1
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
2
|
Proteomic Profiling of Plant and Pathogen Interaction on the Leaf Epidermis. Int J Mol Sci 2022; 23:ijms232012171. [PMID: 36293025 PMCID: PMC9603099 DOI: 10.3390/ijms232012171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
The plant epidermis is the first line of plant defense against pathogen invasion, and likely contains important regulatory proteins related to the plant–pathogen interaction. This study aims to identify the candidates of these regulatory proteins expressed in the plant epidermis. We performed comparative proteomic studies to identify rapidly and locally expressed proteins in the leaf epidermis inoculated with fungal phytopathogen. The conidia solutions were dropped onto the Arabidopsis leaf surface, and then, we collected the epidermal tissues from inoculated and mock-treated leaves at 4 and 24 hpi. The label-free quantification methods showed that expressions of Arabidopsis proteins, which are related to defense signals, such as BAK1, MKK5, receptor-like protein kinases, transcription factors, and stomatal functions, were rapidly induced in the epidermal tissues of inoculated leaves. In contrast, most of them were not differentially regulated by fugal inoculation in the whole leaves. These findings clearly indicate that epidermal proteomics can monitor locally expressed proteins in inoculated areas of plant tissues. We also identified the 61 fungal proteins, including effector-like proteins specifically expressed on the Arabidopsis epidermis. Our new findings suggested that epidermal proteomics is useful for understanding the local expressions of plant and fungal proteins related to their interactions.
Collapse
|
3
|
Belt K, Foley RC, O'Sullivan CA, Roper MM, Singh KB, Thatcher LF. A Plant Stress-Responsive Bioreporter Coupled With Transcriptomic Analysis Allows Rapid Screening for Biocontrols of Necrotrophic Fungal Pathogens. Front Mol Biosci 2021; 8:708530. [PMID: 34540894 PMCID: PMC8446517 DOI: 10.3389/fmolb.2021.708530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Streptomyces are soil-borne Actinobacteria known to produce a wide range of enzymes, phytohormones, and metabolites including antifungal compounds, making these microbes fitting for use as biocontrol agents in agriculture. In this study, a plant reporter gene construct comprising the biotic stress-responsive glutathione S-transferase promoter GSTF7 linked to a luciferase output (GSTF7:luc) was used to screen a collection of Actinobacteria candidates for manipulation of plant biotic stress responses and their potential as biocontrol agents. We identified a Streptomyces isolate (KB001) as a strong candidate and demonstrated successful protection against two necrotrophic fungal pathogens, Sclerotinia sclerotiorum and Rhizoctonia solani, but not against a bacterial pathogen (Pseudomonas syringe). Treatment of Arabidopsis plants with either KB001 microbial culture or its secreted compounds induced a range of stress and defense response-related genes like pathogenesis-related (PR) and hormone signaling pathways. Global transcriptomic analysis showed that both treatments shared highly induced expression of reactive oxygen species and auxin signaling pathways at 6 and 24 h posttreatment, while some other responses were treatment specific. This study demonstrates that GSTF7 is a suitable marker for the rapid and preliminary screening of beneficial bacteria and selection of candidates with potential for application as biocontrols in agriculture, including the Streptomyces KB001 that was characterized here, and could provide protection against necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Rhonda C Foley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Cathryn A O'Sullivan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, St Lucia, QLD, Australia
| | - Margaret M Roper
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Karam B Singh
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Floreat, WA, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| |
Collapse
|
4
|
Panthapulakkal Narayanan S, Liao P, Taylor PWJ, Lo C, Chye ML. Overexpression of a Monocot Acyl-CoA-Binding Protein Confers Broad-Spectrum Pathogen Protection in a Dicot. Proteomics 2020; 19:e1800368. [PMID: 31054181 DOI: 10.1002/pmic.201800368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/14/2019] [Indexed: 01/17/2023]
Abstract
Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl-CoA-binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3-overexpressors (AtACBP3-OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph (Colletotrichum siamense). Changes in protein expression in R. solani-infected Arabidopsis OsACBP5-overexpressors (OsACBP5-OEs) were demonstrated using proteomic analysis. Biotic stress-related proteins including cell wall-related proteins such as FASCILIN-LIKE ARABINOGALACTAN-PROTEIN10, LEUCINE-RICH REPEAT EXTENSIN-LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4, and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL-LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2, and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5-OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5-OEs conferred protection against various plant pathogens.
Collapse
Affiliation(s)
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul W J Taylor
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
5
|
Asano T, Nguyen THN, Yasuda M, Sidiq Y, Nishimura K, Nakashita H, Nishiuchi T. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2085-2097. [PMID: 31844896 PMCID: PMC7094076 DOI: 10.1093/jxb/erz556] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/13/2019] [Indexed: 05/25/2023]
Abstract
The genome of Arabidopsis encodes more than 60 mitogen-activated protein kinase kinase (MAPKK) kinases (MAPKKKs); however, the functions of most MAPKKKs and their downstream MAPKKs are largely unknown. Here, MAPKKK δ-1 (MKD1), a novel Raf-like MAPKKK, was isolated from Arabidopsis as a subunit of a complex including the transcription factor AtNFXL1, which is involved in the trichothecene phytotoxin response and in disease resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). A MKD1-dependent cascade positively regulates disease resistance against PstDC3000 and the trichothecene mycotoxin-producing fungal pathogen Fusarium sporotrichioides. MKD1 expression was induced by trichothecenes derived from Fusarium species. MKD1 directly interacted with MKK1 and MKK5 in vivo, and phosphorylated MKK1 and MKK5 in vitro. Correspondingly, mkk1 mutants and MKK5RNAi transgenic plants showed enhanced susceptibility to F. sporotrichioides. MKD1 was required for full activation of two MAPKs (MPK3 and MPK6) by the T-2 toxin and flg22. Finally, quantitative phosphoproteomics suggested that an MKD1-dependent cascade controlled phosphorylation of a disease resistance protein, SUMO, and a mycotoxin-detoxifying enzyme. Our findings suggest that the MKD1-MKK1/MKK5-MPK3/MPK6-dependent signaling cascade is involved in the full immune responses against both bacterial and fungal infection.
Collapse
Affiliation(s)
- Tomoya Asano
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
| | - Thi Hang-Ni Nguyen
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasir Sidiq
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kohji Nishimura
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Takumi Nishiuchi
- Institute for Gene Research, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, Ishikawa, Japan
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
6
|
Yelli F, Kato T, Nishiuchi T. The possible roles of AtERF71 in the defense response against the Fusarium graminearum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:187-192. [PMID: 31819723 PMCID: PMC6879373 DOI: 10.5511/plantbiotechnology.18.0501b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 06/10/2023]
Abstract
The ethylene (ET) signaling pathway is involved in plant immunity and contributes to the disease tolerance of plants to necrotrophic phytopathogens. Ethylene response factors (ERFs) are known to play important roles in the transcriptional regulation of defense genes by ET. In the present study, we analyzed the function of AtERF71 belonged to group VII ERF family in disease resistance against a hemibiotrophic fungal phytopathogen, Fusarium graminearum. When conidia solutions were dropped onto intact leaves of Arabidopsis plants, both ein2-1 and ein3-1 mutants showed enhanced disease resistance against F. graminearum compared with the wild type. This finding suggested that the ET signaling pathway was involved in the resistance to Fusarium entry into the leaf epidermis in Arabidopsis plants. We discovered that the AtERF71 expression was significantly induced by inoculation with F. graminearum. This induction of AtERF71 was suppressed in the ein3-1 mutant. Enhanced disease resistance was observed in the leaves of the aterf71 mutant when compared with wild type. In addition, the expression levels of the JA/ET-responsive PDF1.2 gene were significantly down-regulated in the aterf71 mutant after inoculation with F. graminearum. Taken together, these results indicate the possible involvement of AtERF71 in disease tolerance to F. graminearum in Arabidopsis plants.
Collapse
Affiliation(s)
- Fitri Yelli
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920–1192, Japan
- Department of Agronomy and Horticulture, Faculty of Agriculture, University of Lampung, Lampung, Jl. Soemantri Brojonegoro No. 1, Bandar Lampung 35145, Indonesia
| | - Tomoaki Kato
- Institute for Gene Research, Advance Science Research Center, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - Takumi Nishiuchi
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920–1192, Japan
- Institute for Gene Research, Advance Science Research Center, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
7
|
Wahibah NN, Tsutsui T, Tamaoki D, Sato K, Nishiuchi T. Expression of barley Glutathione S-Transferase13 gene reduces accumulation of reactive oxygen species by trichothecenes and paraquat in Arabidopsis plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:71-79. [PMID: 31275039 PMCID: PMC6543728 DOI: 10.5511/plantbiotechnology.18.0205a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in the detoxification of reactive oxygen species (ROS) and toxic compounds. We found that the barley phi class GST (HvGST13) gene is upregulated by trichothecene phytotoxin produced by the fungal pathogen Fusarium graminearum in barley. Trichothecene phytotoxins such as DON and T-2 toxin induce accumulation of ROS and cell death in plants. It is known that the death of host cells contributes to the virulence of F. graminearum during the later stages of infection. To characterize the role of the HvGST13 gene, we generated Arabidopsis plants in which HvGST13 was overexpressed. Growth inhibition by DON and T-2 toxin was significantly alleviated in the HvGST13ox Arabidopsis plants compared with the wild type. Accumulation of ROS and cell death apparently decreased in HvGST13ox Arabidopsis plants treated with trichothecene. Paraquat herbicide is well known to induce the generation of ROS in plants. Paraquat-induced growth retardation was also suppressed in the HvGST13ox Arabidopsis plants compared with wild type. The inoculation of F. graminearum causes disease symptoms that are markedly decreased in HvGST13ox Arabidopsis plants compared to those in the wild type. Therefore, the HvGST13 gene suppressed the phytotoxic activity of trichothecenes in plants, possibly by the scavenging of ROS.
Collapse
Affiliation(s)
- Ninik Nihayatul Wahibah
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Riau, Kampus Bina Widya Km 12.5 Simpang Baru Panam, Pekanbaru 28293, Indonesia
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomokazu Tsutsui
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Daisuke Tamaoki
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa 920-1192, Japan
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| |
Collapse
|
8
|
Iizasa S, Iizasa E, Watanabe K, Nagano Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics 2017; 18:995. [PMID: 29284410 PMCID: PMC5747113 DOI: 10.1186/s12864-017-4372-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) from Gram-negative bacteria cause innate immune responses in animals and plants. The molecules involved in LPS signaling in animals are well studied, whereas those in plants are not yet as well documented. Recently, we identified Arabidopsis AtLBR-2, which binds to LPS from Pseudomonas aeruginosa (pLPS) directly and regulates pLPS-induced defense responses, such as pathogenesis-related 1 (PR1) expression and reactive oxygen species (ROS) production. In this study, we investigated the pLPS-induced transcriptomic changes in wild-type (WT) and the atlbr-2 mutant Arabidopsis plants using RNA-Seq technology. RESULTS RNA-Seq data analysis revealed that pLPS treatment significantly altered the expression of 2139 genes, with 605 up-regulated and 1534 down-regulated genes in WT. Gene ontology (GO) analysis on these genes showed that GO terms, "response to bacterium", "response to salicylic acid (SA) stimulus", and "response to abscisic acid (ABA) stimulus" were enriched amongst only in up-regulated genes, as compared to the genes that were down-regulated. Comparative analysis of differentially expressed genes between WT and the atlbr-2 mutant revealed that 65 genes were up-regulated in WT but not in the atlbr-2 after pLPS treatment. Furthermore, GO analysis on these 65 genes demonstrated their importance for the enrichment of several defense-related GO terms, including "response to bacterium", "response to SA stimulus", and "response to ABA stimulus". We also found reduced levels of pLPS-induced conjugated SA glucoside (SAG) accumulation in atlbr-2 mutants, and no differences were observed in the gene expression levels in SA-treated WT and the atlbr-2 mutants. CONCLUSION These 65 AtLBR-2-dependent up-regulated genes appear to be important for the enrichment of some defense-related GO terms. Moreover, AtLBR-2 might be a key molecule that is indispensable for the up-regulation of defense-related genes and for SA signaling pathway, which is involved in defense against pathogens containing LPS.
Collapse
Affiliation(s)
- Sayaka Iizasa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.,Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Ei'ichi Iizasa
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Watanabe
- Department of Biological Resource Sciences, Graduate School of Agriculture, Saga University, Saga, Japan.,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan. .,Department of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
9
|
Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways. Fungal Biol 2017; 121:841-848. [DOI: 10.1016/j.funbio.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
|
10
|
Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep 2017; 7:6389. [PMID: 28743869 PMCID: PMC5526872 DOI: 10.1038/s41598-017-06048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), is known to act as a functional molecule in animals, whereas its function in plants is largely unknown. In this study, we found that NMN accumulated in barley cultivars resistant to phytopathogenic fungal Fusarium species. Although NMN does not possess antifungal activity, pretreatment with NMN and related metabolites enhanced disease resistance to Fusarium graminearum in Arabidopsis leaves and flowers and in barley spikes. The NMN-induced Fusarium resistance was accompanied by activation of the salicylic acid-mediated signalling pathway and repression of the jasmonic acid/ethylene-dependent signalling pathways in Arabidopsis. Since NMN-induced disease resistance was also observed in the SA-deficient sid2 mutant, an SA-independent signalling pathway also regulated the enhanced resistance induced by NMN. Compared with NMN, NAD and NADP, nicotinamide pretreatment had minor effects on resistance to F. graminearum. Constitutive expression of the NMNAT gene, which encodes a rate-limiting enzyme for NAD biosynthesis, resulted in enhanced disease resistance in Arabidopsis. Thus, modifying the content of NAD-related metabolites can be used to optimize the defence signalling pathways activated in response to F. graminearum and facilitates the control of disease injury and mycotoxin accumulation in plants.
Collapse
Affiliation(s)
- Akihiro Miwa
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Tamaoki
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan.
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan.
| |
Collapse
|
11
|
Jiang Z, He F, Zhang Z. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. PLANT MOLECULAR BIOLOGY 2017; 94:453-467. [PMID: 28540497 DOI: 10.1007/s11103-017-0617-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 05/26/2023]
Abstract
Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study will deepen our understanding of plant metabolism in plant immunity and provide new insights into disease-resistant crop improvement.
Collapse
Affiliation(s)
- Zhenhong Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fei He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
12
|
Miyazaki S, Sato Y, Asano T, Nagamura Y, Nonomura KI. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR. PLANT MOLECULAR BIOLOGY 2015; 89:293-307. [PMID: 26319516 DOI: 10.1007/s11103-015-0369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.
Collapse
Affiliation(s)
- Saori Miyazaki
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
- Office for the Promotion of Global Education Programs, Shizuoka University, Jyouhoku, Nakaku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, 920-0934, Japan.
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan.
| | - Yoshiaki Nagamura
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
13
|
Fang X, Chen J, Dai L, Ma H, Zhang H, Yang J, Wang F, Yan C. Proteomic dissection of plant responses to various pathogens. Proteomics 2015; 15:1525-43. [DOI: 10.1002/pmic.201400384] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/28/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Xianping Fang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jianping Chen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Liangying Dai
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and Hunan Provincial Key Laboratory of Biology and Control of Plant Diseases and Insect Pests; Hunan Agricultural University; Changsha Hunan P. R. China
| | - Huasheng Ma
- Institute of Biology; Hangzhou Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Hengmu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| | - Fang Wang
- Laboratory of Biotechnology; Institute of Biotechnology; Ningbo Academy of Agricultural Sciences; Ningbo P. R. China
| | - Chengqi Yan
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Virology and Biotechnology; Zhejiang Academy of Agricultural Sciences; Hangzhou P. R. China
| |
Collapse
|
14
|
Vahabi K, Sherameti I, Bakshi M, Mrozinska A, Ludwig A, Reichelt M, Oelmüller R. The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts. BMC PLANT BIOLOGY 2015; 15:58. [PMID: 25849363 PMCID: PMC4384353 DOI: 10.1186/s12870-015-0419-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of many plant species including Arabidopsis thaliana. The symbiotic interaction promotes plant performance, growth and resistance/tolerance against abiotic and biotic stress. RESULTS We demonstrate that exudated compounds from the fungus activate stress and defense responses in the Arabidopsis roots and shoots before the two partners are in physical contact. They induce stomata closure, stimulate reactive oxygen species (ROS) production, stress-related phytohormone accumulation and activate defense and stress genes in the roots and/or shoots. Once a physical contact is established, the stomata re-open, ROS and phytohormone levels decline, and the number and expression level of defense/stress-related genes decreases. CONCLUSIONS We propose that exudated compounds from P. indica induce stress and defense responses in the host. Root colonization results in the down-regulation of defense responses and the activation of genes involved in promoting plant growth, metabolism and performance.
Collapse
Affiliation(s)
- Khabat Vahabi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Irena Sherameti
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Madhunita Bakshi
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anna Mrozinska
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Anatoli Ludwig
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- />Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ralf Oelmüller
- />Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
15
|
Mamunur Rahman M, Azizur Rahman M, Maki T, Nishiuchi T, Asano T, Hasegawa H. A marine phytoplankton (Prymnesium parvum) up-regulates ABC transporters and several other proteins to acclimatize with Fe-limitation. CHEMOSPHERE 2014; 95:213-219. [PMID: 24075529 DOI: 10.1016/j.chemosphere.2013.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 08/22/2013] [Accepted: 09/01/2013] [Indexed: 06/02/2023]
Abstract
Iron (Fe) is one of the vital limiting factors for phytoplankton in vast regions of the contemporary oceans, notably the high nutrient low chlorophyll regions. Therefore, it is apparent to be acquainted with the Fe uptake strategy of marine phytoplankton under Fe-limited condition. In the present study, marine phytoplankton Prymnesium parvum was grown under Fe-deplete (0.0025 μM) and Fe-rich (0.05 μM) conditions, and proteomic responses of the organism to Fe conditions were compared. In sodium dodecyl sulfate (SDS) gel electrophoresis, 7 proteins (16, 18, 32, 34, 75, 82, and 116 kDa) were highly expressed under Fe-deplete condition, while one protein (23 kDa) was highly expressed under Fe-rich condition. These proteins were subjected to 2-dimensional gel electrophoresis (2-D DIGE) to differentiate individual proteins, and were identified by matrix-assisted laser desorption-ionization-time of flight-mass spectrometer (MALDI-TOF-MS) analysis. The results showed that under Fe-deplete condition P. parvum increases the biosynthesis of ATP binding cassette (ABC) transporters, flagellar associated protein (FAP), and Phosphoribosylaminoimidazole-succinocarboxamide synthase. These proteins are assumed to be involved in a number of cellular biochemical processes that facilitate Fe acquisition in phytoplankton. Under Fe-deplete condition, P. parvum increases the synthesis of ribulose biphosphate carboxylase (RuBisCo), malate dehydrogenase, and two Fe-independent oxidative stress response proteins, manganese superoxide dismutase (MnSOD) and Serine threonine kinase (STK). Thus, marine phytoplankton may change their Fe acquisition strategy by altering the biosynthesis of several proteins in order to cope with Fe-limitation.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; Bangladesh Rice Research Institute (BRRI), Gazipur 1701, Dhaka, Bangladesh.
| | | | | | | | | | | |
Collapse
|
16
|
Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR, Siciliano RA. Proteomic investigation of response to FORL infection in tomato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:42-9. [PMID: 24262994 DOI: 10.1016/j.plaphy.2013.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/24/2013] [Indexed: 05/07/2023]
Abstract
Fusarium oxysporum f. sp. radicis-lycopersici (FORL) leading to fusarium crown and root rot is considered one of the most destructive tomato soilborne diseases occurring in greenhouse and field crops. In this study, response to FORL infection in tomato roots was investigated by differential proteomics in susceptible (Monalbo) and resistant (Momor) isogenic tomato lines, thus leading to identify 33 proteins whose amount changed depending on the pathogen infection, and/or on the two genotypes. FORL infection induced accumulation of pathogen-related proteins (PR proteins) displaying glucanase and endochitinases activity or involved in redox processes in the Monalbo genotype. Interestingly, the level of the above mentioned PR proteins was not influenced by FORL infection in the resistant tomato line, while other proteins involved in general response mechanisms to biotic and/or abiotic stresses showed significant quantitative differences. In particular, the increased level of proteins participating to arginine metabolism and glutathione S-transferase (GST; EC 2.5.1.18) as well as that of protein LOC544002 and phosphoprotein ECPP44-like, suggested their key role in pathogen defence.
Collapse
Affiliation(s)
- Maria Fiorella Mazzeo
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Sciences, Italian National Research Council (CNR), Via Roma 64 a/c, 83100 Avellino, Italy
| | - Giuseppina Cacace
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Sciences, Italian National Research Council (CNR), Via Roma 64 a/c, 83100 Avellino, Italy
| | - Francesca Ferriello
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, NA, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, TN, Italy
| | - Astolfo Zoina
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, NA, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, NA, Italy
| | - Rosa Anna Siciliano
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Sciences, Italian National Research Council (CNR), Via Roma 64 a/c, 83100 Avellino, Italy.
| |
Collapse
|
17
|
Asano T, Miwa A, Maeda K, Kimura M, Nishiuchi T. The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog 2013; 9:e1003581. [PMID: 23990790 PMCID: PMC3749967 DOI: 10.1371/journal.ppat.1003581] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
Plants possess active defense systems and can protect themselves from pathogenic invasion by secretion of a variety of small antimicrobial or antifungal proteins such as thionins. The antibacterial and antifungal properties of thionins are derived from their ability to induce open pore formation on cell membranes of phytopathogens, resulting in release of potassium and calcium ions from the cell. Wheat thionin also accumulates in the cell walls of Fusarium-inoculated plants, suggesting that it may have a role in blocking pathogen infection at the plant cell walls. Here we developed an anti-thionin 2.4 (Thi2.4) antibody and used it to show that Thi2.4 is localized in the cell walls of Arabidopsis and cell membranes of F. graminearum, when flowers are inoculated with F. graminearum. The Thi2.4 protein had an antifungal effect on F. graminearum. Next, we purified the Thi2.4 protein, conjugated it with glutathione-S-transferase (GST) and coupled the proteins to an NHS-activated column. Total protein from F. graminearum was applied to GST-Thi2.4 or Thi2.4-binding columns, and the fungal fruit body lectin (FFBL) of F. graminearum was identified as a Thi2.4-interacting protein. This interaction was confirmed by a yeast two-hybrid analysis. To investigate the biological function of FFBL, we infiltrated the lectin into Arabidopsis leaves and observed that it induced cell death in the leaves. Application of FFBL at the same time as inoculation with F. graminearum significantly enhanced the virulence of the pathogen. By contrast, FFBL-induced host cell death was effectively suppressed in transgenic plants that overexpressed Thi2.4. We found that a 15 kD Thi2.4 protein was specifically expressed in flowers and flower buds and suggest that it acts not only as an antifungal peptide, but also as a suppressor of the FFBL toxicity. Secreted thionin proteins are involved in this dual defense mechanism against pathogen invasion at the plant-pathogen interface.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
- Equipment Support Promotion Office, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
- * E-mail: (TA); (TN)
| | - Akihiro Miwa
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Kazuyuki Maeda
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
- * E-mail: (TA); (TN)
| |
Collapse
|