1
|
Kros JM, Mustafa DM, Dekker LJM, Sillevis Smitt PAE, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro Oncol 2014; 17:343-60. [PMID: 25253418 DOI: 10.1093/neuonc/nou207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023] Open
Abstract
Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Lennard J M Dekker
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Peter A E Sillevis Smitt
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Theo M Luider
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| |
Collapse
|
2
|
Mao X, Shaw G, James SY, Purkis P, Kudahetti SC, Tsigani T, Kia S, Young BD, Oliver RTD, Berney D, Prowse DM, Lu YJ. Detection of TMPRSS2:ERG fusion gene in circulating prostate cancer cells. Asian J Androl 2008; 10:467-73. [PMID: 18385909 DOI: 10.1111/j.1745-7262.2008.00401.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the existence of TMPRSS2:ERG fusion gene in circulating tumor cells (CTC) from prostate cancer patients and its potential in monitoring tumor metastasis. METHODS We analyzed the frequency of TMPRSS2:ERG and TMPRSS2:ETV1 transcripts in 27 prostate cancer biopsies from prostatectomies, and TMPRSS2:ERG transcripts in CTC isolated from 15 patients with advanced androgen independent disease using reverse transcription polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was applied to analyze the genomic truncation of ERG, which is the result of TMPRSS2:ERG fusion in 10 of the 15 CTC samples. RESULTS TMPRSS2:ERG transcripts were found in 44% of our samples, but we did not detect expression of TMPRSS2:ETV1. Using FISH analysis we detected chromosomal rearrangements affecting the ERG gene in 6 of 10 CTC samples, including 1 case with associated TMPRSS2:ERG fusion at the primary site. However, TMPRSS2:ERG transcripts were not detected in any of the 15 CTC samples, including the 10 cases analyzed by FISH. CONCLUSION Although further study is required to address the association between TMPRSS2:ERG fusion and prostate cancer metastasis, detection of genomic truncation of the ERG gene by FISH analysis could be useful for monitoring the appearance of CTC and the potential for prostate cancer metastasis.
Collapse
Affiliation(s)
- Xueying Mao
- Medical Oncology Centre, Cancer Institute, Department of Histopathology and Morbid Anatomy, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wu M, Bai X, Xu G, Wei J, Zhu T, Zhang Y, Li Q, Liu P, Song A, Zhao L, Gang C, Han Z, Wang S, Zhou J, Lu Y, Ma D. Proteome analysis of human androgen-independent prostate cancer cell lines: Variable metastatic potentials correlated with vimentin expression. Proteomics 2007; 7:1973-83. [PMID: 17566973 DOI: 10.1002/pmic.200600643] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To better understand the molecular mechanisms of prostate cancer (PCA) dissemination and to develop new anti-metastasis therapies, key regulatory molecules involved in PCA metastasis were identified in two human androgen-independent PCA cell lines, highly metastatic 1E8-H and lowly metastatic 2B4-L cells. Through 2-DE and MS analyses, 12 proteins with different expression levels in the two cell lines were identified. The following proteins were found to be significantly up-regulated in 1E8-H cells compared with 2B4-L cells: gp96 precursor, calreticulin precursor, vimentin (VIM), Hsp90alpha, peroxiredoxin 2, HNRPH1, ezrin, T-complex protein 1, alpha subunit, and hypothetical protein mln2339. In contrast, heart L-lactate dehydrogenase H chain, annexin I, and protein disulfide isomerase were notably down-regulated in 1E8-H cells compared with 2B4-L cells. To our knowledge, this study is the first to demonstrate that up-regulation of VIM expression positively correlates with the invasion and metastasis of androgen-independent PCA.
Collapse
Affiliation(s)
- Mingfu Wu
- Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The path to the discovery of suberoylanilide hydroxamic acid (SAHA, vorinostat) began over three decades ago with our studies designed to understand why dimethylsulfoxide causes terminal differentiation of the virus-transformed cells, murine erythroleukemia cells. SAHA can cause growth arrest and death of a broad variety of transformed cells both in vitro and in vivo at concentrations that have little or no toxic effects on normal cells. It was discovered that SAHA inhibits the activity of histone deacetylases (HDACs), including all 11 known human class I and class II HDACs. HDACs have many protein targets whose structure and function are altered by acetylation including histones and non-histone proteins component of transcription factors controlling gene expression and proteins that regulate cell proliferation, migration and death. SAHA is in clinical trials and has significant anticancer activity against both hematologic and solid tumors at doses well tolerated by patients. A new drug application has been approved for SAHA (vorinostat) treatment of cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- P A Marks
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
5
|
Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci U S A 2006; 103:15540-5. [PMID: 17030815 PMCID: PMC1592530 DOI: 10.1073/pnas.0607518103] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is a great need to develop better mechanism-based therapies for prostate cancer. In this investigation, we studied four human prostate cancer cell lines, LNCaP, DU145, LAPC4, and PC3, which differ in response to the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (vorinostat), a new anticancer drug. Examining the role of intrinsic mitochondrial caspase-dependent apoptosis and caspase-independent, reactive oxygen species (ROS) facilitated cell death, has provided an understanding of mechanisms that may determine the varied response to the histone deacetylase inhibitor. We found striking differences among these cancer cells in constitutive expression and response to suberoylanilide hydroxamic acid in levels of antiapoptotic and proapoptotic proteins, mitochondria membrane integrity, activation of caspases, ROS accumulation, and expression of thioredoxin, the major scavenger of ROS. Identifying these differences can have predictive value in assessing therapeutic response and identifying targets to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Weisheng Xu
- Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Lang Ngo
- Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Gisela Perez
- Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Milos Dokmanovic
- Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| | - Paul A. Marks
- Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021
| |
Collapse
|