1
|
Tovar-Bohórquez O, McKenzie D, Crestel D, Vandeputte M, Geffroy B. Thermal modulation of energy allocation during sex determination in the European sea bass (Dicentrarchus labrax). Gene 2024; 927:148721. [PMID: 38925525 DOI: 10.1016/j.gene.2024.148721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Water temperature governs physiological functions such as growth, energy allocation, and sex determination in ectothermic species. The European sea bass (Dicentrarchus labrax) is a major species in European aquaculture, exhibiting early dimorphic growth favoring females. The species has a polygenic sex determination system that interacts with water temperature to determine an individual's sex, with two periods during development that are sensitive to temperature. The current study investigated the influence of water temperature on energy allocation and sex-biased genes during sex determination and differentiation periods. RNA-Sequencing and qPCR analyses were conducted in two separate experiments, of either constant water temperatures typical of aquaculture conditions or natural seasonal thermal regimes, respectively. We focused on eight key genes associated with energy allocation, growth regulation, and sex determination and differentiation. In Experiment 1, cold and warm temperature treatments favored female and male proportions, respectively. The RNA-seq analysis highlighted sex-dependent energy allocation transcripts, with higher levels of nucb1 and pomc1 in future females, and increased levels of egfra and spry1 in future males. In Experiment 2, a warm thermal regime favored females, while a cold regime favored males. qPCR analysis in Experiment 2 revealed that ghrelin and nucb1 were down-regulated by warm temperatures. A significant sex-temperature interaction was observed for pank1a with higher and lower expression for males in the cold and warm regimes respectively, compared to females. Notably, spry1 displayed increased expression in future males at the all-fins stage and in males undergoing molecular sex differentiation in both experimental conditions, indicating that it provides a novel, robust, and consistent marker for masculinization. Overall, our findings emphasize the complex interplay of genes involved in feeding, energy allocation, growth, and sex determination in response to temperature variations in the European sea bass.
Collapse
Affiliation(s)
| | - David McKenzie
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Damien Crestel
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Benjamin Geffroy
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France.
| |
Collapse
|
2
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Szostak J, Gorący A, Durys D, Dec P, Modrzejewski A, Pawlik A. The Role of MicroRNA in the Pathogenesis of Diabetic Nephropathy. Int J Mol Sci 2023; 24:ijms24076214. [PMID: 37047185 PMCID: PMC10094215 DOI: 10.3390/ijms24076214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic nephropathy is one of the most common and severe complications of diabetes mellitus, affecting one in every five patients suffering from diabetes. Despite extensive research, the exact pathogenesis of diabetic nephropathy is still unclear. Several factors and pathways are known to be involved in the development of the disease, such as reactive oxygen species or the activation of the renin–angiotensin–aldosterone system. The expression of those proteins might be extensively regulated by microRNA. Recent research suggests that in diabetic nephropathy patients, the profile of miRNA is significantly changed. In this review, we focus on the actions of miRNA in various pathways involved in the pathogenesis of diabetic nephropathy and the clinical usage of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Gorący
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Damian Durys
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paweł Dec
- Plastic and Reconstructive Surgery Department, 109 Military Hospital, 71-422 Szczecin, Poland
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
4
|
Zhuang H, Wang H, Yang H, Li H. Exosome-Encapsulated MicroRNA-21 from Esophageal Squamous Cell Carcinoma Cells Enhances Angiogenesis of Human Umbilical Venous Endothelial Cells by Targeting SPRY1. Cancer Manag Res 2020; 12:10651-10667. [PMID: 33149673 PMCID: PMC7604463 DOI: 10.2147/cmar.s259077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Esophageal squamous cell carcinoma (ESCC) persists among the most prevalent cancers worldwide. Angiogenesis represents a crucial element necessitated for tumor growth and metastasis in ESCC. In this study, we aimed to study the effect of microRNA (miR)-21 on angiogenesis in ESCC and its underlying mechanism. Materials and Methods Initially, the expression patterns of miR-21, SPRY1, and VEGF were determined in ESCC tissues and cells. The relationship between miR-21 and SPRY1 was identified using dual-luciferase reporter assay. Exosomes were subsequently isolated from the ESCC cells, followed by co-culture with the human umbilical venous endothelial cells (HUVECs). HUVEC proliferation and angiogenesis were determined by means of CCK-8, colony formation, and microtubule formation in vitro. Chicken chorioallantoic membrane (CAM) model and mouse xenograft model of ESCC cells were established to substantiate the function of miR-21 corresponding to the angiogenesis and tumor growth of ESCC, followed by microvascular density (MVD) evaluation. Results Expression patterns of miR-21 and VEGF were elevated, while the SPRY1 expression pattern was repressed in ESCC tissues and cells. The downregulation of miR-21 and exosome-derived miR-21 impeded the proliferation and angiogenesis in HUVECs. Our data revealed that miR-21 could negatively target SPRY1, and positively target VEGF. The downregulation of miR-21 could evidently encumber the angiogenesis and tumor growth of ESCC in vivo, as evidenced by the decrease in number of branches of the microvessels and MVD. Conclusion Collectively, ESCC cell-derived exosome containing miR-21 promotes the proliferation and angiogenesis of HUVECs via SPRY1 downregulation and VEGF upregulation.
Collapse
Affiliation(s)
- Huirong Zhuang
- Operating Room, East Medical District of Linyi People's Hospital, Linyi 276034, People's Republic of China
| | - Hongjun Wang
- Department of Occupational Disease, Linyi People's Hospital, Linyi 276000, People's Republic of China
| | - Haibo Yang
- Department of Occupational Disease, Linyi People's Hospital, Linyi 276000, People's Republic of China
| | - Hongli Li
- Operating Room, East Medical District of Linyi People's Hospital, Linyi 276034, People's Republic of China
| |
Collapse
|
5
|
McNeill B, Ostojic A, Rayner KJ, Ruel M, Suuronen EJ. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34 + cells. FASEB J 2018; 33:4166-4177. [PMID: 30526047 DOI: 10.1096/fj.201801332r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD34+ cells are promising for revascularization therapy, but their clinical use is limited by low cell counts, poor engraftment, and reduced function after transplantation. In this study, a collagen type I biomaterial was used to expand and enhance the function of human peripheral blood CD34+ cells, and potential underlying mechanisms were examined. Compared to the fibronectin control substrate, biomaterial-cultured CD34+ cells from healthy donors had enhanced proliferation, migration toward VEGF, angiogenic potential, and increased secretion of CD63+CD81+ extracellular vesicles (EVs). In the biomaterial-derived EVs, greater levels of the angiogenic microRNAs (miRs), miR-21 and -210, were detected. Notably, biomaterial-cultured CD34+ cells had reduced mRNA and protein levels of Sprouty (Spry)1, which is an miR-21 target and negative regulator of endothelial cell proliferation and angiogenesis. Similar to the results of healthy donor cells, biomaterial culture increased miR-21 and -210 expression in CD34+ cells from patients who underwent coronary artery bypass surgery, which also exhibited improved VEGF-mediated migration and angiogenic capacity. Therefore, collagen biomaterial culture may be useful for expanding the number and enhancing the function of CD34+ cells in patients, possibly mediated through suppression of Spry1 activity by EV-derived miR-21. These results may provide a strategy to enhance the therapeutic potency of CD34+ cells for vascular regeneration.-McNeill, B., Ostojic, A., Rayner, K. J., Ruel, M., Suuronen, E. J. Collagen biomaterial stimulates the production of extracellular vesicles containing microRNA-21 and enhances the proangiogenic function of CD34+ cells.
Collapse
Affiliation(s)
- Brian McNeill
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Aleksandra Ostojic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- Atherosclerosis, Genomics, and Cell Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Melo EO, Cordeiro DM, Pellegrino R, Wei Z, Daye ZJ, Nishimura RC, Dode MAN. Identification of molecular markers for oocyte competence in bovine cumulus cells. Anim Genet 2016; 48:19-29. [PMID: 27650317 DOI: 10.1111/age.12496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/17/2022]
Abstract
Cumulus cells (CCs) have an important role during oocyte growth, competence acquisition, maturation, ovulation and fertilization. In an attempt to isolate potential biomarkers for bovine in vitro fertilization, we identified genes differentially expressed in bovine CCs from oocytes with different competence statuses, through microarray analysis. The model of follicle size, in which competent cumulus-oocyte complexes (COCs) were recovered from bigger follicles (≥8.0 mm in diameter) and less competent ones from smaller follicles (1-3 mm), was used. We identified 4178 genes that were differentially expressed (P < 0.05) in the two categories of CCs. The list was further enriched, through the use of a 2.5-fold change in gene expression as a cutoff value, to include 143 up-regulated and 80 down-regulated genes in CCs of competent COCs compared to incompetent COCs. These genes were screened according to their cellular roles, most of which were related to cell cycle, DNA repair, energy metabolism, metabolism of amino acids, cell signaling, meiosis, ovulation and inflammation. Three candidate genes up-regulated (FGF11, IGFBP4, SPRY1) and three down-regulated (ARHGAP22, COL18A1 and GPC4) in CCs from COCs of big follicles (≥8.1 mm) were selected for qPCR analysis. The selected genes showed the same expression patterns by qPCR and microarray analysis. These genes may be potential genetic markers that predict oocyte competence in in vitro fertilization routines.
Collapse
Affiliation(s)
- E O Melo
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| | - D M Cordeiro
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - R Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Z Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Z J Daye
- Division of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85721, USA
| | - R C Nishimura
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - M A N Dode
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
8
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
9
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
10
|
Liu X, Lan Y, Zhang D, Wang K, Wang Y, Hua ZC. SPRY1 promotes the degradation of uPAR and inhibits uPAR-mediated cell adhesion and proliferation. Am J Cancer Res 2014; 4:683-97. [PMID: 25520860 PMCID: PMC4266704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) is a GPI anchored cell surface protein that is closely associated with invasion, migration, and metastasis of cancer cells. Many functional extracellular proteins and transmembrane receptors interact with uPAR. However, few studies have examined the association of uPAR with cytoplasm proteins. We previously used yeast two-hybrid screening to isolate several novel uPAR-interacting cytoplasmic proteins, including Sprouty1 (SPRY1), an inhibitor of the (Ras-mitogen-activated protein kinase) MAPK pathway. In this study, we show that SPRY1 interacts with uPAR and directs it toward lysosomal-mediated degradation. Overexpression of SPRY1 decreased the cell surface and cytoplasmic uPAR protein level. Moreover, SPRY1 overexpression augmented uPAR-induced cell adhesion to vitronectin as well as proliferation of cancer cells. Our results also further support the critical role of SPRY1 contribution to tumor growth. In a subcutaneous tumor model, overexpression of SPRY1 in HCT116 or A549 xenograft in athymic nude mice led to great suppression of tumor growth. These results show that SPRY1 may affect tumor cell function through direct interaction with uPAR and promote its lysosomal degradation.
Collapse
Affiliation(s)
- Xiufeng Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Yan Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Di Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Kai Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
| | - Yao Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
- Division of Critical Care and Surgery, St. George Hospital, University of New South WalesSydney, NSW2217, Australia
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University22 Han Kou Road, Nanjing 210093, P. R. China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.Changzhou 213164, P. R. China
| |
Collapse
|
11
|
Masoumi-Moghaddam S, Amini A, Ehteda A, Wei AQ, Morris DL. The expression of the Sprouty 1 protein inversely correlates with growth, proliferation, migration and invasion of ovarian cancer cells. J Ovarian Res 2014; 7:61. [PMID: 24932220 PMCID: PMC4058002 DOI: 10.1186/1757-2215-7-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our recent study on a panel of human ovarian cancer cells revealed that SKOV-3 cells barely express the Sprouty isoform 1 (Spry1) while 1A9 cells maintain it at a level similar to normal ovarian cells. Here we investigated the functional outcomes of induced alterations in the expression of Spry1 in the two cell lines in vitro. METHODS Using the Spry1 specific plasmid and siRNA, the expression of Spry1 was induced and conversely silenced in SKOV-3 and 1A9 cells, respectively. The functional outcome was investigated by means of proliferation, MTT, scratch-wound, migration and invasion assays and selection of the stable clones. Mechanism of the effect was explored by Western blot. RESULTS In the Spry1-transfected SKOV-3 cells, a significant reduction in growth and proliferation was evident. Stable clones of the Spry1-transfected SKOV-3 were almost undetectable after day 14. The number of migrated and invaded cells and the percentage of the scratch closure were significantly lower in the Spry1-transfected group. Spry1 silencing in 1A9 cells, on the other hand, led to a significant increase in cell growth and proliferation. The number of migrated and invaded cells and the percentage of the scratch closure significantly increased in Spry1-silenced 1A9 group. Mechanistically, overexpression of Bax, activation of caspases 3, 7, 8 and 9, cleavage of PARP and attenuation of Bcl-2 and Bcl-xl were observed along with reduced activation of Erk and Akt and increased amount and activity of PTEN in the Spry1-transfected SKOV-3 cells. CONCLUSIONS Here, we report the inverse correlation between the expression of Spry1 and growth, proliferation, invasion and migration of ovarian cancer cells.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney NSW 2217, Australia
| | - Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney NSW 2217, Australia
| | - Anahid Ehteda
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney NSW 2217, Australia
| | - Ai-Qun Wei
- Department of Orthopedic Surgery, St. George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney NSW 2217, Australia
| | - David Lawson Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney NSW 2217, Australia
| |
Collapse
|
12
|
Reyes-Botero G, Dehais C, Idbaih A, Martin-Duverneuil N, Lahutte M, Carpentier C, Letouzé E, Chinot O, Loiseau H, Honnorat J, Ramirez C, Moyal E, Figarella-Branger D, Ducray F. Contrast enhancement in 1p/19q-codeleted anaplastic oligodendrogliomas is associated with 9p loss, genomic instability, and angiogenic gene expression. Neuro Oncol 2013; 16:662-70. [PMID: 24353325 DOI: 10.1093/neuonc/not235] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to correlate MRI features and molecular characteristics in anaplastic oligodendrogliomas (AOs). METHODS The MRI characteristics of 50 AO patients enrolled in the French national network for high-grade oligodendroglial tumors were analyzed. The genomic profiles and IDH mutational statuses were assessed using high-resolution single-nucleotide polymorphism arrays and direct sequencing, respectively. The gene expression profiles of 25 1p/19q-codeleted AOs were studied on Affymetrix expression arrays. RESULTS Most of the cases were frontal lobe contrast-enhanced tumors (52%), but the radiological presentations of these cases were heterogeneous, ranging from low-grade glioma-like aspects (26%) to glioblastoma-like aspects (22%). The 1p/19q codeletion (n = 39) was associated with locations in the frontal lobe (P = .001), with heterogeneous intratumoral signal intensities (P = .003) and with no or nonmeasurable contrast enhancements (P = .01). The IDH wild-type AOs (n = 7) more frequently displayed ringlike contrast enhancements (P = .03) and were more frequently located outside of the frontal lobe (P = .01). However, no specific imaging pattern could be identified for the 1p/19q-codeleted AO or the IDH-mutated AO. Within the 1p/19q-codeleted AO, the contrast enhancement was associated with larger tumor volumes (P = .001), chromosome 9p loss and CDKN2A loss (P = .006), genomic instability (P = .03), and angiogenesis-related gene expression (P < .001), particularly for vascular endothelial growth factor A and angiopoietin 2. CONCLUSION In AOs, the 1p/19q codeletion and the IDH mutation are associated with preferential (but not with specific) imaging characteristics. Within 1p/19q-codeleted AO, imaging heterogeneity is related to additional molecular alterations, especially chromosome 9p loss, which is associated with contrast enhancement and larger tumor volume.
Collapse
Affiliation(s)
- German Reyes-Botero
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (G.R.B., C.D., A.I.); Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Paris, France (A.I., C.C.); AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neuro-radiologie, Paris, France (N.M.-D.); Service de Santé des Armées, Hôpital d'Instruction des Armées, Paris, France (M.L.); Programme Carte d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France (E.L.); AP-HM, Hôpital de la Timone, Service de Neuro-Oncologie, Marseille , France (O.C.); CHU Bordeaux, Hôpital Pellegrin, Service de Neurochirurgie, Bordeaux, France (H.L.); Hospices Civils de Lyon, Hôpital Pierre Wertheimer, Service de Neuro-Oncologie, Bron, France (J.H., F.D.); INSERM U1028, CNRS UMR5292, Bron, France (J.H., F.D.); CHU Lille, Hôpital Roger Salengro, Clinique de Neurochirurgie, Lille, France (C.R.); Institut Claudius Regaud, Département de Radiothérapie, Toulouse, France (E.M.); AP-HM, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France (D.F.-B.); Université de la Méditerranée, Aix-Marseille, Faculté de Médecine La Timone, Marseille, France (D.F.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang L, Liu F, Peng Y, Sun L, Chen G. Changes in expression of four molecular marker proteins and one microRNA in mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis patients. Exp Ther Med 2013; 6:1189-1193. [PMID: 24223642 PMCID: PMC3820727 DOI: 10.3892/etm_2013.1281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to detect the expression of microRNA-200c and epithelial-mesenchymal transition (EMT) in the mesothelial cells of the peritoneal dialysate effluent fluid of peritoneal dialysis (PD) patients, and to investigate the association between microRNA-200c and peritoneal mesothelial cell EMT. Twelve patients who had recently started continuous ambulatory peritoneal dialysis (PD start group) and 16 patients who had been undergoing peritoneal dialysis for >6 months (PD >6 months group) were randomly chosen for the isolation, culture and identification of effluent cells. qPCR and western blot analysis were used to detect the expression levels of microRNA-200c and the levels of four cellular marker proteins, E-cadherin, vimentin, fibronectin (FN) and COL-1, in effluent cells. The results showed that the effluent cells in peritoneal dialysis were peritoneal mesothelial cells. The level of E-cadherin protein expression was significantly lower in the PD >6 months group than in the PD start group, while vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. microRNA-200c in the PD >6 months group was significantly downregulated. The E-cadherin protein expression level was significantly decreased and vimentin, FN and COL-1 protein expression levels were significantly increased in the PD >6 months group. The level of microRNA-200c was significantly reduced in the PD > 6 months group, suggesting that microRNA-200c may be associated with EMT.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nephrology, Second Xiangya Hospital, Institute of Nephrology, Central South University, Changsha, Hunan 410011; ; Department of Nephrology, Fourth Changsha Hospital, Changsha, Hunan 410006, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Tabruyn SP, Hansen S, Ojeda-Fernández ML, Bovy N, Zarrabeitia R, Recio-Poveda L, Bernabéu C, Martial JA, Botella LM, Struman I. MiR-205 is downregulated in hereditary hemorrhagic telangiectasia and impairs TGF-beta signaling pathways in endothelial cells. Angiogenesis 2013; 16:877-87. [PMID: 23800974 DOI: 10.1007/s10456-013-9362-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterized by arteriovenous malformations and hemorrhages. This vascular disease results mainly from mutations in 2 genes involved in the TGF-β pathway (ENG and ALK1) that are exclusively expressed by endothelial cells. The present study identified miR-27a and miR-205 as two circulating miRNAs differentially expressed in HHT patients. The plasma levels of miR-27a are elevated while those of miR-205 are reduced in both HHT1 and HHT2 patients compared to healthy controls. The role of miR-205 in endothelial cells was further investigated. Our data indicates that miR-205 expression displaces the TGF-β balance towards the anti-angiogenic side by targeting Smad1 and Smad4. In line, overexpression of miR-205 in endothelial cells reduces proliferation, migration and tube formation while its inhibition shows opposite effects. This study not only suggests that detection of circulating miRNA (miR-27a and miR-205) could help for the screening of HHT patients but also provides a functional link between the deregulated expression of miR-205 and the HHT phenotype.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Unit of Molecular Biology and Genetic Engineering, GIGA, University of Liège, Sart-Tilman, 4000, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kral RM, Mayer CE, Vanas V, Gsur A, Sutterlüty-Fall H. In non-small cell lung cancer mitogenic signaling leaves Sprouty1 protein levels unaffected. Cell Biochem Funct 2013; 32:96-100. [PMID: 23616430 DOI: 10.1002/cbf.2976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/04/2013] [Accepted: 03/22/2013] [Indexed: 11/11/2022]
Abstract
Sprouty1 protein belongs to a family of receptor tyrosine kinase-mediated signaling inhibitors, whose members are usually regulated by growth factors to form a negative feedback loop. Correspondingly fluctuations of Sprouty1 mRNA in response to single growth factors have been observed. In this report, we investigate Sprouty1 protein levels and show that in non-small cell lung carcinoma-derived cells, the expression levels are unaffected by the serum content in the cellular environment. Although cells harboring K-Ras mutations express insignificant higher Sprouty1 levels, ectopic expression of constitutive active Ras in normal human lung fibroblasts fails to augment Sprouty1 protein content. Furthermore, serum starvation for three days has no influence on Sprouty1 expression and addition of serum or of singular growth factors leaves Sprouty protein levels unchanged. Cell cycle analysis reveals that Sprouty1 levels remain constant throughout the whole cell cycle. These data demonstrate that Sprouty1 expression is not connected with mitogenic signaling and cell proliferation.
Collapse
Affiliation(s)
- Rosana Maria Kral
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Shen L, Ling M, Li Y, Xu Y, Zhou Y, Ye J, Pang Y, Zhao Y, Jiang R, Zhang J, Liu Q. Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignant transformation. PLoS One 2013; 8:e57652. [PMID: 23469214 PMCID: PMC3585869 DOI: 10.1371/journal.pone.0057652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/23/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To establish the functions of miR-21 and the roles of two feedback regulation loops, miR-21-Spry1-ERK/NF-κB and miR-21-Pdcd4-JNK/c-Jun, in arsenite-transformed human embryo lung fibroblast (HELF) cells. METHODS For arsenite-transformed HELF cells, apoptosis, clonogenicity, and capacity for migration were determined by Hoechst staining, assessment of their capacity for anchorage-independent growth, and wound-healing, respectively, after blockage, with inhibitors or with siRNAs, of signal pathways for JNK/c-Jun or ERK/NF-κB. Decreases of miR-21 levels were determined with anti-miR-21, and the up-regulation of Pdcd4 and Spry1 was assessed in transfected cells; these cells were molecularly characterized by RT-PCR, qRT-PCR, Western blots, and immunofluorescence assays. RESULTS MiR-21 was highly expressed in arsenite-transformed HELF cells and normal HELF cells acutely treated with arsenite, an effect that was concomitant with activation of JNK/c-Jun and ERK/NF-κB and down-regulation of Pdcd4 and Spry1 protein levels. However, there were no significant changes in mRNA levels for Pdcd4 and Spry1, which suggested that miR-21 regulates the expressions of Pdcd4 and Spry1 through translational repression. In arsenite-transformed HELF cells, blockages of JNK/c-Jun or ERK/NF-κB with inhibitors or with siRNAs prevented the increases of miR-21and the decreases of the protein levels but not the mRNA levels of Pdcd4 and Spry1. Down-regulation of miR-21 and up-regulations of Pdcd44 or Spry1 blocked the arsenite-induced activations of JNK/c-Jun or ERK/NF-κB, indicating that knockdown of miR-21 inhibits feedback of ERK activation and JNK activation via increases of Pdcd4 and Spry1 protein levels, respectively. Moreover, in arsenite-transformed HELF cells, inhibition of miR-21 promoted cell apoptosis, inhibited clonogenicity, and reduced migration. CONCLUSION The results indicate that miR-21 is both a target and a regulator of ERK/NF-κB and JNK/c-Jun and the feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1, respectively, are involved in arsenite-induced malignant transformation of HELF cells.
Collapse
Affiliation(s)
- Lu Shen
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Min Ling
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Center for Disease Control and Prevention, Nanjing, Jiangsu, People’s Republic of China
| | - Yuan Li
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yuan Xu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yun Zhou
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Ye
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ying Pang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yue Zhao
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Rongrong Jiang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Jianping Zhang
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (JZ); (QL)
| | - Qizhan Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (JZ); (QL)
| |
Collapse
|
17
|
Bowers SLK, Baudino TA. Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature. J Cardiovasc Transl Res 2012; 5:783-93. [DOI: 10.1007/s12265-012-9407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
18
|
Ounzain S, Crippa S, Pedrazzini T. Small and long non-coding RNAs in cardiac homeostasis and regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:923-33. [PMID: 22951218 DOI: 10.1016/j.bbamcr.2012.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Samir Ounzain
- Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
|
20
|
Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 2011; 286:11837-48. [PMID: 21310958 DOI: 10.1074/jbc.m110.194969] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although several recent publications have suggested that microRNAs contribute to the pathogenesis of diabetic nephropathy, the role of miRNAs in vivo still remains poorly understood. Using an integrated in vitro and in vivo comparative miRNA expression array, we identified miR-29c as a signature miRNA in the diabetic environment. We validated our profiling array data by examining miR-29c expression in the kidney glomeruli obtained from db/db mice in vivo and in kidney microvascular endothelial cells and podocytes treated with high glucose in vitro. Functionally, we found that miR-29c induces cell apoptosis and increases extracellular matrix protein accumulation. Indeed, forced expression of miR-29c strongly induced podocyte apoptosis. Conversely, knockdown of miR-29c prevented high glucose-induced cell apoptosis. We also identified Sprouty homolog 1 (Spry1) as a direct target of miR-29c with a nearly perfect complementarity between miR-29c and the 3'-untranslated region (UTR) of mouse Spry1. Expression of miR-29c decreased the luciferase activity of Spry1 when co-transfected with the mouse Spry1 3'-UTR reporter construct. Overexpression of miR-29c decreased the levels of Spry1 protein and promoted activation of Rho kinase. Importantly, knockdown of miR-29c by a specific antisense oligonucleotide significantly reduced albuminuria and kidney mesangial matrix accumulation in the db/db mice model in vivo. These findings identify miR-29c as a novel target in diabetic nephropathy and provide new insights into the role of miR-29c in a previously unrecognized signaling cascade involving Spry1 and Rho kinase activation.
Collapse
Affiliation(s)
- Jianyin Long
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez MLA, Colige A, Rakic JM, Noël A, Martial JA, Struman I. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 2011; 6:e16979. [PMID: 21347332 PMCID: PMC3037403 DOI: 10.1371/journal.pone.0016979] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 01/19/2011] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. Methodology/Principal Findings We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. Conclusions/Significance Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.
Collapse
Affiliation(s)
- Céline Sabatel
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Ludovic Malvaux
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Nicolas Bovy
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Development Biology, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
- Department of Ophthalmology, University Hospital, Sart Tilman, Liège, Belgium
| | - Maria-Luz Alvarez Gonzalez
- Laboratory of Tumor and Development Biology, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Jean-Marie Rakic
- Department of Ophthalmology, University Hospital, Sart Tilman, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Joseph A. Martial
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Ingrid Struman
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
- * E-mail:
| |
Collapse
|