1
|
Abdusamad M, Guo X, Ramirez I, Velasquez EF, Cohn W, Gholkar AA, Whitelegge JP, Torres JZ. DUSP12 promotes cell cycle progression and protects cells from cell death by regulating ZPR9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632830. [PMID: 39868293 PMCID: PMC11760727 DOI: 10.1101/2025.01.13.632830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protein phosphatases are critical for regulating cell signaling, cell cycle, and cell fate decisions, and their dysregulation leads to an array of human diseases like cancer. The dual specificity phosphatases (DUSPs) have emerged as important factors driving tumorigenesis and cancer therapy resistance. DUSP12 is a poorly characterized atypical DUSP widely conserved throughout evolution. Although no direct substrate has been firmly established, DUSP12 that has been implicated in protecting cells from stress, regulating ribosomal biogenesis, and modulating cellular DNA content. In this study, we used affinity- and proximity-based biochemical purification approaches coupled to mass spectrometry to identify the zinc finger protein ZPR9 as a novel DUSP12 interactor, which was validated by in-cell and in-vitro IP assays. Interestingly, ZPR9 binds to the unique zinc-binding domain of DUSP12, which previous reports indicated was important for many of DUSP12's functions within the cell. Prior studies had implicated ZPR9 as a modulator of apoptosis, but it remained unclear if and how ZPR9 participated in the cell cycle and, more so, how it promoted cell death. Using mass spectrometry analyses, we found that overexpression of DUSP12 promoted de-phosphorylation of ZPR9 at Ser143. Overexpression of ZPR9, but not Ser143 phosphomimetic and phosphorylation-deficient mutants, led to an increase in pre-metaphase mitotic defects while knockdown of DUSP12 also showed mitotic defects in metaphase. Furthermore, knockdown of DUSP12 promoted, while knockdown of ZPR9 suppressed, stress-induced apoptosis. Our results support a model where DUSP12 protects cells from stress-induced apoptosis by promoting de-phosphorylation of ZPR9.
Collapse
Affiliation(s)
- Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Erick F. Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ankur A. Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
3
|
Li H, Yang Q, Huang Z, Liang C, Zhang DH, Shi HT, Du JQ, Du BB, Zhang YZ. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway. Free Radic Biol Med 2022; 192:13-24. [PMID: 36108935 DOI: 10.1016/j.freeradbiomed.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.
Collapse
Affiliation(s)
- Huan Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, 438021, China
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Dian-Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Bin-Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Zang H, Shackelford R, Bewley A, Beeser AE. Mutational Analyses of the Cysteine-Rich Domain of Yvh1, a Protein Required for Translational Competency in Yeast. BIOLOGY 2022; 11:1246. [PMID: 36009873 PMCID: PMC9404827 DOI: 10.3390/biology11081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Ribosome assembly is a complex biological process facilitated by >200 trans-acting factors (TAFs) that function as scaffolds, place-holders or complex remodelers to promote efficient and directional ribosomal subunit assembly but are not themselves part of functional ribosomes. One such yeast TAF is encoded by Mrt4 which assembles onto pre-60S complexes in the nuclear compartment and remains bound to pre-60S complexes as they are exported into the cytoplasm. There, Mrt4 is displaced from pre-60S complexes facilitating the subsequent addition of the ribosomal stalk complex (P0/P1/P2). Ribosomal stalk proteins interact with translational GTPases (trGTPase) which facilitate and control protein synthesis on the ribosome. The rRNA-binding domain of Mrt4 is structurally similar to P0, with both proteins binding to the same interface of pre-60S subunits in a mutually exclusive manner; the addition of the ribosomal stalk therefore requires the displacement of Mrt4 from pre-60S subunits. Mrt4 removal requires the C-terminal cysteine-rich domain (CRD) of the dual-specificity phosphatase Yvh1. Unlike many other TAFs, yeast lacking Yvh1 are viable but retain Mrt4 on cytoplasmic pre-60S complexes precluding ribosomal stalk addition. Although Yvh1’s role in Mrt4 removal is well established, how Yvh1 accomplishes this is largely unknown. Here, we report an unbiased genetic screen to isolate Yvh1 variants that fail to displace Mrt4 from pre-60S ribosomes. Bioorthogonal non-canonical amino acid tagging (BONCAT) approaches demonstrate that these YVH1 loss-of-function variants also display defects in nascent protein production. The further characterization of one LOF variant, Yvh1F283L, establishes it as an expression-dependent, dominant-negative variant capable of interfering with endogenous Yvh1 function, and we describe how this Yvh1 variant can be used as a novel probe to better understand ribosome maturation and potentially ribosome heterogeneity in eukaryotes.
Collapse
Affiliation(s)
- Hannah Zang
- Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Alice Bewley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
5
|
Jin JH, Choi MK, Cho HS, Bahn YS. Zinc-binding domain mediates pleiotropic functions of Yvh1 in Cryptococcus neoformans. J Microbiol 2021; 59:658-665. [PMID: 34212289 DOI: 10.1007/s12275-021-1287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Yvh1 is a dual-specificity phosphatase (DUSP) that is evolutionarily conserved in eukaryotes, including yeasts and humans. Yvh1 is involved in the vegetative growth, differentiation, and virulence of animal and plant fungal pathogens. All Yvh1 orthologs have a conserved DUSP catalytic domain at the N-terminus and a zinc-binding (ZB) domain with two zinc fingers (ZFs) at the C-terminus. Although the DUSP domain is implicated in the regulation of MAPK signaling in humans, only the ZB domain is essential for most cellular functions of Yvh1 in fungi. This study aimed to analyze the functions of the DUSP and ZB domains of Yvh1 in the human fungal pathogen Cryptococcus neoformans, whose Yvh1 (CnYvh1) contains a DUSP domain at the C-terminus and a ZB domain at the N-terminus. Notably, CnYvh1 has an extended internal domain between the two ZF motifs in the ZB domain. To elucidate the function of each domain, we constructed individual domain deletions and swapping strains by complementing the yvh1Δ mutant with wild-type (WT) or mutated YVH1 alleles and examined their Yvh1-dependent phenotypes, including growth under varying stress conditions, mating, and virulence factor production. Here, we found that the complementation of the yvh1Δ mutant with the mutated YVH1 alleles having two ZFs of the ZB domain, but not the DUSP and extended internal domains, restored the WT phenotypic traits in the yvh1Δ mutant. In conclusion, the ZB domain, but not the N-terminal DUSP domain, plays a pivotal role in the pathobiological functions of cryptococcal Yvh1.
Collapse
Affiliation(s)
- Jae-Hyung Jin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myung Kyung Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Shi B, Yan W, Liu G, Guo Y. MicroRNA-488 inhibits tongue squamous carcinoma cell invasion and EMT by directly targeting ATF3. Cell Mol Biol Lett 2018; 23:28. [PMID: 29946339 PMCID: PMC6006839 DOI: 10.1186/s11658-018-0094-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND It has been reported that the expression of activating transcription factor 3 (ATF3) is closely associated with both microRNA (miRNA) processing and the progress of many cancers. Our study aimed to explore the interaction between ATF3 and miR-488 in tongue squamous cell carcinoma (TSCC). METHODS Quantitative real-time PCR was performed to detect the levels of ATF3 and miR-488 in TSCC tissues and cell lines. Cell invasion and epithelial-mesenchymal transition (EMT) were assessed to determine the biological functions of miR-488 and ATF3 in TSCC cells. The mRNA and protein levels of ATF3 were measured using quantitative RT-PCR and western blotting. Luciferase assays were performed to validate ATF3 as an miR-488 target in TSCC cells. RESULTS We found that the level of miR-488 significantly decreased and the expression of ATF3 significantly increased in TSCC tissues and cell lines. A low level of miR-488 was closely associated with increased expression of ATF3 in TSCC tissues. Introducing miR-488 significantly inhibited the invasion and EMT of TSCC cells, and knockdown of miR-488 promoted both processes. The bioinformatics analysis predicted that ATF3 is a potential target gene of miR-488. The luciferase reporter assay showed that miR-488 could directly target ATF3. ATF3 silencing had similar effects to miR-488 overexpression on TSCC cells. Overexpression of ATF3 in TSCC cells partially reversed the inhibitory effects of the miR-488 mimic. CONCLUSION miR-488 inhibited cell invasion and EMT of TSCC cells by directly downregulating ATF3 expression.
Collapse
Affiliation(s)
- Bingxia Shi
- Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000 People’s Republic of China
| | - Wei Yan
- Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000 People’s Republic of China
| | - Guolin Liu
- Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000 People’s Republic of China
| | - Yanjun Guo
- Oral and Maxillofacial Surgery, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000 People’s Republic of China
| |
Collapse
|
7
|
Geng Q, Xhabija B, Knuckle C, Bonham CA, Vacratsis PO. The Atypical Dual Specificity Phosphatase hYVH1 Associates with Multiple Ribonucleoprotein Particles. J Biol Chem 2016; 292:539-550. [PMID: 27856639 DOI: 10.1074/jbc.m116.715607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Human YVH1 (hYVH1), also known as dual specificity phosphatase 12 (DUSP12), is a poorly characterized atypical dual specificity phosphatase widely conserved throughout evolution. Recent findings have demonstrated that hYVH1 expression affects cellular DNA content and is a novel cell survival phosphatase preventing both thermal and oxidative stress-induced cell death, whereas studies in yeast have established YVH1 as a novel 60S ribosome biogenesis factor. In this study, we have isolated novel hYVH1-associating proteins from human U2OS osteosarcoma cells using affinity chromatography coupled to mass spectrometry employing ion mobility separation. Numerous ribosomal proteins were identified, confirming the work done in yeast. Furthermore, proteins known to be present on additional RNP particles were identified, including Y box-binding protein 1 (YB-1) and fragile X mental retardation protein, proteins that function in translational repression and stress granule regulation. Follow-up studies demonstrated that hYVH1 co-localizes with YB-1 and fragile X mental retardation protein on stress granules in response to arsenic treatment. Interestingly, hYVH1-positive stress granules were significantly smaller, whereas knocking down hYVH1 expression attenuated stress granule breakdown during recovery from arsenite stress, indicating a possible role for hYVH1 in stress granule disassembly. These results propagate a role for dual specificity phosphatases at RNP particles and suggest that hYVH1 may affect a variety of fundamental cellular processes by regulating messenger ribonucleoprotein (mRNP) dynamics.
Collapse
Affiliation(s)
- Qiudi Geng
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Besa Xhabija
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Colleen Knuckle
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Christopher A Bonham
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Panayiotis O Vacratsis
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
8
|
Evaluation of chromosome 1q gain in intracranial ependymomas. J Neurooncol 2016; 127:271-8. [PMID: 26725097 DOI: 10.1007/s11060-015-2047-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/25/2015] [Indexed: 10/22/2022]
Abstract
Ependymomas are relatively uncommon gliomas with poor prognosis despite recent advances in neurooncology. Molecular pathogenesis of ependymomas is not extensively studied. Lack of correlation of histological grade with patient outcome has directed attention towards identification of molecular alterations as novel prognostic markers. Recently, 1q gain has emerged as a potential prognostic marker, associated with decreased survival, especially in posterior fossa, high grade tumors. Cases of intracranial ependymomas were retrieved. Tumors were graded using objective criteria to supplement WHO grading. Fluorescence in situ hybridization for 1q gain was performed on formalin-fixed paraffin embedded sections. Eighty-one intracranial ependymomas were analyzed. Pediatric (76%) and infratentorial (70%) ependymomas constituted the majority. 1q gain was seen in 27 cases (33%), was equally frequent in children (34%) and adults (32%), supratentorial (37%) and infratentorial (32%) location, grade II (33%) and III (25%) tumors. Recurrence was noted in 24 cases and death in 7 cases with 5-year progression-free and overall-survival rates of 37% and 80%, respectively. Grade II tumors had a better survival than grade III tumors; histopathological grade was the only prognostically significant marker. 1q gain had no prognostic significance. 1q gain is frequent in ependymomas in Indian patients, seen across all ages, sites and grades, and thus is likely an early event in pathogenesis. The prognostic value of 1q gain, remains uncertain, and multicentric pooling of data is required. A histopathological grading system using objective criteria correlates well with patient outcome and can serve as an economical option for prognostication of ependymomas.
Collapse
|
9
|
Pedeutour F, Maire G, Pierron A, Thomas DM, Garsed DW, Bianchini L, Duranton-Tanneur V, Cortes-Maurel A, Italiano A, Squire JA, Coindre JM. A newly characterized human well-differentiated liposarcoma cell line contains amplifications of the 12q12-21 and 10p11-14 regions. Virchows Arch 2012; 461:67-78. [DOI: 10.1007/s00428-012-1256-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
|
10
|
Cain EL, Braun SE, Beeser A. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12. PLoS One 2011; 6:e18677. [PMID: 21556130 PMCID: PMC3080379 DOI: 10.1371/journal.pone.0018677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/15/2011] [Indexed: 12/29/2022] Open
Abstract
Background Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the “driver” gene(s) within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21–1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6) and the dual specificity phosphatase 12 (dusp12). While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. Methodology/Principal Findings To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1) which is implicated in metastasis. Significance Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.
Collapse
Affiliation(s)
- Erica L. Cain
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Sterling E. Braun
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alexander Beeser
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sugiyama M, Nugroho S, Iida N, Sakai T, Kaneko Y, Harashima S. Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae. J Biochem 2011; 150:103-11. [PMID: 21474464 DOI: 10.1093/jb/mvr040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Saccharomyces cerevisiae Yvh1, a dual-specificity protein phosphatase involved in glycogen accumulation and sporulation, is required for normal vegetative growth. To further elucidate the role of Yvh1, we generated dominant mutants suppressing the slow growth caused by YVH1 disruption. One of the mutant alleles, designated as SVH1-1 (suppressor of Δyvh1 deletion), was identical to MRT4 (mRNA turnover) that contained a single-base substitution causing an amino acid change from Gly(68) to Asp. Mrt4(G68D) restored the deficiencies in growth and rRNA biogenesis that occurs in absence of Yvh1. Here, we report that the interaction between Mrt4 and Yvh1 is also essential for normal glycogen accumulation and mRNA decay as well as the induction of sporulation genes IME2, SPO13 and HOP1. The Mrt4(G68D) could restore the plethora of phenotypes we observed in absence of Yvh1. We found that Yvh1 is not essential for wild-type induction of the transcriptional regulator of these genes, IME1, suggesting that either translation or post-translational modification to activate Ime1 has been compromised. Since a defect in ribosome biogenesis in general can be related to other various defects, the ribosome biogenesis defect caused by absence of Yvh1 might be an indirect cause of observed phenotypes.
Collapse
Affiliation(s)
- Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Li C, Xin W, Sy MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 2010; 29:5329-45. [PMID: 20697352 DOI: 10.1038/onc.2010.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
Collapse
Affiliation(s)
- C Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | |
Collapse
|
13
|
Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere-Vince D, Dumollard JM, Haudebourg J, Leroux A, Mainguené C, Terrier P, Chibon F, Coindre JM, Pedeutour F. Clinical and Biological Significance of CDK4 Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Clin Cancer Res 2009; 15:5696-703. [DOI: 10.1158/1078-0432.ccr-08-3185] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Bonham CA, Vacratsis PO. Redox regulation of the human dual specificity phosphatase YVH1 through disulfide bond formation. J Biol Chem 2009; 284:22853-64. [PMID: 19567874 DOI: 10.1074/jbc.m109.038612] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YVH1 was one of the first eukaryotic dual specificity phosphatases cloned, and orthologues poses a unique C-terminal zinc-coordinating domain in addition to a cysteine-based phosphatase domain. Our recent results revealed that human YVH1 (hYVH1) protects cells from oxidative stress. This function requires phosphatase activity and the zinc binding domain. This current study provides evidence that the thiol-rich zinc-coordinating domain may act as a redox sensor to impede the active site cysteine from inactivating oxidation. Furthermore, using differential thiol labeling and mass spectrometry, it was determined that hYVH1 forms intramolecular disulfide bonds at the catalytic cleft as well as within the zinc binding domain to avoid irreversible inactivation during severe oxidative stress. Importantly, zinc ejection is readily reversible and required for hYVH1 activity upon returning to favorable conditions. This inimitable mechanism provides a means for hYVH1 to remain functionally responsive for protecting cells during oxidative stimuli.
Collapse
Affiliation(s)
- Christopher A Bonham
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | |
Collapse
|
15
|
Alvegård T, Hall KS, Bauer H, Rydholm A. The Scandinavian Sarcoma Group: 30 years' experience. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009; 80:1-104. [PMID: 19919379 DOI: 10.1080/17453690610046602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
The dual-specificity phosphatase hYVH1 interacts with Hsp70 and prevents heat-shock-induced cell death. Biochem J 2009; 418:391-401. [PMID: 18973475 DOI: 10.1042/bj20081484] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
hYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown. The present study used MS to identify Hsp70 (heat-shock protein 70) as a novel hYVH1-binding partner. The interaction was confirmed using endogenous co-immunoprecipitation experiments and direct binding of purified proteins. Endogenous Hsp70 and hYVH1 proteins were also found to co-localize specifically to the perinuclear region in response to heat stress. Domain deletion studies revealed that the ATPase effector domain of Hsp70 and the zinc-binding domain of hYVH1 are required for the interaction, indicating that this association is not simply a chaperone-substrate complex. Thermal phosphatase assays revealed hYVH1 activity to be unaffected by heat and only marginally affected by non-reducing conditions, in contrast with the archetypical dual-specificity phosphatase VHR (VH1-related protein). In addition, Hsp70 is capable of increasing the phosphatase activity of hYVH1 towards an exogenous substrate under non-reducing conditions. Furthermore, the expression of hYVH1 repressed cell death induced by heat shock, H2O2 and Fas receptor activation but not cisplatin. Co-expression of hYVH1 with Hsp70 further enhanced cell survival. Meanwhile, expression of a catalytically inactive hYVH1 or a hYVH1 variant that is unable to interact with Hsp70 failed to protect cells from the various stress conditions. The results suggest that hYVH1 is a novel cell survival phosphatase that co-operates with Hsp70 to positively affect cell viability in response to cellular insults.
Collapse
|
17
|
Kim JS, Yoo JY, Lee KS, Kim HS, Choi JS, Rha HK, Yim SV, Lee KH. Comparative genome hybridization array analysis for sporadic Parkinson's disease. Int J Neurosci 2009; 118:1331-45. [PMID: 18698514 DOI: 10.1080/00207450802174522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Parkinson disease (PD) is a common neurodegenerative disorder, characterized by the loss of midbrain dopamine neurons and Lewy body inclusions. We investigated array CGH to analyze gain or loss of genetic material from 30 patients with PD. We identified the frequent copy number variations in PD; gains in 1p21.1, 4p15.31, 5p15.33, 6q24.1, 7q35, 8q24.3, 10q26.3, 11p15.5-15.4, 12q21.2, 16p13.3, 18q12.3 and 22q13.31, and losses in 1p36.33, and 5q13.2. These findings enable a better description of genetic variations in PD, and could provide a foundation for understanding the critical regions of the genome that may be involved in the development of PD.
Collapse
Affiliation(s)
- Joong-Seok Kim
- Department of Neurology, The Catholic University of Korea, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
Collapse
Affiliation(s)
- Tarek Boutros
- Department of Surgery, Royal Victoria Hospital, McGill University, 687 Pine Ave. W., Montreal, QC H3A1A1, Canada.
| | | | | |
Collapse
|
19
|
Characterization of the 12q amplicons by high-resolution, oligonucleotide array CGH and expression analyses of a novel liposarcoma cell line. Cancer Lett 2008; 260:37-47. [DOI: 10.1016/j.canlet.2007.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/14/2007] [Accepted: 10/15/2007] [Indexed: 11/18/2022]
|
20
|
Kapels KM, Nishio J, Zhou M, Qualman SJ, Bridge JA. Embryonal rhabdomyosarcoma with a der(16)t(1;16) translocation. ACTA ACUST UNITED AC 2007; 174:68-73. [PMID: 17350470 DOI: 10.1016/j.cancergencyto.2006.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common subtype of RMS that predominantly involves the genitourinary tract and the head and neck regions in children younger than 10 years of age. Cytogenetically, ERMS is most frequently hyperdiploid, with extra copies of chromosomes 2, 7, 8, 11, 12, 13, and 20. No consistent structural chromosomal alteration has been identified in ERMS. In contrast, a t(2;13)(q35;q14) or t(1;13)(q36;q14) corresponding to PAX3-FOXO1A (previously FKHR) and PAX7-FOXO1A gene fusions are considered tumor-specific anomalies for alveolar RMS (ARMS). Occasionally, a recurrent secondary structural rearrangement involving chromosomes 1 and 16 is seen in translocation-positive ARMS, a der(16)t(1;16) resulting in an imbalance of 1q and 16q material. Conventional cytogenetic analysis of an ERMS arising in the urinary bladder of a 22-month-old male child revealed this nonrandom secondary chromosomal aberration, der(16)(1;16)(q22;q24), in a hyperdiploid complement with extra copies of chromosomes 2, 7, 8, 10, 12, 13, 19, and 20. Subsequent analyses showed tumor cells to be negative for FOXO1A, PAX3, or PAX7 gene locus rearrangements (by fluorescence in situ hybridization) and also negative for PAX3-FOXO1A and PAX7-FOXO1A fusion transcripts (by reverse transcriptase-polymerase chain reaction). These results suggest that the unbalanced t(1;16) translocation may be seen in RMSs lacking a primary genetic rearrangement.
Collapse
Affiliation(s)
- Kayla M Kapels
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE 68198-3135, USA
| | | | | | | | | |
Collapse
|
21
|
Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, Lichter P. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 2006; 12:2070-9. [PMID: 16609018 DOI: 10.1158/1078-0432.ccr-05-2363] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Pathogenesis of ependymomas is still poorly understood and molecular markers for risk-adapted patient stratification are not available. Our aim was to screen for novel genomic imbalances and prognostic markers in ependymal tumors. EXPERIMENTAL DESIGN We analyzed 68 sporadic tumors by matrix-based comparative genomic hybridization using DNA microarrays containing >6,400 genomic DNA fragments. Novel recurrent genomic gains were validated by fluorescence in situ hybridization using a tissue microarray consisting of 170 intracranial ependymomas. Candidate genes were also tested for mRNA expression by quantitative real-time PCR, and protein expression was determined by immunohistochemistry on the tissue microarray. RESULTS Chromosomal gain of 1q correlated with pediatric patients (P = 0.004), intracranial ependymomas (P = 0.05), and tumors of grade III (P = 0.002). Gain of 1q21.1-32.1 was associated with tumor recurrence in intracranial ependymomas (P < 0.001). Furthermore, gain of 1q25 as determined by fluorescence in situ hybridization represented an independent prognostic marker for either recurrence-free survival (P < 0.001) or overall survival (P = 0.003). Recurrent gains at 5p15.33 covering hTERT were validated by immunohistochemistry, and elevated protein levels correlated with adverse prognosis (P = 0.01). In addition to frequent gains and high-level amplification of epidermal growth factor receptor (EGFR) at 7p11.2, immunohistochemistry revealed protein overexpression to be correlated with poor prognosis (P = 0.002). EGFR protein status subdivides intracranial grade II ependymomas into two different risk groups (P = 0.03) as shown by multivariate analysis. CONCLUSIONS Thus, the states of 1q25 and EGFR represent independent prognostic markers for intracranial ependymomas to identify patient subgroups with different risk profiles in further clinical investigations. Moreover, EGFR might serve as therapeutic target for more specific chemotherapy applications.
Collapse
Affiliation(s)
- Frank Mendrzyk
- Division of Molecular Genetics and Central Unit Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Heidenblad M, Hallor KH, Staaf J, Jönsson G, Borg A, Höglund M, Mertens F, Mandahl N. Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 2006; 25:7106-16. [PMID: 16732325 DOI: 10.1038/sj.onc.1209693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ring chromosomes and/or giant marker chromosomes have been observed in a variety of human tumor types, but they are particularly common in a subgroup of mesenchymal tumors of low-grade or borderline malignancy. These rings and markers have been shown to contain amplified material predominantly from 12q13-15, but also sequences from other chromosomes. Such amplified sequences were mapped in detail by genome-wide array comparative genomic hybridization in ring-containing tumor samples from soft tissue (n = 15) and bone (n = 6), using tiling resolution microarrays, encompassing 32 433 bacterial artificial chromosome clones. The DNA copy number profiles revealed multiple amplification targets, in many cases highly discontinuous, leading to delineation of large numbers of very small amplicons. A total number of 356 (median size: 0.64 Mb) amplicons were seen in the soft tissue tumors and 90 (median size: 1.19 Mb) in the bone tumors. Notably, more than 40% of all amplicons in both soft tissue and bone tumors were mapped to chromosome 12, and at least one of the previously reported recurrent amplifications in 12q13.3-14.1 and 12q15.1, including SAS and CDK4, and MDM2, respectively, were present in 85% of the soft tissue tumors and in all of the bone tumors. Although chromosome 12 was the only chromosome displaying recurrent amplification in the bone tumors, the soft tissue tumors frequently showed recurrent amplicons mapping to other chromosomes, that is, 1p32, 1q23-24, 3p11-12, 6q24-25 and 20q11-12. Of particular interest, amplicons containing genes involved in the c-jun NH2-terminal kinase/mitogen-activated protein kinase pathway, that is, JUN in 1p32 and MAP3K7IP2 (TAB2) in 6q24-25, were found to be independently amplified in eight of 11 cases with 12q amplification, providing strong support for the notion that aberrant expression of this pathway is an important step in the dedifferentiation of liposarcomas.
Collapse
Affiliation(s)
- M Heidenblad
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, et alGregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NSW, McLaren S, Milne S, Mistry S, Moore MJF, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WDH, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E. The DNA sequence and biological annotation of human chromosome 1. Nature 2006; 441:315-21. [PMID: 16710414 DOI: 10.1038/nature04727] [Show More Authors] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 03/13/2006] [Indexed: 11/08/2022]
Abstract
The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
Collapse
Affiliation(s)
- S G Gregory
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Moon HJ, Yim SV, Lee WK, Jeon YW, Kim YH, Ko YJ, Lee KS, Lee KH, Han SI, Rha HK. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem Biophys Res Commun 2006; 344:531-9. [PMID: 16630559 DOI: 10.1016/j.bbrc.2006.03.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/24/2006] [Indexed: 11/22/2022]
Abstract
Chromosomal abnormalities are implicated as important markers for the pathogenesis in patients with schizophrenia. In this study, with using bacterial artificial chromosome (BAC) array-based comparative genomic hybridization (CGH), we analyzed DNA copy-number changes among 30 patients with schizophrenia. The most frequent changes were partial gain of Xq23 (52%) and loss of 3q13.12 (32%). Other frequent gains were found in: 1p, 6q, 10p, 11p, 11q, 14p, and 15q regions, and frequent losses were found in: 2p, 9q, 10q, 14q, 20q, and 22q regions. The set of abnormal regions was confirmed by real-time PCR (9q12, 9q34.2, 11p15.4, 14q32.33, 15q15.1, 22q11.21, and Xq23). All real-time PCR results were consistent with the array-CGH results. Therefore, it is suggested that array-CGH and real-time PCR analysis could be used as powerful tools in screening for schizophrenia-related genes. Our results might be useful for further exploration of candidate genomic regions in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Ho Jin Moon
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|