could result in the identification of novel therapeutic targets toward the advanced prostate cancer.
Collapse
Affiliation(s)
- Junsuke Uwada
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Hitomi Nakazawa
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Masato Fujii
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | | | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
6
|
Identification of Novel Rare ABCC1 Transporter Mutations in Tumor Biopsies of Cancer Patients. Cells 2020; 9:cells9020299. [PMID: 31991926 PMCID: PMC7072590 DOI: 10.3390/cells9020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/17/2022] Open
Abstract
The efficiency of chemotherapy drugs can be affected by ATP-binding cassette (ABC) transporter expression or by their mutation status. Multidrug resistance is linked with ABC transporter overexpression. In the present study, we performed rare mutation analyses for 12 ABC transporters related to drug resistance (ABCA2, -A3, -B1, -B2, -B5, -C1, -C2, -C3, -C4, -C5, -C6, -G2) in a dataset of 18 cancer patients. We focused on rare mutations resembling tumor heterogeneity of ABC transporters in small tumor subpopulations. Novel rare mutations were found in ABCC1, but not in the other ABC transporters investigated. Diverse ABCC1 mutations were found, including nonsense mutations causing premature stop codons, and compared with the wild-type protein in terms of their protein structure. Nonsense mutations lead to truncated protein structures. Molecular docking and heat map analyses of ABCC1/MRP1 pointed out that Lys498* appeared in a separate cluster branch due to the large deletion, leading to a massive disruption in the protein conformation. The resulting proteins, which are nonfunctional due to nonsense mutations in tumors, offer a promising chemotherapy strategy since tumors with nonsense mutations may be more sensitive to anticancer drugs than wild-type ABCC1-expressing tumors. This could provide a novel tumor-specific toxicity strategy and a way to overcome drug resistance.
Collapse
|
7
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Jalaleddine N, El-Hajjar L, Dakik H, Shaito A, Saliba J, Safi R, Zibara K, El-Sabban M. Pannexin1 Is Associated with Enhanced Epithelial-To-Mesenchymal Transition in Human Patient Breast Cancer Tissues and in Breast Cancer Cell Lines. Cancers (Basel) 2019; 11:cancers11121967. [PMID: 31817827 PMCID: PMC6966616 DOI: 10.3390/cancers11121967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Loss of connexin-mediated cell-cell communication is a hallmark of breast cancer progression. Pannexin1 (PANX1), a glycoprotein that shares structural and functional features with connexins and engages in cell communication with its environment, is highly expressed in breast cancer metastatic foci; however, PANX1 contribution to metastatic progression is still obscure. Here we report elevated expression of PANX1 in different breast cancer (BRCA) subtypes using RNA-seq data from The Cancer Genome Atlas (TCGA). The elevated PANX1 expression correlated with poorer outcomes in TCGA BRCA patients. In addition, gene set enrichment analysis (GSEA) revealed that epithelial-to-mesenchymal transition (EMT) pathway genes correlated positively with PANX1 expression. Pharmacological inhibition of PANX1, in MDA-MB-231 and MCF-7 breast cancer cells, or genetic ablation of PANX1, in MDA-MB-231 cells, reverted the EMT phenotype, as evidenced by decreased expression of EMT markers. In addition, PANX1 inhibition or genetic ablation decreased the invasiveness of MDA-MB-231 cells. Our results suggest PANX1 overexpression in breast cancer is associated with a shift towards an EMT phenotype, in silico and in vitro, attributing to it a tumor-promoting effect, with poorer clinical outcomes in breast cancer patients. This association offers a novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Nour Jalaleddine
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Beirut 1107-2809, Lebanon;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Hassan Dakik
- University of Tours, EA 7501 GICC, CNRS ERL 7001 LNOx, CEDEX 01, 37032 Tours, France;
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Jessica Saliba
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Rémi Safi
- Department of Dermatology, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Kazem Zibara
- ER045-Laboratory of Stem Cells, PRASE, Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Beirut 1003, Lebanon;
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
- Correspondence: ; Tel.: +961-1-350000 (ext. 4765-4766)
| |
Collapse
|
9
|
Buranrat B, Bootha S. Antiproliferative and antimigratory activities of bisphosphonates in human breast cancer cell line MCF-7. Oncol Lett 2019; 18:1246-1258. [PMID: 31423185 PMCID: PMC6607035 DOI: 10.3892/ol.2019.10438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are antiresorptive drugs that act as effective inhibitors of cancer cell proliferation. However, not all bisphosphonates are equally effective against breast cancer cells in vitro. The present study investigated the extent to which three BPs decrease the viability of MCF-7 human breast cancer cells, stimulate cell apoptosis and inhibit cell migration by modulating proteins in the mevalonate pathway. The three BPs exerted direct anticancer effects against MCF-7 cells in a dose- and time-dependent manner, with pamidronate demonstrating the highest efficacy. In addition, the BPs inhibited colony formation ability. The activity of BPs against MCF-7 cells was inhibited by the mevalonate product geranylgeranyl pyrophosphate, which was potentiated by doxorubicin. It was also identified that BPs modulated Ras-related C3 botulinum toxin substrate 1, Ras homolog gene family member A and cell division control protein 42 homolog gene expression. Consistent with the observed growth inhibitory effects, BPs also inhibited the cell cycle by promoting G1 phase arrest and the downregulation of cyclin D1 and upregulation of p21. Additionally, BPs were revealed to induce reactive oxygen species expression, caspase-3 activity and increase the mitochondrial transmembrane potential, which was associated with apoptosis. BP-induced cancer cell apoptosis was detected by acridine orange/ethidium bromide staining and flow cytometry analysis, and was identified to be associated with the induction of caspase-3 and cytochrome c protein expression. Furthermore, BPs significantly decreased cancer cell migration in a dose-dependent manner and reduced matrix metallopeptidase-9 protein expression. In summary, the current study demonstrated that BPs exhibited a direct anticancer effect and an antimigratory effect on MCF-7 cells. These findings suggest that BPs may be developed as a therapeutic option for breast cancer and may serve as sensitizing chemotherapeutic agents.
Collapse
Affiliation(s)
- Benjaporn Buranrat
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Supavadee Bootha
- School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
10
|
Beckmann A, Hainz N, Tschernig T, Meier C. Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells. Cancers (Basel) 2019; 11:cancers11030288. [PMID: 30823688 PMCID: PMC6468480 DOI: 10.3390/cancers11030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junction proteins are expressed in cancer stem cells and non-stem cancer cells of many tumors. As the morphology and assembly of gap junction channels are crucial for their function in intercellular communication, one focus of our review is to outline the data on gap junction plaque morphology available for cancer cells. Electron microscopic studies and freeze-fracture analyses on gap junction ultrastructure in cancer are summarized. As the presence of gap junctions is relevant in solid tumors, we exemplarily outline their role in glioblastomas and in breast cancer. These were also shown to contain cancer stem cells, which are an essential cause of tumor onset and of tumor transmission into metastases. For these processes, gap junctional communication was shown to be important and thus we summarize, how the expression of gap junction proteins and the resulting communication between cancer stem cells and their surrounding cells contributes to the dissemination of cancer stem cells via blood or lymphatic vessels. Based on their importance for tumors and metastases, future cancer-specific therapies are expected to address gap junction proteins. In turn, gap junctions also seem to contribute to the unattainability of cancer stem cells by certain treatments and might thus contribute to therapeutic resistance.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Nadine Hainz
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
11
|
Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer. Biomed Pharmacother 2018; 105:697-706. [PMID: 29906748 DOI: 10.1016/j.biopha.2018.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
The malignant phenotype of the cells resulting from human liver cancer is driven by liver cancer stem-like cells (LCSLCs). Transient Receptor Potential Vanilloid-type 2 channel (TRPV2) contributes to the progression of different tumor types, including liver cancer. In the current study, the TRPV2 expression levels give rise to the effect on stemness in liver cancer cell lines. TRPV2 knockdown in HepG2 cells enhanced spheroid and colony formation, and expression levels of CD133, CD44 and ALDH1 whereas the opposite effects were observed in TRPV2 enforced expression in SMMC-7721 cells. Furthermore, TRPV2 overexpression restored inhibition of spheroid and colony formation, and stem cell markers expression in HepG2 cells with TRPV2 silencing. The addition of the TRPV2 agonist probenecid and the TRPV2 antagonist tranilast suppressed and/or increased in vitro spheroid and colony formation, and stem cell marker expression of LCSLCs and/or liver cancer cell lines, respectively. Notably, probenecid and tranilast significantly inhibited or promoted tumor growth of HepG2 xenografts in the severe combined immunodeficiency (SCID) mouse model, respectively. TRPV2 expression at protein levels revealed converse correlation with those of CD133 and CD44 in human hepatocellular carcinoma (HCC) tissue. Collectively, the data demonstrate that TRPV2 exert effects on stemness of liver cancer and is a potential target in the treatment of human liver cancer patients.
Collapse
|
12
|
Adam C, Glück L, Ebert R, Goebeler M, Jakob F, Schmidt M. The MEK5/ERK5 mitogen-activated protein kinase cascade is an effector pathway of bone-sustaining bisphosphonates that regulates osteogenic differentiation and mineralization. Bone 2018; 111:49-58. [PMID: 29567200 DOI: 10.1016/j.bone.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 01/24/2023]
Abstract
Bisphosphonates play an important role in the treatment of metabolic bone diseases such as osteoporosis. In addition to their anti-resorptive activity by triggering osteoclast apoptosis, nitrogen-containing bisphosphonates (N-BP) may also influence osteogenic differentiation, which might rely on their capacity to inhibit the mevalonate pathway. In vascular endothelial cells inhibition of this pathway by cholesterol-lowering statins activates the MEK5/ERK5 mitogen-activated protein kinase cascade, which plays an important role in cellular differentiation, apoptosis or inflammatory processes. Here we evaluated whether N-BP may also target the MEK5/ERK5 pathway and analysed the consequences of ERK5 activation on osteogenic differentiation. We show that N-BP dose-dependently activate ERK5 in primary human endothelial cells and osteoblasts. The mechanism likely involves farnesyl pyrophosphate synthase inhibition and subsequent functional inhibition of the small GTPase Cdc42 since siRNA-mediated knockdown of both genes could reproduce N-BP-induced ERK5 activation. ERK5 activation resulted in regulation of several bone-relevant genes and was required for calcification and osteogenic differentiation of bone marrow-derived mesenchymal stems cells as evident by the lack of alkaline phosphatase induction and alizarin-red S staining observed upon ERK5 knockdown or upon differentiation initiation in presence of a pharmacological ERK5 inhibitor. Our data provide evidence that N-BP activate the MEK5/ERK5 cascade and reveal an essential role of ERK5 in osteogenic differentiation and mineralization of skeletal precursors.
Collapse
Affiliation(s)
- Christian Adam
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Lucia Glück
- Department of Dermatology, University Hospital Würzburg, Germany
| | - Regina Ebert
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | | | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Marc Schmidt
- Department of Dermatology, University Hospital Würzburg, Germany.
| |
Collapse
|
13
|
Jakob F, Genest F, Baron G, Stumpf U, Rudert M, Seefried L. [Regulation of bone metabolism in osteoporosis : novel drugs for osteoporosis in development]. Unfallchirurg 2016; 118:925-32. [PMID: 26471379 DOI: 10.1007/s00113-015-0085-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone is continuously regenerated and remodeled as an adaptation to mechanical load. Bone mass and fracture resistance are maintained by a balanced equilibrium between bone formation and bone resorption. Regeneration and response to mechanical load are, however, impaired in osteoporosis and during aging. Bone resorption is enhanced by chronic inflammation while bone formation is altered by rising levels of inhibitors in the aging organism. Core molecular principles of the regulation of bone metabolism in health and disease have been characterized and developed as therapeutic targets. The receptor activator of nuclear factor kappaB ligand (RANKL) and osteoclast-derived protease cathepsin K are important regulators and effectors of osteoclast differentiation and bone resorption. Bone formation is stimulated by bone morphogenetic proteins (BMP) and via the parathyroid hormone receptor and the Wnt signaling pathway. The principles of osteoclast inhibition using bisphosphonates have now been known for almost three decades. Based on more recent knowledge RANKL and cathepsin K have been developed as new therapeutic targets to inhibit bone resorption. While denosumab, a RANKL antibody, has already been introduced into routine treatment strategies, the cathepsin K antagonist odanacatib is currently in the licensing process. Bone formation can also be stimulated by local administration of BMPs, by systemic treatment with the parathyroid hormone fragment teriparatide and by using antibodies targeting the Wnt inhibitor sclerostin. The latter are presently being tested in phase III clinical studies. In the near future a panel of traditional and novel treatment strategies will be available that will enable us to meet the individual clinical needs during aging and for the treatment of osteoporosis.
Collapse
Affiliation(s)
- F Jakob
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland.
| | - F Genest
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - G Baron
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - U Stumpf
- Osteologisches Schwerpunktzentrum, Chirurgische Klinik und Poliklinik, Nußbaumstr. 20, 80336, München, Deutschland
| | - M Rudert
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| | - L Seefried
- Experimentelle und Klinische Osteologie, Orthopädie und Orthopädische Klinik König-Ludwig-Haus, Universität Würzburg, Brettreichstraße 11, 97074, Würzburg, Deutschland
| |
Collapse
|
14
|
Weston RM, Stover CM. Myeloid derived suppressor cells in breast cancer: A novel therapeutic target? World J Immunol 2016; 6:119-125. [DOI: 10.5411/wji.v6.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/16/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The relationship of the immune system and tumour cells is complex; although recognised that the immune system can protect the host against tumour development, the immune system also facilitates tumour progression through immune suppression. Pro-inflammatory mediators associated with chronic inflammation are responsible for the expansion and activation of myeloid derived suppressor cells (MDSCs); a heterogeneous group of cells that originates from myeloid progenitor cells but does not complete the final stages of differentiation. A causal relationship between chronic inflammation and tumour progression relies on the accumulation and maintenance of MDSCs as its linchpin; responsible for immunosuppression through the down-regulation of anti-tumour responses. MDSCs cause immunosuppression through a number of mechanisms; inhibiting the proliferation of CD4+ and CD8+ T cells, blocking natural killer cell activation and limiting dendritic cell maturation and function. As well as using various mechanisms to inhibit adaptive and immune responses, MDSCs also have non-immunological functions that aid tumour spread; including directly promoting tumour proliferation and metastasis by having an important role in tumour angiogenesis, secretion of matrix metalloproteinases and induction of epithelial-mesenchymal transition. Breast cancer is the most common cancer among women in the United Kingdom with 44540 new cases of invasive carcinoma in 2013 and results in the second highest cancer mortality rate in women, with 11600 deaths in 2012. Considering this, the need for novel therapeutic interventions is higher than ever. This review summarises the rationale for the targeting of MDSCs in breast cancer as a realistic avenue to increase survival from breast cancer.
Collapse
|
15
|
Fujimura T, Furudate S, Kambayashi Y, Kakizaki A, Haga T, Hashimoto A, Aiba S. Multiple metastasized extramammary Paget's disease cured with bisphosphonate risedronate sodium after CyberKnife radiosurgery and docetaxel chemotherapy. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
17
|
Rachner TD, Jakob F, Hofbauer LC. Cancer-targeted therapies and radiopharmaceuticals. BONEKEY REPORTS 2015; 4:707. [PMID: 26131359 DOI: 10.1038/bonekey.2015.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/16/2015] [Indexed: 12/26/2022]
Abstract
The treatment of bone metastases remains a clinical challenge. Although a number of well-established agents, namely bisphosphonates and denosumab, are available to reduce the occurrence of skeletal-related events, additional cancer-targeted therapies are required to improve patients' prognosis and quality of life. This review focuses on novel targets and agents that are under clinical evaluation for the treatment of malignant bone diseases such as activin A, src and endothelin-1 inhibition or agents that are clinically approved and may positively influence bone, such as the mTOR inhibitor everolimus. In addition, the potential of alpharadin, a novel radiopharmaceutical approved for the treatment of prostatic bone disease, is discussed.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Dresden University Medical Center , Dresden, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, Dresden University Medical Center , Dresden, Germany ; Center for Regenerative Therapies, Dresden Technical University , Dresden, Germany
| |
Collapse
|