1
|
Muzurović E, Kraljević I, Solak M, Dragnić S, Mikhailidis DP. Homocysteine and diabetes: Role in macrovascular and microvascular complications. J Diabetes Complications 2021; 35:107834. [PMID: 33419630 DOI: 10.1016/j.jdiacomp.2020.107834] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus (DM) can lead to the development of macro- and microvascular complications. Homocysteine (Hcy) may play a role in the development of cardiovascular (CV) diseases (CVDs). The role of Hcy in the development of the vascular complications associated with DM is not clearly defined. Despite a strong initial assumption regarding the importance of Hcy in DM and its complications, over time "enthusiasm has waned" because several studies showed unconvincing and occasionally contradictory results. A universal conclusion is not easy to draw given the diversity of studies (e.g. number of patients, design, folic acid and vitamin B status, ethnic differences, genetic background). For some complications, most results encourages further investigation. Impaired renal function is a major independent determinant of high total Hcy (tHcy) levels. However, the role of hyperhomocysteinaemia (HHcy) in the development of diabetic kidney disease (DKD) has yet to be determined. Hcy-lowering therapies can significantly decrease Hcy levels but their effects on CVD risk reduction are conflicting. Further studies are needed to determine the influence of Hcy-lowering therapy on CVD risk reduction, especially in patients with DM.
Collapse
Affiliation(s)
- Emir Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro.
| | - Ivana Kraljević
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirsala Solak
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Siniša Dragnić
- Department of Cardiology, Clinical Centre of Montenegro, Faculty of Medicine, University of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| |
Collapse
|
2
|
Ngowi EE, Sarfraz M, Afzal A, Khan NH, Khattak S, Zhang X, Li T, Duan SF, Ji XY, Wu DD. Roles of Hydrogen Sulfide Donors in Common Kidney Diseases. Front Pharmacol 2020; 11:564281. [PMID: 33364941 PMCID: PMC7751760 DOI: 10.3389/fphar.2020.564281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-β1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Muhammad Sarfraz
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Attia Afzal
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
| | - Saadullah Khattak
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin Zhang
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- College of Pharmacy, Henan University, Kaifeng, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Diseases and Bio-Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Wei J, Yu Y, Feng Y, Zhang J, Jiang Q, Zheng L, Zhang X, Xu N, Luo G. Negative Correlation Between Serum Levels of Homocysteine and Apolipoprotein M. Curr Mol Med 2019; 19:120-126. [PMID: 30854963 DOI: 10.2174/1566524019666190308115624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Homocysteine (Hcy) has been suggested as an independent risk factor for atherosclerosis. Apolipoprotein M (apoM) is a constituent of the HDL particles. The goal of this study was to examine the serum levels of homocysteine and apoM and to determine whether homocysteine influences apoM synthesis. METHODS Serum levels of apoM and Hcy in 17 hyperhomocysteinemia (HHcy) patients and 19 controls were measured and their correlations were analyzed. Different concentrations of homocysteine (Hcy) and LY294002, a specific phosphoinositide 3- kinase (PI3K) inhibitor, were used to treat HepG2 cells. The mRNA levels were determined by RT-PCR and the apoM protein mass was measured by western blot. RESULTS We found that decreased serum apoM levels corresponded with serum HDL levels in HHcy patients, while the serum apoM levels showed a statistically significant negative correlation with the serum Hcy levels. Moreover, apoM mRNA and protein levels were significantly decreased after the administration of Hcy in HepG2 cells, and this effect could be abolished by addition of LY294002. CONCLUSIONS Present study demonstrates that Hcy downregulates the expression of apoM by mechanisms involving the PI3K signal pathway.
Collapse
Affiliation(s)
- J Wei
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Y Yu
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Y Feng
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - J Zhang
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Q Jiang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - L Zheng
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - X Zhang
- Cardiothoracic Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - N Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lunds University, S-221 85 Lund, Sweden
| | - G Luo
- Department of Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
4
|
Hochane M, Raison D, Coquard C, Béraud C, Bethry A, Danilin S, Massfelder T, Barthelmebs M. Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression. Am J Physiol Cell Physiol 2017; 314:C242-C253. [PMID: 29141920 DOI: 10.1152/ajpcell.00018.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Injury of mesangial cells (MC) is a prominent feature of glomerulonephritis. Activated MC secrete inflammatory mediators that induce cell apoptosis. Parathyroid hormone-related peptide (PTHrP) is a locally active cytokine that enhances cell survival and is upregulated by proinflammatory factors in many cell types. The aim of this study was to analyze the regulation of PTHrP expression by inflammatory cytokines and to evaluate whether PTHrP itself acts as a proinflammatory and/or survival factor on male murine MC in primary culture. Our results showed that IL-1β (10 ng/ml) and TNF-α (10 ng/ml) rapidly and transiently upregulated PTHrP expression in MC. The effects of IL-1β were both transcriptional and posttranscriptional, with stabilization of the PTHrP mRNA by human antigen R (HuR). Proteome profiler arrays showed that PTHrP itself enhanced cytokines within 2 h in cell lysates, mainly IL-17, IL-16, IL-1α, and IL-6. PTHrP also stimulated sustained expression (2-4 h) of chemokines, mainly regulated upon activation normal T cell expressed and secreted (RANTES)/C-C motif chemokine 5 (CCL5) and macrophage inflammatory protein-2 (MIP-2)/C-X-C motif chemokine 2 (CXCL2), thymus and activation-regulated chemokine (TARC)/CCL17, and interferon-inducible T cell α-chemoattractant (I-TAC)/CXCL11. Moreover, PTHrP markedly enhanced cyclooxygenase-2 (COX-2) expression and elicited its autoinduction through the activation of the NF-κB pathway. PTHrP induced MC survival via the COX-2 products, and PTHrP overexpression in MC blunted the apoptotic effects of IL-1β and TNF-α. Altogether, these findings suggest that PTHrP functions as a booster of glomerular inflammatory processes and may be a negative feedback loop preserving MC survival.
Collapse
Affiliation(s)
- Mazène Hochane
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France
| | - Denis Raison
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Catherine Coquard
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Claire Béraud
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Audrey Bethry
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Sabrina Danilin
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France
| | - Thierry Massfelder
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| | - Mariette Barthelmebs
- Institut National de la Santé et de la Recherche Médicale UMR S1113, Equipe Signalisation et Communication Cellulaires dans les Cancers du Rein et de la Prostate, Strasbourg , France.,Fédération de Médecine Translationnelle, Strasbourg , France.,Université de Strasbourg , Strasbourg , France
| |
Collapse
|
5
|
Singh M, Tyagi SC. Hyperhomocysteinemia and Age-related Macular Degeneration: Role of Inflammatory Mediators and Pyroptosis; A Proposal. Med Hypotheses 2017; 105:17-21. [DOI: 10.1016/j.mehy.2017.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/22/2017] [Indexed: 02/03/2023]
|
6
|
Yuan X, Zhang J, Xie F, Tan W, Wang S, Huang L, Tao L, Xing Q, Yuan Q. Loss of the Protein Cystathionine β-Synthase During Kidney Injury Promotes Renal Tubulointerstitial Fibrosis. Kidney Blood Press Res 2017; 42:428-443. [PMID: 28750410 DOI: 10.1159/000479295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tubulointerstitial fibrosis (TIF) is the common pathway of progressive chronic kidney disease. Inflammation has been widely accepted as the major driving force of TIF. Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway. CBS is considered to play protective role in liver and pulmonary fibrosis, but its role in TIF remains unknown. The purpose of this study was to investigate the potential role and mechanism of CBS in renal inflammation and TIF. METHODS Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of collagen I, collagen III, fibronectin, CD3, CD68, IL-1β, TNF-α were measured in sham operation and unilateral ureteral obstruction (UUO) rats. Proteomics and gene array analysis were performed to screen differentially expressed molecules in the development of renal inflammation and TIF in UUO rats. The expression of CBS was detected in patients with obstructive nephropathy and UUO rats. We confirmed the expression of CBS using western blot and real-time PCR in HK-2 cells. Overexpression plasmid and siRNA were transfected specifically to study the possible function of CBS in HK-2 cells. RESULTS Abundant expression of CBS, localized in renal tubular epithelial cells, was revealed in human and rat renal tissue, which correlated negatively with the progression of fibrotic disease. Expression of CBS was dramatically decreased in the obstructed kidney from UUO rats as compared with the sham group (SHM). In addition, knocking down CBS exacerbated extracellular matrix (ECM) deposition, whereas CBS overexpression attenuated TGF-β1-induced ECM deposition in vitro. Inflammatory and chemotactic factors were also increased in CBS knockdown HK-2 cells stimulated by IL-1β. CONCLUSIONS These findings establish CBS as a novel inhibitor in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Xiangning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Jin Zhang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Feifei Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Wenqing Tan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Shuting Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Lijian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Qiqi Xing
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiongjing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| |
Collapse
|
7
|
Singh M, Tyagi SC. Homocysteine mediates transcriptional changes of the inflammatory pathway signature genes in human retinal pigment epithelial cells. Int J Ophthalmol 2017; 10:696-704. [PMID: 28546923 DOI: 10.18240/ijo.2017.05.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
AIM To test whether homocysteine (Hcy) can influence the transcriptional profile, we hypothesized that Hcy can lead to the induction of proinflammatory molecules in the retinal cells of aging people. METHODS An unbiased in vitro inflammatory pathway focused study was designed employing retinal pigment epithelial (RPE) cell line, ARPE-19. Cells were cultured in the presence or absence of Hcy to capture target genes' expression profile. Three different concentrations of Hcy were added in the culture medium of confluent monolayers. cRNAs were made from the isolated total RNAs and the labeled cRNA probes were hybridized to microarrays specific for human disease pathway inflammatory cytokines, chemokines and their receptor gene micro-array panels as per manufacture's recommendations. Two Hcy up-regulated molecules: IL6 and CEBPB were further validated via Western blot analysis. Hcy's effect on ARPE-19 cellular morphology and genomic DNA integrity were also evaluated. RESULTS Gene microarray analyses of RPE cells in response to Hcy treatment revealed alterations in the expressions of several inflammatory gene transcripts such as CCL5, CEBPB, IL13RA2, IL15RA, IL6, IL8 and CXCL3 that were up-regulated. The transcripts for C3, CCL2, IL11RA and IL18 genes exhibited down-regulation. The IL6 and CEBPB expressions were subsequently validated at the protein levels. Treatment of the retinal cells with increasing Hcy concentration influenced their density in culture however their morphology and DNA integrity remained unaffected. CONCLUSION These findings suggest that Hcy can potentially mediate the expression of chemokines, cytokines and interleukins receptors in the retinal cells without having any debilitating effects on their morphology and the genomic DNA integrity.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Weber GJ, Pushpakumar S, Tyagi SC, Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol Res 2016; 113:300-312. [PMID: 27602985 DOI: 10.1016/j.phrs.2016.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
Over the past several years, hydrogen sulfide (H2S) has been shown to be an important player in a variety of physiological functions, including neuromodulation, vasodilation, oxidant regulation, inflammation, and angiogenesis. H2S is synthesized primarily through metabolic processes from the amino acid cysteine and homocysteine in various organ systems including neuronal, cardiovascular, gastrointestinal, and kidney. Derangement of cysteine and homocysteine metabolism and clearance, particularly in the renal vasculature, leads to H2S biosynthesis deregulation causing or contributing to existing high blood pressure. While a variety of environmental influences, such as diet can have an effect on H2S regulation and function, genetic factors, and more recently epigenetics, also have a vital role in H2S regulation and function, and therefore disease initiation and progression. In addition, new research into the role of gut microbiota in the development of hypertension has highlighted the need to further explore these microorganisms and how they influence the levels of H2S throughout the body and possibly exploiting microbiota for use of hypertension treatment. In this review, we summarize recent advances in the field of hypertension research emphasizing renal contribution and how H2S physiology can be exploited as a possible therapeutic strategy to ameliorate kidney dysfunction as well as to control blood pressure.
Collapse
Affiliation(s)
- Gregory J Weber
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
9
|
Long Y, Nie J. Homocysteine in Renal Injury. KIDNEY DISEASES 2016; 2:80-7. [PMID: 27536696 DOI: 10.1159/000444900] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Homocysteine (Hcy) is an intermediate of methionine metabolism. Hyperhomocysteinemia (HHcy) can result from a deficiency in the enzymes or vitamin cofactors required for Hcy metabolism. Patients with renal disease tend to be hyperhomocysteinemic, particularly as renal function declines, although the underlying cause of HHcy in renal disease is not entirely understood. SUMMARY HHcy is considered a risk or pathogenic factor in the progression of chronic kidney disease (CKD) as well as the cardiovascular complications. KEY MESSAGES In this review, we summarize both clinical and experimental findings that reveal the contribution of Hcy as a pathogenic factor to the development of CKD. In addition, we discuss several important mechanisms mediating the pathogenic action of Hcy in the kidney, such as local oxidative stress, endoplasmic reticulum stress, inflammation and hypomethylation.
Collapse
Affiliation(s)
- Yanjun Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guiyang, PR China; Division of Nephrology, Guizhou Provincial People's Hospital, Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, PR China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guiyang, PR China
| |
Collapse
|
10
|
Veeranki S, Lominadze D, Tyagi SC. Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling. Am J Physiol Heart Circ Physiol 2015; 309:H325-34. [PMID: 25980021 DOI: 10.1152/ajpheart.00099.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 01/13/2023]
Abstract
Chronic failure in maintenance and regeneration of skeletal muscles leads to lower muscle mass (sarcopenia), muscle weakness, and poor response to injury. Evidence suggests that aberrant p38 MAPK signaling undermines the repair process after injury in aged mice. Previous studies have shown that hyperhomocysteinemia (HHcy) has been associated with muscle weakness and lower than normal body weights. However, whether or not HHcy condition also compromises skeletal muscle regenerative capabilities is not clear. In the current study, we show that CBS-/+ mice, a model for HHcy condition, exhibited compromised regenerative function and cell proliferation upon injury. However, there was no significant difference in Pax7 expression levels in the satellite cells from CBS-/+ mouse skeletal muscles. Interestingly, the satellite cells from CBS-/+ mice not only exhibited diminished in vitro proliferative capabilities, but also there was heightened oxidative stress. In addition, there was enhanced p38 MAPK activation as well as p16 and p21 expression in the CBS-/+ mouse satellite cells. Moreover, the C2C12 myoblasts also exhibited higher p38 MAPK activation and p16 expression upon treatment with homocysteine in addition to enhanced ROS presence. Tissue engraftment potential and regeneration after injury were restored to some extent upon treatment with the p38-MAPK inhibitor, SB203580, in the CBS-/+ mice. These results together suggest that HHcy-induced diminished satellite cell proliferation involves excessive oxidative stress and p38 MAPK signaling. Our study further proposes that HHcy is a potential risk factor for elderly frailty, and need to be considered as a therapeutic target while designing the alleviation interventions/postinjury rehabilitation measures for adults with HHcy.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky
| | - David Lominadze
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky
| |
Collapse
|
11
|
Zhang Y, He Y, Zong Y, Guo J, Sun L, Ma Y, Dong W, Gui L. 17β-estradiol attenuates homocysteine-induced oxidative stress and inflammatory response as well as MAPKs cascade via activating PI3-K/Akt signal transduction pathway in Raw 264.7 cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:65-72. [PMID: 25605419 DOI: 10.1093/abbs/gmu124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress, inflammatory response, and mitogen-activated protein kinases (MAPKs) cascade are significant pathogenic factors of osteoporosis. It has been reported that elevated homocysteine (Hcy) may activate oxidative stress and reduce bone mineral density in post-menopausal osteoporosis. Moreover, hormone replacement therapy has been widely used in clinic to prevent and treat post-menopausal women with osteoporosis and osteoporotic fracture, but the molecular mechanisms and relevant signal transduction pathways underlying the action of Hcy remain unclear. In this study, we investigated the effects of 17β-estradiol (17β-E2) on the Hcy-induced oxidative stress, inflammatory response and MAPKs cascade, as well as the underlying signal transduction pathway in murine Raw 264.7 cells. The reactive oxygen species (ROS) was assessed by fluorospectrophotometry. The proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β were analyzed by double-immunofluorescence labeling and reverse transcriptase polymerase chain reaction assay, respectively. Furthermore, phosphorylation levels of MAPKs cascade were measured by western blot analysis. A specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, Wortmannin (1 μM) was employed to determine whether PI3-K/Akt signaling pathway mediated the 17β-E2's effect on Raw 264.7 cells. 17β-E2 markedly decreased the ROS production induced by Hcy, the expression of TNF-α and IL-1β at protein and mRNA levels, and down-regulated the phosphorylation of MAPKs (ERK1/2, JNK and p38). These suppressing effects of 17β-E2 on Hcy-induced changes were reversed by pretreatment with PI3-K inhibitor Wortmannin. The results indicate that 17β-estradiol may attenuate Hcy-induced oxidative stress, inflammatory response and up-regulation of MAPKs in Raw 264.7 cells via PI3-K/Akt signal transduction pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, Basic Medical School, Kunming Medical University, Kunming 650500, China
| | - Ying He
- Department of Anatomy, Basic Medical School, Kunming Medical University, Kunming 650500, China
| | - Yi Zong
- Department of Anatomy, Basic Medical School, Kunming Medical University, Kunming 650500, China
| | - Jiazhi Guo
- Department of Anatomy, Basic Medical School, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Yunbing Ma
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming 650011, China
| | - Wei Dong
- Department of Orthopedics, The Third Affiliated Hospital, Yunnan Traditional Chinese Medicine College, Kunming 650031, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming 650011, China
| |
Collapse
|
12
|
Winchester L, Veeranki S, Givvimani S, Tyagi SC. Exercise mitigates the adverse effects of hyperhomocysteinemia on macrophages, MMP-9, skeletal muscle, and white adipocytes. Can J Physiol Pharmacol 2014; 92:575-82. [PMID: 24923386 DOI: 10.1139/cjpp-2014-0059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regular exercise is a great medicine with its benefits encompassing everything from prevention of cardiovascular risk to alleviation of different muscular myopathies. Interestingly, elevated levels of homocysteine (Hcy), also known as hyperhomocysteinemia (HHcy), antagonizes beta-2 adrenergic receptors (β2AR), gamma amino butyric acid (GABA), and peroxisome proliferator-activated receptor-gamma (PPARγ) receptors. HHcy also stimulates an elevation of the M1/M2 macrophage ratio, resulting in a more inflammatory profile. In this review we discuss several potential targets altered by HHcy that result in myopathy and excessive fat accumulation. Several of these HHcy mediated changes can be countered by exercise and culminate into mitigation of HHcy induced myopathy and metabolic syndrome. We suggest that exercise directly impacts levels of Hcy, matrix metalloproteinase 9 (MMP-9), macrophages, and G-protein coupled receptors (GPCRs, especially Gs). While HHcy promotes the M1 macrophage phenotype, it appears that exercise may diminish the M1/M2 ratio, resulting in a less inflammatory phenotype. HHcy through its influence on GPCRs, specifically β₂AR, PPARγ and GABA receptors, promotes accumulation of white fat, whereas exercise enhances the browning of white fat and counters HHcy-mediated effects on GPCRs. Alleviation of HHcy-associated pathologies with exercise also includes reversal of excessive MMP-9 activation. Moreover, exercise, by reducing plasma Hcy levels, may prevent skeletal muscle myopathy, improve exercise capacity and rescue the obese phenotype. The purpose of this review is to summarize the pathological conditions surrounding HHcy and to clarify the importance of regular exercise as a method of disease prevention.
Collapse
Affiliation(s)
- Lee Winchester
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
13
|
Zhi H, Luptak I, Alreja G, Shi J, Guan J, Metes-Kosik N, Joseph J. Effects of direct Renin inhibition on myocardial fibrosis and cardiac fibroblast function. PLoS One 2013; 8:e81612. [PMID: 24349097 PMCID: PMC3859492 DOI: 10.1371/journal.pone.0081612] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/15/2013] [Indexed: 12/02/2022] Open
Abstract
Myocardial fibrosis, a major pathophysiologic substrate of heart failure with preserved ejection fraction (HFPEF), is modulated by multiple pathways including the renin-angiotensin system. Direct renin inhibition is a promising anti-fibrotic therapy since it attenuates the pro-fibrotic effects of renin in addition to that of other effectors of the renin-angiotensin cascade. Here we show that the oral renin inhibitor aliskiren has direct effects on collagen metabolism in cardiac fibroblasts and prevented myocardial collagen deposition in a non-hypertrophic mouse model of myocardial fibrosis. Adult mice were fed hyperhomocysteinemia-inducing diet to induce myocardial fibrosis and treated concomitantly with either vehicle or aliskiren for 12 weeks. Blood pressure and plasma angiotensin II levels were normal in control and hyperhomocysteinemic mice and reduced to levels lower than observed in the control group in the groups treated with aliskiren. Homocysteine-induced myocardial matrix gene expression and fibrosis were also prevented by aliskiren. In vitro studies using adult rat cardiac fibroblasts also showed that aliskiren attenuated the pro-fibrotic pattern of matrix gene and protein expression induced by D,L, homocysteine. Both in vivo and in vitro studies demonstrated that the Akt pathway was activated by homocysteine, and that treatment with aliskiren attenuated Akt activation. In conclusion, aliskiren as mono-therapy has potent and direct effects on myocardial matrix turnover and beneficial effects on diastolic function.
Collapse
Affiliation(s)
- Hui Zhi
- Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivan Luptak
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gaurav Alreja
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jianru Shi
- Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Guan
- Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicole Metes-Kosik
- VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
| | - Jacob Joseph
- VA Boston Healthcare System, West Roxbury, Massachusetts, United States of America
- Boston University School of Medicine, Boston, Massachusetts, United States of America
- Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Han H, Wang Y, Li X, Wang PA, Wei X, Liang W, Ding G, Yu X, Bao C, Zhang Y, Wang Z, Yi F. Novel Role of NOD2 in Mediating Ca2+Signaling. Hypertension 2013; 62:506-11. [PMID: 23856489 DOI: 10.1161/hypertensionaha.113.01638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huirong Han
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Yupeng Wang
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Xiang Li
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Ping-An Wang
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Xinbing Wei
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Wei Liang
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Guohua Ding
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Xiao Yu
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Chanchan Bao
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Yan Zhang
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Ziying Wang
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| | - Fan Yi
- From the Department of Pharmacology (H.H., Y.W., X.L., P.-A.W., X.W., Y.Z., Z.W., F.Y.) and Department of Physiology (X.Y.), School of Medicine, and The Microscopy Characterization Platform (C.B.), Shandong University, Jinan, China; Department of Pharmacology, Weifang Medical University, Weifang, China (H.H.); and Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China (W.L., G.D.)
| |
Collapse
|
15
|
Oetting WS, Zhu Y, Brott MJ, Matas AJ, Cordner GK, Pan W. Validation of genetic variants associated with early acute rejection in kidney allograft transplantation. Clin Transplant 2011; 26:418-23. [PMID: 21919968 DOI: 10.1111/j.1399-0012.2011.01522.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Numerous reports have identified genetic variants associated with kidney transplant outcome, but only a few have been validated in subsequent studies. We analyzed the association of 21 previously reported genetic variants associated with acute rejection (AR), in an effort to validate these associations in our kidney transplant population. All recipients (n = 585) received Ab induction, rapid discontinuation of prednisone, and calcineurin inhibitors with either mycophenolate mofetil or sirolimus. Both univariate analysis and logistic regression were used for determining the association between the genotypes and AR. Univariate analysis detected one significant single-nucleotide polymorphism (p = 0.03), rs1801133, within the methylenetetrahydrofolate reductase (MTHFR) gene associated with AR. Logistic regression analysis identified two variants associated with AR, the 32-bp deletion within chemokine (C-C motif) receptor 5 gene (rs333) and the p.222A/V variant (rs1801133) within the MTHFR gene. Although our analysis utilized a much larger cohort than used in previous reports, we were only able to detect an association with two of these variants. The lack of validation for the other 19 variants may be due to the small effect size, or that, they are not associated with AR. These results stress the need for larger cohorts for both future studies as well as for validation studies.
Collapse
Affiliation(s)
- William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kuiper JW, Vaschetto R, Della Corte F, Plötz FB, Groeneveld ABJ. Bench-to-bedside review: Ventilation-induced renal injury through systemic mediator release--just theory or a causal relationship? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:228. [PMID: 21884646 PMCID: PMC3387589 DOI: 10.1186/cc10282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We review the current literature on the molecular mechanisms involved in the pathogenesis of acute kidney injury induced by plasma mediators released by mechanical ventilation. A comprehensive literature search in the PubMed database was performed and articles were identified that showed increased plasma levels of mediators where the increase was solely attributable to mechanical ventilation. A subsequent search revealed articles delineating the potential effects of each mediator on the kidney or kidney cells. Limited research has focused specifically on the relationship between mechanical ventilation and acute kidney injury. Only a limited number of plasma mediators has been implicated in mechanical ventilation-associated acute kidney injury. The number of mediators released during mechanical ventilation is far greater and includes pro- and anti-inflammatory mediators, but also mediators involved in coagulation, fibrinolysis, cell adhesion, apoptosis and cell growth. The potential effects of these mediators is pleiotropic and include effects on inflammation, cell recruitment, adhesion and infiltration, apoptosis and necrosis, vasoactivity, cell proliferation, coagulation and fibrinolysis, transporter regulation, lipid metabolism and cell signaling. Most research has focused on inflammatory and chemotactic mediators. There is a great disparity of knowledge of potential effects on the kidney between different mediators. From a theoretical point of view, the systemic release of several mediators induced by mechanical ventilation may play an important role in the pathophysiology of acute kidney injury. However, evidence supporting a causal relationship is lacking for the studied mediators.
Collapse
Affiliation(s)
- Jan Willem Kuiper
- Department of Pediatric Intensive Care, VUmc Medical Center, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
Sen U, Givvimani S, Abe OA, Lederer ED, Tyagi SC. Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am J Physiol Cell Physiol 2011; 300:C155-63. [PMID: 20943958 PMCID: PMC3023186 DOI: 10.1152/ajpcell.00143.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Elevated level of homocysteine (Hcy) induces chronic inflammation in vascular bed, including glomerulus, and promotes glomerulosclerosis. In this study we investigated in vitro mechanism of Hcy-mediated monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) induction and determined the regulatory role of hydrogen sulfide (H₂S) to ameliorate inflammation. Mouse glomerular mesangial cells (MCs) were incubated with Hcy (75 μM) and supplemented with vehicle or with H₂S (30 μM, in the form of NaHS). Inflammatory molecules MCP-1 and MIP-2 were measured by ELISA. Cellular capability to generate H₂S was measured by colorimetric chemical method. To enhance endogenous production of H₂S and better clearance of Hcy, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) genes were delivered to the cells. Oxidative NAD(P)H p47(phox) was measured by Western blot analysis and immunostaining. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH₂-terminal kinase (JNK1/2) were measured by Western blot analysis. Our results demonstrated that Hcy upregulated inflammatory molecules MCP-1 and MIP-2, whereas endogenous production of H₂S was attenuated. H₂S treatment as well as CBS and CSE doubly cDNA overexpression markedly reduced Hcy-induced upregulation of MCP-1 and MIP-2. Hcy-induced upregulation of oxidative p47(phox) was attenuated by H₂S supplementation and CBS/CSE overexpression as well. In addition to that we also detected Hcy-induced MCP-1 and MIP-2 induction was through phosphorylation of ERK1/2 and JNK1/2. Either H₂S supplementation or CBS and CSE doubly cDNA overexpression attenuated Hcy-induced phosphorylation of these two signaling molecules and diminished MCP-1 and MIP-2 expressions. Similar results were obtained by inhibition of ERK1/2 and JNK1/2 using pharmacological and small interferring RNA (siRNA) blockers. We conclude that H₂S plays a regulatory role in Hcy-induced mesangial inflammation and that ERK1/2 and JNK1/2 are two signaling pathways involved this process.
Collapse
Affiliation(s)
- Utpal Sen
- Department of Physiology & Biophysics, University of Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
18
|
Yan-Yan L. Relationship of serum homocysteine and high sensitivity C-reactive protein in elderly people with essential hypertension. Int J Clin Pract 2010; 64:1318-9. [PMID: 20653803 DOI: 10.1111/j.1742-1241.2010.02462.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|