1
|
Seify M, Abedpour N, Talebi SF, Hazari V, Mehrara M, Koohestanidehaghi Y, Shoorei H, Bhandari RK. Impacts of Acrylamide on testis and spermatozoa. Mol Biol Rep 2024; 51:739. [PMID: 38874886 DOI: 10.1007/s11033-024-09677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
Acrylamide (ACR) is an industrial chemical used to produce polyacrylamide, a synthetic polymer with a wide range of applications. Depending on the dosage, its presence in occupational and environmental sources poses potential health risks to humans and animals. ACR can be formed in starchy foods cooked at high temperatures. Its effects on human sperm are not well understood. Animal studies indicate that ACR induces toxicity in the male reproductive system through oxidative stress mechanisms. Exposure to ACR alters the normal structure of testicular tubules, leading to congestion, interstitial edema, degeneration of spermatogenic cells, formation of abnormal spermatid giant cells, and necrosis and apoptosis. It also disrupts the balance of important biomarkers such as malondialdehyde, nitric oxide, superoxide dismutase, catalase, and glutathione. ACR has a negative impact on mitochondrial function, antioxidant enzymes, ATP production, and sperm membrane integrity, resulting in decreased sperm quality. Furthermore, it interferes with the expression of steroidogenic genes associated with testosterone biosynthesis. This review explores the detrimental effects of ACR on sperm and testicular function and discusses the potential role of antioxidants in mitigating the adverse effects of ACR on male reproduction.
Collapse
Affiliation(s)
- Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Abedpour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Azarbayjan E Gharbi, Urmia, Iran
| | | | - Vajihe Hazari
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Mehrara
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Koohestanidehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Shoorei
- Rooyesh Infertility Center, Birjand University of Medical Sciences, Birjand, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Ramji Kumar Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Hodge MJ, de Las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. QTLs and Candidate Genes Associated with Semen Traits in Merino Sheep. Animals (Basel) 2023; 13:2286. [PMID: 37508063 PMCID: PMC10376747 DOI: 10.3390/ani13142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Ram semen traits play a significant role in conception outcomes, which in turn may influence reproductive efficiency and the overall productivity and profitability of sheep enterprises. Since hundreds of ewes may be inseminated from a single ejaculate, it is important to evaluate semen quality prior to use in sheep breeding programs. Given that semen traits have been found to be heritable, genetic variation likely contributes to the variability observed in these traits. Identifying such genetic variants could provide novel insights into the molecular mechanisms underlying variability in semen traits. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with semen traits in Merino sheep. A genome-wide association study (GWAS) was undertaken using 4506 semen collection records from 246 Merino rams collected between January 2002 and May 2021. The R package RepeatABEL was used to perform a GWAS for semen volume, gross motility, concentration, and percent post-thaw motility. A total of 35 QTLs, located on 16 Ovis aries autosomes (OARs), were significantly associated with either of the four semen traits in this study. A total of 89, 95, 33, and 73 candidate genes were identified, via modified Bonferroni, within the QTLs significantly associated with volume, gross motility, concentration, and percent post-thaw motility, respectively. Among the candidate genes identified, SORD, SH2B1, and NT5E have been previously described to significantly influence spermatogenesis, spermatozoal motility, and high percent post-thaw motility, respectively. Several candidate genes identified could potentially influence ram semen traits based on existing evidence in the literature. As such, validation of these putative candidates may offer the potential to develop future strategies to improve sheep reproductive efficiency. Furthermore, Merino ram semen traits are lowly heritable (0.071-0.139), and thus may be improved by selective breeding.
Collapse
Affiliation(s)
- Marnie J Hodge
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia
| | - Sara de Las Heras-Saldana
- Animal Genetics and Breeding Unit, a Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, NSW 2351, Australia
| | | | - Cyril P Stephen
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
3
|
PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Vet Sci 2022; 9:vetsci9030111. [PMID: 35324839 PMCID: PMC8951773 DOI: 10.3390/vetsci9030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Functional genes and proteins in sperm play an essential role in bulls’ reproductive processes. They are more accurate in determining bull fertility than conventional semen quality tests. Protamine-1 (PRM1) is a gene or protein crucial for packaging and protecting sperm DNA until fertilization affects normal sperm function. This study analyzes the genes and proteins potential from PRM1 as fertility markers for different breeds of bulls utilized in the artificial insemination programs, expected to be an accurate tool in interpreting bull fertility in Indonesia. This study used Limousin, Holstein, and Ongole Grade bulls divided into two groups based on fertility, high-fertility (HF) and low fertility (LF). The semen quality assessment included progressive motility (computer-assisted semen analysis), viability (eosin-nigrosine), and plasma membrane integrity (HOS test). Sperm DNA fragmentation (SDF) was assessed using the acridine orange staining and the Halomax test. Sperm PRM deficiency was evaluated with the chromomycin A3 method. Moreover, PRM1 gene expression was measured using qRT-PCR, and the PRM1 protein abundance was measured with the enzyme immunoassay method. Semen quality values, relative expression of PRM1 gene, and quantity of PRM1 protein were significantly higher (p < 0.05) in HF bulls than in LF bulls. The SDF and PRM deficiency values in LF bulls were significantly higher (p < 0.05) than HF bulls. Additionally, PRM1 at the gene and protein levels correlated significantly (p < 0.01) with fertility. Therefore, PRM1 is a potential candidate for fertility markers in bulls in Indonesia.
Collapse
|
4
|
Maternal proteomic profiling reveals alterations in lipid metabolism in late-onset fetal growth restriction. Sci Rep 2020; 10:21033. [PMID: 33273667 PMCID: PMC7713381 DOI: 10.1038/s41598-020-78207-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction defined as the failure to achieve the fetal genetic growth potential is a major cause of perinatal morbidity and mortality. The role of maternal adaptations to placental insufficiency in this disorder is still not fully understood. We aimed to investigate the biological processes and protein–protein interactions involved in late-onset fetal growth restriction in particular. We applied 2D nano LC–MS/MS proteomics analysis on maternal blood samples collected at the time of delivery from 5 singleton pregnancies with late-onset fetal growth restriction and 5 uncomplicated pregnancies. Data were analyzed using R package “limma” and Ingenuity Pathway Analysis. 25 proteins showed significant changes in their relative abundance in late-onset fetal growth restriction (p value < 0.05). Direct protein–protein interactions network demonstrated that Neurogenic locus notch homolog protein 1 (NOTCH1) was the most significant putative upstream regulator of the observed profile. Gene ontology analysis of these proteins revealed the involvement of 14 canonical pathways. The most significant biological processes were efflux of cholesterol, efflux of phospholipids, adhesion of blood cells, fatty acid metabolism and dyslipidemia. Future studies are warranted to validate the potential role of the detected altered proteins as potential therapeutic targets in the late-onset form of fetal growth restriction.
Collapse
|
5
|
Peña FJ, O’Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips GL, Gil MC, Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants (Basel) 2019; 8:antiox8110567. [PMID: 31752408 PMCID: PMC6912273 DOI: 10.3390/antiox8110567] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.
Collapse
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
- Correspondence: ; Tel.: +34-927-257-167
| | - Cristian O’Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada;
| | - José M. Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Francisco E. Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Gemma L. Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| |
Collapse
|
6
|
Wilburn DB, Feldhoff RC. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones. BMC DEVELOPMENTAL BIOLOGY 2019; 19:10. [PMID: 31029098 PMCID: PMC6487043 DOI: 10.1186/s12861-019-0190-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Background Cell differentiation is mediated by synchronized waves of coordinated expression for hundreds to thousands of genes, and must be regulated to produce complex tissues and phenotypes. For many animal species, sexual selection has driven the development of elaborate male ornaments, requiring sex-specific differentiation pathways. One such male ornament is the pheromone-producing mental gland of the red-legged salamander (Plethodon shermani). Mental gland development follows an annual cycle of extreme hypertrophy, production of pheromones for the ~ 2 month mating season, and then complete resorption before repeating the process in the following year. At the peak of the mating season, the transcriptional and translational machinery of the mental gland are almost exclusively redirected to the synthesis of rapidly evolving pheromones. Of these pheromones, Plethodontid Modulating Factor (PMF) has experienced an unusual history: following gene duplication, the protein coding sequence diversified from positive sexual selection while the untranslated regions have been conserved by purifying selection. The molecular underpinnings that bridge the processes of gland hypertrophy, pheromone synthesis, and conservation of the untranslated regions remain to be determined. Results Using Illumina sequencing, we prepared a de novo transcriptome of the mental gland at six stages of development. Differential expression analysis and immunohistochemistry revealed that the mental gland initially adopts a highly proliferative, almost tumor-like phenotype, followed by a rapid increase in pheromone mRNA and protein. One likely player in this transition is Cold Inducible RNA Binding Protein (CIRBP), which selectively and cooperatively binds the highly conserved PMF 3′ UTR. CIRBP, along with other proteins associated with stress response, have seemingly been co-opted to aid in mental gland development by helping to regulate pheromone synthesis. Conclusions The P. shermani mental gland utilizes a complex system of transcriptional and post-transcriptional gene regulation to facilitate its hypertrophication and pheromone synthesis. The data support the evolutionary interplay of coding and noncoding segments in rapid gene evolution, and necessitate the study of co-evolution between pheromone gene products and their transcriptional/translational regulators. Additionally, the mental gland could be a powerful emerging model of regulated tissue proliferation and subsequent resorption within the dermis and share molecular links to skin cancer biology. Electronic supplementary material The online version of this article (10.1186/s12861-019-0190-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Richard C Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
7
|
Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 2018; 38:398-408. [DOI: 10.1177/0960327118816134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is a widespread compound associated with the manufacture of many consumer products. The BPA-induced reproductive toxicity was reported to be mainly attributed to oxidative stress. However, the role of antioxidants usage to decrease the injurious effects of BPA, on male reproductive functions, remains to unveil. The present research is established to evaluate the role of selenium (Se) and its nano form (NSe) as protective agents to alleviate BPA-induced testicular toxicity. Ninety mature albino male rats were assigned into six equal groups: negative control; orally BPA 150 mg/kg; Se 3 mg/kg; NSe 2 mg/kg; both BPA 150 mg/kg and Se 3 mg/kg; and BPA 150 mg/kg + NSe 2 mg/kg. The experiment lasted for 70 consecutive days, and then serum was collected for estimation of prostatic acid phosphatase. Testicular tissues were subjected to measurement of antioxidant status, lipid peroxidation, DNA damage, and expression of some apoptotic genes. Our results reported that BPA-induced marked testicular damage evidenced by significant elevations in serum prostatic acid phosphatase activity, malondialdehyde levels, a decrease in testicular catalase activity and reduced glutathione level. Moreover, marked DNA internucleosomal fragmentation pattern as well as upregulation of cyclooxygenase-2 and estrogen receptor-2 NSe genes were detected. Coadministration of Se and NSe attenuated the reproductive toxicity induced by BPA via improvement of the antioxidant activity, genetic changes, and restoration of testicular tissue nearly as control one. These results indicated that both Se and NSe forms could be used as reproductive protective agents against the detrimental effect induced by BPA. However, the NSe surpassed the selenium in modulating the DNA laddering, and the studied gene expression levels, and offered a potent reproductive protection.
Collapse
Affiliation(s)
- AA Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - WMS Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - WA Moselhy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - BR Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - MA Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Tian J, Ding Y, She R, Ma L, Du F, Xia K, Chen L. Histologic study of testis injury after bisphenol A exposure in mice. Toxicol Ind Health 2016; 33:36-45. [PMID: 27573348 DOI: 10.1177/0748233716658579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The health effects of bisphenol A (BPA) have become a great concern in recent years. In this study, the reproductive toxicity of BPA was investigated. Male CD-1 mice were orally administrated with BPA (0, 100, 300 and 600 mg kg-1 body weight) for 56 consecutive days. Results showed that relative testis weight to total body weight was significantly lower in the high-dose group ( p < 0.01, p < 0.05). Microscopic examination under light and transmission electron microscopes showed disorders of spermatogenesis after BPA exposure, including rough basal lamina of seminiferous tubules and damage of tight junctions between Sertoli cells. Further study by terminal-deoxynucleoitidyl transferase-mediated nick end labelling assay showed a significant induction of apoptosis in the testis tissue of the BPA groups ( p < 0.01). Immunohistochemical study found that the expression of androgen-binding protein (ABP) was significantly decreased in BPA-treated mice ( p < 0.01). Our results indicated that impairment of the basal lamina of seminiferous tubules and tight junctions may contribute to BPA-induced cell injury. A decrease in the level of ABP could be the possible mechanism for the reproductive toxicity of BPA. These findings provided direct evidence and novel insight into the reproductive toxicity of BPA and may have implications for understanding the toxicity of other endocrine disruptors.
Collapse
Affiliation(s)
- Jijing Tian
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Ding
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiping She
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Longhuan Ma
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fang Du
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kangkang Xia
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lili Chen
- 1 Department of Veterinary Pathology, Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Othman AI, Edrees GM, El-Missiry MA, Ali DA, Aboel-Nour M, Dabdoub BR. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol Ind Health 2016; 32:1537-49. [DOI: 10.1177/0748233714561286] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological reports have indicated a correlation between the increasing bisphenol A (BPA) levels in the environment and the incidence of male infertility. In this study, the protective effects of melatonin on BPA-induced oxidative stress and apoptosis were investigated in the rat testes and epididymal sperm. Melatonin (10 mg/kg body weight (bw)) was injected concurrently with BPA (50 mg/kg bw) for 3 and 6 weeks. The administration of BPA significantly increased oxidative stress in the testes and epididymal sperm. This was associated with a decrease in the serum testosterone level as well as sperm quality, chromatin condensation/de-condensation level, and the percentage of haploid germ cells in the semen. BPA administration caused a significant increase in apoptosis accompanied by a decrease in the expression of the antiapoptotic proteins Bcl-2 in the testes and epididymal sperm. The concurrent administration of melatonin decreased oxidative stress by modulating the levels of glutathione, superoxide dismutase, and catalase as well as the malondialdehyde and hydrogen peroxide concentrations in the testes and sperm. Melatonin sustained Bcl-2 expression and controlled apoptosis. Furthermore, melatonin maintained the testosterone levels, ameliorated histopathological changes, increased the percentages of seminal haploid germ cells, and protected sperm chromatin condensation process, indicating appropriate spermatogenesis with production of functional sperm. In conclusion, melatonin protected against BPA-induced apoptosis by controlling Bcl-2 expression and ameliorating oxidative stress in the testes and sperm. Thus, melatonin is a promising pharmacological agent for preventing the potential reproductive toxicity of BPA following occupational or environmental exposures.
Collapse
Affiliation(s)
- Azza I Othman
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Gamal M Edrees
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Doaa A Ali
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mohamed Aboel-Nour
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Banan R Dabdoub
- Department of Biology, Faculty of Education, Mosul University, Mosul, Iraq
| |
Collapse
|
10
|
Sariözkan S, Türk G, Güvenç M, Yüce A, Özdamar S, Cantürk F, Yay AH. Effects of Cinnamon (C. zeylanicum) Bark Oil Against Taxanes-Induced Damages in Sperm Quality, Testicular and Epididymal Oxidant/Antioxidant Balance, Testicular Apoptosis, and Sperm DNA Integrity. Nutr Cancer 2016; 68:481-94. [PMID: 27008095 DOI: 10.1080/01635581.2016.1152384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to investigate whether cinnamon bark oil (CBO) has protective effect on taxanes-induced adverse changes in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular apoptosis, and sperm DNA integrity. For this purpose, 88 adult male rats were equally divided into 8 groups: control, CBO, docetaxel (DTX), paclitaxel (PTX), DTX+PTX, DTX+CBO, PTX+CBO, and DTX+PTX+CBO. CBO was given by gavage daily for 10 weeks at the dose of 100 mg/kg. DTX and PTX were administered by intraperitoneal injection at the doses of 5 and 4 mg/kg/week, respectively, for 10 weeks. DTX+PTX and DTX+PTX+CBO groups were treated with DTX during first 5 weeks and PTX during next 5 weeks. DTX, PTX, and their mixed administrations caused significant decreases in absolute and relative weights of all reproductive organs, testosterone level, sperm motility, concentration, glutathione level, and catalase activity in testicular and epididymal tissues. They also significantly increased abnormal sperm rate, testicular and epididymal malondialdehyde level, apoptotic germ cell number, and sperm DNA fragmentation and significantly damaged the histological structure of testes. CBO consumption by DTX-, PTX-, and DTX+PTX-treated rats provided significant ameliorations in decreased relative weights of reproductive organs, decreased testosterone, decreased sperm quality, imbalanced oxidant/antioxidant system, increased apoptotic germ cell number, rate of sperm with fragmented DNA, and severity of testicular histopathological lesions induced by taxanes. In conclusion, taxanes cause impairments in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular histopathological structure, and sperm DNA integrity, and long-term CBO consumption protects male reproductive system of rats.
Collapse
Affiliation(s)
- Serpil Sariözkan
- a Department of Reproduction and Artificial Insemination , Faculty of Veterinary Medicine and Genome and Stem Cell Center-GENKOK, Erciyes University , Kayseri , Turkey
| | - Gaffari Türk
- b Department of Reproduction and Artificial Insemination , Faculty of Veterinary Medicine, Fırat University , Elazığ , Turkey
| | - Mehmet Güvenç
- c Department of Physiology , Faculty of Veterinary Medicine, Fırat University , Elazığ , Turkey
| | - Abdurrauf Yüce
- c Department of Physiology , Faculty of Veterinary Medicine, Fırat University , Elazığ , Turkey
| | - Saim Özdamar
- d Department of Histology and Embryology , Faculty of Medicine, Erciyes University , Kayseri , Turkey
| | - Fazile Cantürk
- e Department of Biophysics , Faculty of Medicine, Erciyes University , Kayseri , Turkey
| | - Arzu Hanım Yay
- d Department of Histology and Embryology , Faculty of Medicine, Erciyes University , Kayseri , Turkey
| |
Collapse
|
11
|
Gray SL, Lackey BR, Boone WR. Impact of kudzu and puerarin on sperm function. Reprod Toxicol 2015; 53:54-62. [PMID: 25828059 DOI: 10.1016/j.reprotox.2015.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/06/2015] [Accepted: 03/20/2015] [Indexed: 11/29/2022]
Abstract
The goal of this study was to investigate the impact of kudzu (Pueraria mirifica) and the isoflavone puerarin in functional toxicological tests on spermatozoa and to assess the affinity of extracts and pure isoflavones for estrogen receptor (ER)-alpha and -beta (ERα, ERβ) in receptor binding assays. Capacitation, acrosome reaction and chromatin decondensation in spermatozoa were analyzed using microscopic analysis. Kudzu, but not puerarin, reduced motility of sperm. Puerarin reduced the percent spontaneous acrosome reaction in spermatozoa. The pathways used by kudzu that affect sperm function are not fully mirrored by puerarin. Puerarin, kudzu and its other phytoestrogenic components displayed preferential affinity for ERβ, however the diverse effects of kudzu and puerarin on sperm function implicate the involvement of multiple signaling systems.
Collapse
Affiliation(s)
- Sandra L Gray
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States.
| | - Brett R Lackey
- Endocrine Physiology Laboratory, Animal & Veterinary Science Department, Clemson University, Clemson, SC 29634, United States
| | - William R Boone
- ART Laboratories, Department of Obstetrics & Gynecology, Greenville Health System University Medical Group, Greenville, SC 29605, United States
| |
Collapse
|
12
|
Yeste M, Estrada E, Pinart E, Bonet S, Miró J, Rodríguez-Gil JE. The improving effect of reduced glutathione on boar sperm cryotolerance is related with the intrinsic ejaculate freezability. Cryobiology 2014; 68:251-61. [DOI: 10.1016/j.cryobiol.2014.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/29/2022]
|
13
|
Ribas-Maynou J, Gawecka JE, Benet J, Ward WS. Double-stranded DNA breaks hidden in the neutral Comet assay suggest a role of the sperm nuclear matrix in DNA integrity maintenance. Mol Hum Reprod 2013; 20:330-40. [PMID: 24282283 DOI: 10.1093/molehr/gat090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used a mouse model in which sperm DNA damage was induced to understand the relationship of double-stranded DNA (dsDNA) breaks to sperm chromatin structure and to the Comet assay. Sperm chromatin fragmentation (SCF) produces dsDNA breaks located on the matrix attachment regions, between protamine toroids. In this model, epididymal sperm induced to undergo SCF can religate dsDNA breaks while vas deferens sperm cannot. Here, we demonstrated that the conventional neutral Comet assay underestimates the epididymal SCF breaks because the broken DNA ends remain attached to the nuclear matrix, causing the DNA to remain associated with the dispersion halo, and the Comet tails to be weak. Therefore, we term these hidden dsDNA breaks. When the Comet assay was modified to include an additional incubation with sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) after the conventional lysis, thereby solubilizing the nuclear matrix, the broken DNA was released from the matrix, which resulted in a reduction of the sperm head halo and an increase in the Comet tail length, exposing the hidden dsDNA breaks. Conversely, SCF-induced vas deferens sperm had small halos and long tails with the conventional neutral Comet assay, suggesting that the broken DNA ends were not tethered to the nuclear matrix. These results suggest that the attachment to the nuclear matrix is crucial for the religation of SCF-induced DNA breaks in sperm. Our data suggest that the neutral Comet assay identifies only dsDNA breaks that are released from the nuclear matrix and that the addition of an SDS treatment can reveal these hidden dsDNA breaks.
Collapse
Affiliation(s)
- J Ribas-Maynou
- Unitat de Biologia Cellular, Fisiologia i Immunologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
14
|
Yeste M, Estrada E, Casas I, Bonet S, Rodríguez-Gil JE. Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology 2013; 79:929-39. [DOI: 10.1016/j.theriogenology.2013.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/01/2013] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
|
15
|
Talebi AR, Khalili MA, Vahidi S, Ghasemzadeh J, Tabibnejad N. Sperm chromatin condensation, DNA integrity, and apoptosis in men with spinal cord injury. J Spinal Cord Med 2013; 36:140-6. [PMID: 23809529 PMCID: PMC3595962 DOI: 10.1179/2045772312y.0000000055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES To evaluate the effect of cord injury on (1) sperm parameters and (2) DNA chromatin status. DESIGN Case-control study. SETTING Data were collected from men referred to Research and Clinical Center for Infertility, Yazd, Iran. PARTICIPANTS Thirty infertile men with the presence of any level of spinal cord injury (SCI) were compared with 30 healthy donors with definite fertility and normal sperm parameters. INTERVENTIONS Not applicable. OUTCOME MEASURES Sperm chromatin integrity was assessed using aniline blue (AB), chromomycin A3 (CMA3), toluidine blue (TB), and acridine orange (AO) assays. The rate of apoptotic spermatozoa was evaluated with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) staining. RESULTS Sperm concentration, motility, and morphology in men with SCI were significantly decreased compared with control group (P < 0.05). In addition, with regard to cytochemical staining and TUNEL test, the rate of reacted spermatozoa was increased significantly in SCI group when compared with the controls (P < 0.05). The majority of AB, TB, AO, and CMA3-reacted spermatozoa were higher than the "cut-off" value in men with SCI, as were the number of apoptotic spermatozoa stained with TUNEL. CONCLUSION Results showed that SCI disturbs sperm parameters, nuclear maturity, and DNA integrity of spermatozoa. Therefore, the production of spermatozoa with less condensed chromatin and more apoptotic rate increases after cord injury and this may be one possible cause of infertility following SCI.
Collapse
Affiliation(s)
| | | | | | | | - Nasim Tabibnejad
- Correspondence to: Nasim Tabibnejad, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Bouali Avenue, Safaeiyeh, Yazd, 8916877391, Iran.
| |
Collapse
|
16
|
Yeste M, Flores E, Estrada E, Bonet S, Rigau T, Rodríguez-Gil JE. Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reprod Fertil Dev 2013; 25:1036-50. [DOI: 10.1071/rd12230] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/25/2012] [Indexed: 01/18/2023] Open
Abstract
One important change the head of boar spermatozoa during freeze–thawing is the destabilisation of its nucleoprotein structure due to a disruption of disulfide bonds. With the aim of better understanding these changes in frozen–thawed spermatozoa, two agents, namely reduced glutathione (GSH) and procaine hydrochloride (ProHCl), were added at different concentrations to the freezing media at different concentrations and combinations over the range 1–2 mM. Then, 30 and 240 min after thawing, cysteine-free residue levels of boar sperm nucleoproteins, DNA fragmentation and other sperm functional parameters were evaluated. Both GSH and ProHCl, at final concentrations of 2 mM, induced a significant (P < 0.05) increase in the number of non-disrupted sperm head disulfide bonds 30 and 240 min after thawing compared with the frozen–thawed control. This effect was accompanied by a significant (P < 0.05) decrease in DNA fragmentation 240 min after thawing. Concomitantly, 1 and 2 mM GSH, but not ProHCl at any of the concentrations tested, partially counteracted the detrimental effects caused by freeze–thawing on sperm peroxide levels, motility patterns and plasma membrane integrity. In conclusion, the results show that both GSH and ProHCl have a stabilising effect on the nucleoprotein structure of frozen–thawed spermatozoa, although only GSH exerts an appreciable effect on sperm viability.
Collapse
|
17
|
Pavlyuchenkova SM, Zakhidov ST, Makarov AA, Marshak TL. Peculiarities of development of mouse male germ cells after intratesticular injection of dipin. BIOL BULL+ 2012. [DOI: 10.1134/s106235901206009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Henkel R, Bastiaan HS, Schüller S, Hoppe I, Starker W, Menkveld R. Leucocytes and intrinsic ROS production may be factors compromising sperm chromatin condensation status. Andrologia 2010; 42:69-75. [DOI: 10.1111/j.1439-0272.2009.00967.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Reyes R, Ramírez G, Delgado NM. FLUORESCENT BERBERINE BINDING AS A MARKER OF INTERNAL GLYCOSAMINOGLYCANS SULFATE IN BOVINE OOCYTES AND SPERM CELLS. ACTA ACUST UNITED AC 2009; 50:327-32. [PMID: 15551746 DOI: 10.1080/01485010490474733] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The use of berberine as a biological marker of glycosamineglycans sulfate was employed to corroborate the presence of heparin in mammalian oocytes and sperm and its distribution in all the structures, or only in some specialized zones, of the male and female gametes. Oocytes and sperms were treated with 1.8 mM berberine for the presence of heparin and examined 10, 30, 60, and 120 minutes later. We have found that heparin is homogeneously distributed in all the zones of bovine oocytes and in sperm cells. When sperm cells are first treated with 80 microM of heparin and then berberine, 40% of them display in their post acrosomal region an intense yellow fluorescence. This may be in relation to the high amount of heparin binding sites due to the presence of the reticular membranous like system in this sperm region and in its possible role whereby gametes recognize and adhere to one another. Therefore, the use of berberine as a fluorescent marker of heparin represents clear proof of the presence of GAGs and their binding sites in the outside and inside of mammalian gametes, reinforcing the importance they play in the events of the process of fertilization.
Collapse
Affiliation(s)
- R Reyes
- Instituto Mexicano del Seguro Social, Hospital General de Zona #5, Metepec, Puebla, México.
| | | | | |
Collapse
|
20
|
Vieytes AL, Cisale HO, Ferrari MR. Relationship between the nuclear morphology of the sperm of 10 bulls and their fertility. Vet Rec 2008; 163:625-9. [DOI: 10.1136/vr.163.21.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - H. O. Cisale
- Área Fisica Biológica; Facultad de Ciencias Veterinarias; Universidad de Buenos Aires; Chorroarin 280 CP 1427 Ciudad Autónoma de Buenos Aires Argentina
| | - M. R. Ferrari
- Área Fisica Biológica; Facultad de Ciencias Veterinarias; Universidad de Buenos Aires; Chorroarin 280 CP 1427 Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
21
|
Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology. Cell Biol Toxicol 2007; 25:81-98. [PMID: 17972149 DOI: 10.1007/s10565-007-9041-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/03/2007] [Indexed: 01/23/2023]
Abstract
Due to our lifestyle and the environment we live in, we are constantly confronted with genotoxic or potentially genotoxic compounds. These toxins can cause DNA damage to our cells, leading to an increase in mutations. Sometimes such mutations could give rise to cancer in somatic cells. However, when germ cells are affected, then the damage could also have an effect on the next and successive generations. A rapid, sensitive and reliable method to detect DNA damage and assess the integrity of the genome within single cells is that of the comet or single-cell gel electrophoresis assay. The present communication gives an overview of the use of the comet assay utilising sperm or testicular cells in reproductive toxicology. This includes consideration of damage assessed by protocol modification, cryopreservation vs the use of fresh sperm, viability and statistics. It further focuses on in vivo and in vitro comet assay studies with sperm and a comparison of this assay with other assays measuring germ cell genotoxicity. As most of the de novo structural aberrations occur in sperm and spermatogenesis is functional from puberty to old age, whereas female germ cells are more complicated to obtain, the examination of male germ cells seems to be an easier and logical choice for research and testing in reproductive toxicology. In addition, the importance of such an assay for the paternal impact of genetic damage in offspring is undisputed. As there is a growing interest in the evaluation of genotoxins in male germ cells, the comet assay allows in vitro and in vivo assessments of various environmental and lifestyle genotoxins to be reliably determined.
Collapse
Affiliation(s)
- A Baumgartner
- Division of Biomedical Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
| | | | | |
Collapse
|
22
|
Bertelsmann H, Kuehbacher M, Weseloh G, Kyriakopoulos A, Behne D. Sperm nuclei glutathione peroxidases and their occurrence in animal species with cysteine-containing protamines. Biochim Biophys Acta Gen Subj 2007; 1770:1459-67. [PMID: 17714875 DOI: 10.1016/j.bbagen.2007.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 07/12/2007] [Accepted: 07/18/2007] [Indexed: 11/18/2022]
Abstract
The selenoenzyme sperm nuclei glutathione peroxidase (snGPx), also called the nuclear form of phospholipid hydroperoxide glutathione peroxidase (n-PHGPx), was found to be involved in the stabilization of condensed sperm chromatin, most likely by thiol to disulfide oxidation of the cysteine residues of the mammalian protamines, small nuclear basic proteins in the nuclei of sperm cells. By applying Acidic Urea-PAGE in combination with SDS-PAGE, snGPx with an apparent molecular mass of 34 kDa and a 24-kDa protein were purified from rat sperm nuclei. The 24-kDa protein was identified by means of mass spectrometry as a truncated form of snGPx produced by cleavage at the N-terminal end. After defined processing of spermatozoa and detergent treatment of the sperm nuclei fraction, snGPx and its truncated form were shown to be the only selenoproteins present in mature mammalian sperm nuclei. Both forms were found in mature rat and horse sperm nuclei but in man only snGPx was detected. In trout and chicken, species with sperm cells which likewise undergo chromatin condensation but do not contain cysteine in their protamines, the snGPx proteins were missing. This can be taken as an indirect proof of the function of snGPx to act as protamine cysteine thiol peroxidase in the mammalian species with cysteine-containing protamines.
Collapse
Affiliation(s)
- Holger Bertelsmann
- Hahn-Meitner-Institut Berlin, Department Molecular Trace Element Research in the Life Sciences, Glienickerstr.100, 14109 Berlin, Germany.
| | | | | | | | | |
Collapse
|
23
|
Comizzoli P, Wildt DE, Pukazhenthi BS. Poor centrosomal function of cat testicular spermatozoa impairs embryo development in vitro after intracytoplasmic sperm injection. Biol Reprod 2006; 75:252-60. [PMID: 16687647 PMCID: PMC2000476 DOI: 10.1095/biolreprod.106.051342] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the domestic cat, morula-blastocyst formation in vitro is compromised after intracytoplasmic sperm injection (ICSI) with testicular compared to ejaculated spermatozoa. The aim of this study was to determine the cellular basis of the lower developmental potential of testicular spermatozoa. Specifically, we examined the influence of sperm DNA fragmentation (evaluated by TUNEL assay) and centrosomal function (assessed by sperm aster formation after ICSI) on first-cleavage timing, developmental rate, and morula-blastocyst formation. Because the incidences of DNA fragmentation were not different between testicular and ejaculated sperm suspensions, DNA integrity was not the origin of the reduced developmental potential of testicular spermatozoa. After ICSI, proportions of fertilized and cleaved oocytes were similar and not influenced by sperm source. However, observations made at 5 h postactivation clearly demonstrated that 1) zygotes generally contained a large sperm aster after ICSI with ejaculated spermatozoa, a phenomenon never observed with testicular spermatozoa, and 2) proportions of zygotes with short or absent sperm asters were higher after ICSI with testicular spermatozoa than using ejaculated spermatozoa. The poor pattern of aster formation arose from the testicular sperm centrosome, which contributed to a delayed first cleavage, a slower developmental rate, and a reduced formation of morulae and blastocysts compared to ejaculated spermatozoa. When a testicular sperm centrosome was replaced by a centrosome from an ejaculated spermatozoon, kinetics of first cell cycle as well as embryo development quality significantly improved and were comparable to data from ejaculated spermatozoa. Results demonstrate for the first time in mammals that maturity of the cat sperm centrosome (likely via epididymal transit) contributes to an enhanced ability of the spermatozoon to produce embryos that develop normally to the morula and blastocyst stages.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Department of Reproductive Sciences, Smithsonian's National Zoological Park, Washington, District of Columbia 20008, USA.
| | | | | |
Collapse
|
24
|
Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 2005; 3:43. [PMID: 16137335 PMCID: PMC1224869 DOI: 10.1186/1477-7827-3-43] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 09/02/2005] [Indexed: 01/21/2023] Open
Abstract
Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biomolecular Function, Yamagata University Graduate School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Yoshihito Iuchi
- Department of Biomolecular Function, Yamagata University Graduate School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Futoshi Okada
- Department of Biomolecular Function, Yamagata University Graduate School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
25
|
Suganuma R, Pelczar P, Spetz JF, Hohn B, Yanagimachi R, Moisyadi S. Tn5 transposase-mediated mouse transgenesis. Biol Reprod 2005; 73:1157-63. [PMID: 16079303 DOI: 10.1095/biolreprod.105.044669] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have developed a novel method for mouse transgenesis. The procedure relies on a hyperactive Tn5 transposase to insert a transgene into mouse chromosomes during intracytoplasmic sperm injection. This procedure integrates foreign DNA into the mouse genome with dramatically increased effectiveness as compared to conventional methods such as pronuclear microinjection and traditional sperm injection-mediated transgenesis. Our data indicate that with this method, transgenic mice, both hybrids and inbreds, can be produced more consistently and with lower numbers of manipulated oocytes required for traditional microinjection methods. The transposase-mediated transgenesis technique is also effective with round spermatids, offering the potential for rescuing the fertility of azoospermic animals using sperm precursor cells.
Collapse
Affiliation(s)
- Ryota Suganuma
- Department of Anatomy and Reproductive Biology, University of Hawaii School of Medicine, Honolulu, Hawaii 96822, USA
| | | | | | | | | | | |
Collapse
|
26
|
Jayaramaiah Raja S, Renkawitz-Pohl R. Replacement by Drosophila melanogaster protamines and Mst77F of histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol Cell Biol 2005; 25:6165-77. [PMID: 15988027 PMCID: PMC1168805 DOI: 10.1128/mcb.25.14.6165-6177.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/21/2005] [Accepted: 04/15/2005] [Indexed: 11/20/2022] Open
Abstract
Chromatin condensation is a typical feature of sperm cells. During mammalian spermiogenesis, histones are first replaced by transition proteins and then by protamines, while little is known for Drosophila melanogaster. Here we characterize three genes in the fly genome, Mst35Ba, Mst35Bb, and Mst77F. The results indicate that Mst35Ba and Mst35Bb encode dProtA and dProtB, respectively. These are considerably larger than mammalian protamines, but, as in mammals, both protamines contain typical cysteine/arginine clusters. Mst77F encodes a linker histone-like protein showing significant similarity to mammalian HILS1 protein. ProtamineA-enhanced green fluorescent protein (eGFP), ProtamineB-eGFP, and Mst77F-eGFP carrying Drosophila lines show that these proteins become the important chromosomal protein components of elongating spermatids, and His2AvDGFP vanishes. Mst77F mutants [ms(3)nc3] are characterized by small round nuclei and are sterile as males. These data suggest the major features of chromatin condensation in Drosophila spermatogenesis correspond to those in mammals. During early fertilization steps, the paternal pronucleus still contains protamines and Mst77F but regains a nucleosomal conformation before zygote formation. In eggs laid by sesame-deficient females, the paternal pronucleus remains in a protamine-based chromatin status but Mst77F-eGFP is removed, suggesting that the sesame gene product is essential for removal of protamines while Mst77F removal is independent of Sesame.
Collapse
Affiliation(s)
- Sunil Jayaramaiah Raja
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, 35043 Marburg, Germany
| | | |
Collapse
|
27
|
Bennetts LE, Aitken RJ. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev 2005; 71:77-87. [PMID: 15736137 DOI: 10.1002/mrd.20285] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alkaline gel electrophoresis, pulsed field gel electrophoresis, and quantitative PCR analyses (QPCR) of the nuclear (nDNA) and mitochondrial (mtDNA) genomes were used to assess DNA integrity in the spermatozoa of three species exposed to oxidative stress. In human and murine spermatozoa, the mtDNA was significantly more susceptible to H2O2-mediated damage than nDNA. In both eutherian species, exposure to 250 microM H2O2 induced around 0.6 lesions/10 kb of mtDNA. The mtDNA of human spermatozoa was particularly vulnerable to oxidative stress; 0.25, 1, and 5 mM H2O2 inducing DNA damage equivalent to 0.62, 1.34, and 1.42 lesions/10 kb, respectively. Such results emphasize the diagnostic significance of mtDNA as a biomarker of oxidative stress in the male germ line. In contrast, no damage could be detected by QPCR in the nDNA of either eutherian species, on exposure to H2O2 at doses as high as 5 mM. However, electrophoretic analysis indicated that severe oxidative stress could induce detectable nDNA fragmentation in human, but not murine spermatozoa. The mtDNA of tammar wallaby spermatozoa was relatively resistant to oxidative stress, only exhibiting damage (0.6 lesions/10 kb DNA) on exposure to 5 mM H2O2. By contrast, the nDNA of wallaby spermatozoa was significantly more susceptible to this oxidant than the other species. Such vulnerability is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that chromatin condensation during epididymal maturation may be important in establishing the resistance of these cells to the genotoxic effects of reactive oxygen species.
Collapse
Affiliation(s)
- Liga E Bennetts
- Discipline of Biological Sciences, The University of Newcastle, New South Wales, Australia
| | | |
Collapse
|