1
|
Qi W, Bai J, Wang R, Zeng X, Zhang L. SATB1, senescence and senescence-related diseases. J Cell Physiol 2024; 239:e31327. [PMID: 38801120 DOI: 10.1002/jcp.31327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Aging leads to an accumulation of cellular mutations and damage, increasing the risk of senescence, apoptosis, and malignant transformation. Cellular senescence, which is pivotal in aging, acts as both a guard against cellular transformation and as a check against cancer progression. It is marked by stable cell cycle arrest, widespread macromolecular changes, a pro-inflammatory profile, and altered gene expression. However, it remains to be determined whether these differing subsets of senescent cells result from unique intrinsic programs or are influenced by their environmental contexts. Multiple transcription regulators and chromatin modifiers contribute to these alterations. Special AT-rich sequence-binding protein 1 (SATB1) stands out as a crucial regulator in this process, orchestrating gene expression by structuring chromatin into loop domains and anchoring DNA elements. This review provides an overview of cellular senescence and delves into the role of SATB1 in senescence-related diseases. It highlights SATB1's potential in developing antiaging and anticancer strategies, potentially contributing to improved quality of life and addressing aging-related diseases.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Lihui Zhang
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
2
|
Chen P, Li Y, Li N, Shen L, Li Z. Comprehensive Analysis of Pyroptosis-Associated in Molecular Classification, Immunity and Prognostic of Glioma. Front Genet 2022; 12:781538. [PMID: 35069683 PMCID: PMC8777075 DOI: 10.3389/fgene.2021.781538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Integrative analysis was performed in the Chinese Glioma Genome Atlas and The Cancer Genome Atlas to describe the pyroptosis-associated molecular classification and prognostic signature in glioma. Pyroptosis-related genes were used for consensus clustering and to develop a prognostic signature. The immune statuses, molecular alterations, and clinical features of differentially expressed genes were analyzed among different subclasses and risk groups. A lncRNA-miRNA-mRNA network was built, and drug sensitivity analysis was used to identify small molecular drugs for the identified genes. Glioma can be divided into two subclasses using 30 pyroptosis-related genes. Cluster 1 displayed high immune signatures and poor prognosis as well as high immune-related function scores. A prognostic signature based on 15 pyroptosis-related genes of the CGGA cohort can predict the overall survival of glioma and was well validated in the TCGA cohort. Cluster 1 had higher risk scores. The high-risk group had high immune cell and function scores and low DNA methylation of pyroptosis-related genes. The differences in pyroptosis-related gene mutations and somatic copy numbers were significant between the high-risk and low-risk groups. The ceRNA regulatory network uncovered the regulatory patterns of different risk groups in glioma. Nine pairs of target genes and drugs were identified. In vitro, CASP8 promotes the progression of glioma cells. Pyroptosis-related genes can reflect the molecular biological and clinical features of glioma subclasses. The established prognostic signature can predict prognosis and distinguish molecular alterations in glioma patients. Our comprehensive analyses provide valuable guidelines for improving glioma patient management and individualized therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Abstract
The regulatory circuits that define developmental decisions of thymocytes are still incompletely resolved. SATB1 protein is predominantly expressed at the CD4+CD8+cell stage exerting its broad transcription regulation potential with both activatory and repressive roles. A series of post-translational modifications and the presence of potential SATB1 protein isoforms indicate the complexity of its regulatory potential. The most apparent mechanism of its involvement in gene expression regulation is via the orchestration of long-range chromatin loops between genes and their regulatory elements. Multiple SATB1 perturbations in mice uncovered a link to autoimmune diseases while clinical investigations on cancer research uncovered that SATB1 has a promoting role in several types of cancer and can be used as a prognostic biomarker. SATB1 is a multivalent tissue-specific factor with a broad and yet undetermined regulatory potential. Future investigations on this protein could further uncover T cell-specific regulatory pathways and link them to (patho)physiology.
Collapse
Affiliation(s)
- Tomas Zelenka
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| | - Charalampos Spilianakis
- Department of Biology, University of Crete , Heraklion, Crete, Greece.,Gene Regulation & Genomics, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas , Heraklion, Crete, Greece
| |
Collapse
|
4
|
Chen L, Zhou J, Li L, Zhao J, Li H, Zheng W, Xu J, Jing Z. SLC39A7 promotes malignant behaviors in glioma via the TNF-α-mediated NF-κB signaling pathway. J Cancer 2021; 12:4530-4541. [PMID: 34149917 PMCID: PMC8210565 DOI: 10.7150/jca.54158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/03/2021] [Indexed: 11/05/2022] Open
Abstract
Purpose: Several studies have indicated that SLC39A7 plays an important role in tumor progression; however, little is known about the function and mechanism of SLC39A7 in glioma. In this study, we aimed to explore the role of SLC39A7 in glioma development. Patients and methods: Bioinformatic analysis was used to predict the role of SLC39A7 in glioma. Cell viability and Edu assays were used to detect the proliferation of glioma cells. A transwell assay was used to measure the invasion and migration of glioma cells. Western blotting, qPCR and ELISA were used to detect the expression of all molecules. Results: SLC39A7 was found to be highly expressed in high-grade glioma patients with a poor prognosis. Our results indicated that SLC39A7 significantly promoted the proliferation, invasion and migration of glioma cells. Furthermore, SLC39A7 promoted tumorigenesis in orthotopic models. We determined that SLC39A7 promotes the malignant behaviors of glioma by activating the TNF-α-mediated NF-κB signaling pathway. Conclusion: Our study revealed that SLC39A7 promotes the proliferation, invasion and migration of glioma cells via the TNF-α-mediated NF-κB signaling pathway, which provides potential targets for glioma therapy.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Jinpeng Zhou
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Long Li
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Junshuang Zhao
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Hao Li
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, NO. 77 Puhe Road, Shenyang, 110122 China
| | - Jinkun Xu
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| | - Zhitao Jing
- Department of Neurosurgery, the First Hospital of China Medical University, NO. 155 North Nanjing Street, Shenyang, 110001 China
| |
Collapse
|
5
|
Lodewijk I, Nunes SP, Henrique R, Jerónimo C, Dueñas M, Paramio JM. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin Epigenetics 2021; 13:63. [PMID: 33761971 PMCID: PMC7992805 DOI: 10.1186/s13148-021-01046-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, including lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epigenetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict response to immune checkpoint blockage. MAIN BODY Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which could be beneficial for the clinical response to immunotherapy. CONCLUSION Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selection of patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Sandra P. Nunes
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Marta Dueñas
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
6
|
Ramanujam PL, Mehrotra S, Kumar RP, Verma S, Deshpande G, Mishra RK, Galande S. Global chromatin organizer SATB1 acts as a context-dependent regulator of the Wnt/Wg target genes. Sci Rep 2021; 11:3385. [PMID: 33564000 PMCID: PMC7873079 DOI: 10.1038/s41598-021-81324-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Special AT-rich binding protein-1 (SATB1) integrates higher-order chromatin architecture with gene regulation, thereby regulating multiple signaling pathways. In mammalian cells SATB1 directly interacts with β-catenin and regulates the expression of Wnt targets by binding to their promoters. Whether SATB1 regulates Wnt/wg signaling by recruitment of β-catenin and/or its interactions with other components remains elusive. Since Wnt/Wg signaling is conserved from invertebrates to humans, we investigated SATB1 functions in regulation of Wnt/Wg signaling by using mammalian cell-lines and Drosophila. Here, we present evidence that in mammalian cells, SATB1 interacts with Dishevelled, an upstream component of the Wnt/Wg pathway. Conversely, ectopic expression of full-length human SATB1 but not that of its N- or C-terminal domains in the eye imaginal discs and salivary glands of third instar Drosophila larvae increased the expression of Wnt/Wg pathway antagonists and suppressed phenotypes associated with activated Wnt/Wg pathway. These data argue that ectopically-provided SATB1 presumably modulates Wnt/Wg signaling by acting as negative regulator in Drosophila. Interestingly, comparison of SATB1 with PDZ- and homeo-domain containing Drosophila protein Defective Proventriculus suggests that both proteins exhibit limited functional similarity in the regulation of Wnt/Wg signaling in Drosophila. Collectively, these findings indicate that regulation of Wnt/Wg pathway by SATB1 is context-dependent.
Collapse
Affiliation(s)
- Praveena L Ramanujam
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sonam Mehrotra
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Mumbai, India
| | | | | | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | - Sanjeev Galande
- Department of Biology, Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
7
|
Mao L, Yu H, Ma S, Xu Z, Wei F, Yang C, Zheng J. Combination of oncolytic adenovirus targeting SATB1 and docetaxel for the treatment of castration-resistant prostate cancer. J Cancer 2021; 12:1846-1852. [PMID: 33613773 PMCID: PMC7890306 DOI: 10.7150/jca.46868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background: Oncolytic viral therapy is a new strategy for tumor eradication which combines the advantages of viral therapy and gene therapy. Silencing SATB1 exhibits strong inhibitory effect on the growth of prostate cancer. Docetaxel (DTX) is the gold standard for chemotherapy of prostate cancer, but its side effects decrease the life quality of patients. Therefore, it is urgent to develop combination therapy to increase its anti-tumor effect. Methods: Oncolytic adenovirus targeting SATB1 was constructed and named ZD55-SATB1. Human prostatic cancer cells DU145 and PC-3 and human prostatic stromal cells WPMY-1 were treated with ZD55-SATB1 or/and DTX. In vitro cell proliferation, migration, invasion, apoptosis were detected. In addition, PC-3 cells were injected subcutaneously into nude mice, which were treated with ZD55-SATB1 or/and DTX. Tumor growth was monitored in vivo. Results: ZD55-SATB1 combined with DTX inhibited proliferation, migration and invasion of DU145 and PC-3 cells, while promoted apoptosis of DU145 and PC-3 cells more efficiently than monotherapy. ZD55-SATB1 had no cytotoxicity on WPMY-1 cells. In animal models, the combined treatment of ZD55-SATB1+DTX and endocrine therapy effectively inhibited the growth of xenograft tumor, accompanied by increased expression of caspase-3 and caspase-8, and decrease expression of Bcl-2 and angiogenesis marker CD31 compared to other treatment groups. Conclusion: The combination of oncolytic adenovirus ZD55-SATB1 and chemotherapy provides a novel approach to effective therapy of prostate cancer.
Collapse
Affiliation(s)
- Lijun Mao
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Haiyuan Yu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Sai Ma
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Ziyang Xu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Fukun Wei
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
8
|
Chu S, Ma Y. Evaluation of combination gene therapy with SLC22A18 upregulation and sequence binding protein 1 downregulation for glioma U251 cells in vitro and in vivo. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_19_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Liu N, Wang Z, Liu D, Xie P. HOXC13-AS-miR-122-5p-SATB1-C-Myc feedback loop promotes migration, invasion and EMT process in glioma. Onco Targets Ther 2019; 12:7165-7173. [PMID: 31564901 PMCID: PMC6731462 DOI: 10.2147/ott.s220027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 01/15/2023] Open
Abstract
Purpose Differentially expressed long non-coding ribonucleic acids (lncRNAs) have been reported as a key factor of glioma carcinogenesis, but the underlying mechanism involved is still unknown. Materials and methods In the present study, lncRNA HOXC13 antisense RNA (HOXC13-AS) was identified as a potential oncogene in glioma, and Western blotting, wound healing and Transwell assays were carried out to explore the effects of HOXC13-AS on the epithelial-mesenchymal transition (EMT) process as well as the migration and invasion of glioma cells. Results A further mechanistic study showed that HOXC13-AS sponged miR-122-5p to indirectly regulate SATB1 expression and affect the EMT process via the Wnt/β-catenin pathway. Meanwhile, the promoter activity was significantly increased via c-Myc, a key factor of the Wnt/β-catenin pathway, thus forming a positive HOXC13-AS-miR-122-5p-SATB1-c-Myc feedback loop to drive the malignant behavior in glioma. Discussion This study evidences the constitutive HOXC13-AS-miR-122-5p-SATB1-c-Myc feedback loop and provides a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, People's Republic of China
| | - Ziyu Wang
- Department of Emergency Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Dachao Liu
- Department of Imaging, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| | - Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, People's Republic of China
| |
Collapse
|
10
|
Glatzel-Plucińska N, Piotrowska A, Dzięgiel P, Podhorska-Okołów M. The Role of SATB1 in Tumour Progression and Metastasis. Int J Mol Sci 2019; 20:E4156. [PMID: 31450715 PMCID: PMC6747166 DOI: 10.3390/ijms20174156] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)-a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a "docking site" necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis.
Collapse
Affiliation(s)
- Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
11
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
12
|
Yang B, Ma YB, Chu SH. Silencing SATB1 overcomes temozolomide resistance by downregulating MGMT expression and upregulating SLC22A18 expression in human glioblastoma cells. Cancer Gene Ther 2018; 25:309-316. [PMID: 30140041 DOI: 10.1038/s41417-018-0040-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/26/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system and has a very poor prognosis. Currently, patients were treated by resection followed by radiotherapy plus concurrent temozolomide (TMZ) chemotherapy. However, many patients are resistant to TMZ-induced DNA damage because of upregulated expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). In this study, upregulation of SATB1 and MGMT, and downregulation of SLC22A18 resulted in acquisition of TMZ resistance in GBM U87 cells. Inactivation of special AT-rich sequence-binding protein 1 (SATB1) using short hairpin RNA (shRNA) downregulated MGMT expression and upregulated solute carrier family 22 member 18 (SLC22A18) expression in GBM cells. This suggested SATB1-mediated posttranscriptional regulation of the MGMT and SLC22A18 protein levels. Immunohistochemical analysis of malignant glioma specimens demonstrated a significant positive correlation between the levels of MGMT and SATB1, and a negative correlation between the levels of SLC22A18 and SATB1. Importantly, in recurrent, compared with the primary, lesions in 15 paired identical tumors, the SATB1 and MGMT protein levels were increased and the SLC22A18 levels were decreased. Finally, in TMZ-resistant GBM, SATB1 knockdown enhanced TMZ efficacy. Consequently, SATB1 inhibition might be a promising strategy combined with TMZ chemotherapy to treat TMZ-resistant GBM.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
13
|
Yin CY, Kong W, Jiang J, Xu H, Zhao W. miR-7-5p inhibits cell migration and invasion in glioblastoma through targeting SATB1. Oncol Lett 2018; 17:1819-1825. [PMID: 30675243 PMCID: PMC6341908 DOI: 10.3892/ol.2018.9777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/16/2018] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) have been revealed to influence the development and progression of glioblastoma. Although a number of miRNAs are abnormally expressed in glioblastoma it is not clear whether they are a factor associated with glioblastoma pathogenesis. In the present study, miR-7-5p was identified as being aberrantly downregulated in glioblastoma tissues and cell lines. miR-7-5p overexpression significantly decreased the migratory and invasive capacity of the cells, while miR-7-5p silencing had the opposite effect. In addition, a luciferase assay confirmed that special AT rich sequence binding protein 1 (SATB1) was a direct target gene of miR-7-5p in glioblastoma. The overexpression of SATB1 in glioblastoma was revealed to promote cell migration and invasion. In addition, SATB1 overexpression may weaken the inhibitory effect of miR-7-5p on cell migration and invasion. miR-7-5p overexpression reversed the effects of SATB1 on cell migration and invasion in glioblastoma cells. In conclusion, miR-7-5p may be a useful therapeutic target for the diagnosis and treatment of patients with glioblastoma.
Collapse
Affiliation(s)
- Chang-You Yin
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Kong
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jing Jiang
- Department of Emergency, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Hao Xu
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Zhao
- Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
14
|
Kobierzycki C, Grzegrzolka J, Glatzel-Plucinska N, Piotrowska A, Wojnar A, Smolarz B, Romanowicz H, Dziegiel P. Expression of p16 and SATB1 in Invasive Ductal Breast Cancer - A Preliminary Study. In Vivo 2018; 32:731-736. [PMID: 29936452 DOI: 10.21873/invivo.11301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM An impaired cell-cycle control and genetic material organization are crucial elements of carcinogenesis. p16 is a tumor suppressor protein which decelerates promotion of the cells from G1 to S phase, whereas special AT-rich sequence-binding protein 1 (SATB1) is a nuclear matrix protein that binds to specific regions of the DNA and ensures its proper organization and function. Increased levels of both markers are observed in various types of cancers. The aim of this study was to investigate the expression of p16 and SATB1 proteins in regard to expression of the Ki-67 antigen and available clinicopathological data (i.a. receptor status, staging and grading). MATERIALS AND METHODS The study was performed on 130 samples of archived invasive ductal breast cancers. Immunohistochemical reactions were performed on freshly prepared tissue microarrays and subsequently scanned by a histologic scanner. Reactions were evaluated separately in the cytoplasm (p16c, SATB1c) and nucleus (p16n, SATB1n, Ki-67) with use of a quantification software under researcher supervision. RESULTS Expression was observed for Ki-67 in 100%, p16c in 90%, p16n in 89.2%, SATB1c in 98.5% and SATB1n in 87.7% of cancer cases. Statistical analysis showed strong positive correlations: p16c vs. p16n and SATB1c vs. SATB1n (p<0.001 for both) and weak positive correlations: p16c vs. SATB1c and p16c vs. SATB1n (p=0.008, p=0.027; respectively). Expression of p16n was stronger in G1 vs. G2 (p=0.034) while Ki-67 expression was stronger in cases with negative progesterone receptor status (p=0.011). All other analyzed associations were statistically insignificant. CONCLUSION A weak association between immunohistochemical expression of p16 and SATB1 indicated limited possibility of their independent usage. Further studies concerning determination of a wider panel of proteins controlling cell cycle should be considered.
Collapse
Affiliation(s)
- Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Jedrzej Grzegrzolka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Glatzel-Plucinska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Wojnar
- Department of Pathomorphology, Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Beata Smolarz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| |
Collapse
|
15
|
Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 2018; 104:87-93. [DOI: 10.1016/j.biopha.2018.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
|
16
|
KOBIERZYCKI CHRISTOPHER, GRZEGRZOLKA JEDRZEJ, GLATZEL-PLUCINSKA NATALIA, PIOTROWSKA ALEKSANDRA, WOJNAR ANDRZEJ, SMOLARZ BEATA, ROMANOWICZ HANNA, DZIEGIEL PIOTR. Expression of p16 and SATB1 in Invasive Ductal Breast Cancer - A Preliminary Study. In Vivo 2018; 32. [PMID: 29936452 PMCID: PMC6117790 DOI: 10.21873/invivo.112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIM An impaired cell-cycle control and genetic material organization are crucial elements of carcinogenesis. p16 is a tumor suppressor protein which decelerates promotion of the cells from G1 to S phase, whereas special AT-rich sequence-binding protein 1 (SATB1) is a nuclear matrix protein that binds to specific regions of the DNA and ensures its proper organization and function. Increased levels of both markers are observed in various types of cancers. The aim of this study was to investigate the expression of p16 and SATB1 proteins in regard to expression of the Ki-67 antigen and available clinicopathological data (i.a. receptor status, staging and grading). MATERIALS AND METHODS The study was performed on 130 samples of archived invasive ductal breast cancers. Immunohistochemical reactions were performed on freshly prepared tissue microarrays and subsequently scanned by a histologic scanner. Reactions were evaluated separately in the cytoplasm (p16c, SATB1c) and nucleus (p16n, SATB1n, Ki-67) with use of a quantification software under researcher supervision. RESULTS Expression was observed for Ki-67 in 100%, p16c in 90%, p16n in 89.2%, SATB1c in 98.5% and SATB1n in 87.7% of cancer cases. Statistical analysis showed strong positive correlations: p16c vs. p16n and SATB1c vs. SATB1n (p<0.001 for both) and weak positive correlations: p16c vs. SATB1c and p16c vs. SATB1n (p=0.008, p=0.027; respectively). Expression of p16n was stronger in G1 vs. G2 (p=0.034) while Ki-67 expression was stronger in cases with negative progesterone receptor status (p=0.011). All other analyzed associations were statistically insignificant. CONCLUSION A weak association between immunohistochemical expression of p16 and SATB1 indicated limited possibility of their independent usage. Further studies concerning determination of a wider panel of proteins controlling cell cycle should be considered.
Collapse
Affiliation(s)
- CHRISTOPHER KOBIERZYCKI
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - JEDRZEJ GRZEGRZOLKA
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - NATALIA GLATZEL-PLUCINSKA
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - ALEKSANDRA PIOTROWSKA
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - ANDRZEJ WOJNAR
- Department of Pathomorphology, Lower Silesian Oncology Centre, Wroclaw, Poland
| | - BEATA SMOLARZ
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - HANNA ROMANOWICZ
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - PIOTR DZIEGIEL
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland,Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| |
Collapse
|
17
|
Wang S, Zeng J, Xiao R, Xu G, Liu G, Xiong D, Ye Y, Chen B, Wang H, Luo Q, Huang Z. Poor prognosis and SATB1 overexpression in solid tumors: a meta-analysis. Cancer Manag Res 2018; 10:1471-1478. [PMID: 29922091 PMCID: PMC5997180 DOI: 10.2147/cmar.s165497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Several previous studies have reported the prognostic value of special AT-rich sequence-binding protein 1 (SATB1) in solid tumors. However, these studies produced inconsistent results because of their various limitations, including small sample sizes. Here, we describe a meta-analysis based on 17 studies including 3144 patients to search for connections between SATB1 overexpression and overall survival (OS) of patients with solid tumors. Seventeen studies (n = 3144) were assessed in the meta-analysis. Both univariate and multivariate analysis for survival indicated that high SATB1 reactivity significantly predicted poor prognosis. In the multivariate analysis, the combined hazard ratio (HR) for OS was 1.82 (95% confidence interval [CI]: 1.59–2.08, P < 0.0001). The pooled HR of the univariate analysis for OS was 1.96 (95% CI: 1.65–2.34, P < 0.0001). Methods Studies were identified by an electronic search of PubMed, EMBASE, and Web of Science, including publications prior to April 2017. Pooled HR values for OS were aggregated and quantitatively analyzed in the meta-analysis. Conclusion The meta-analysis indicated that high SATB1 reactivity is significantly correlated with decreased survival in most cases of solid tumors. In addition, SATB1 shows promise as a prognostic biomarker and novel therapeutic target on the basis of its expression level in solid tumors.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Junjie Zeng
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Rui Xiao
- Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guoxing Xu
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Gang Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Disheng Xiong
- Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yongzhi Ye
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Borong Chen
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Haibin Wang
- Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| | - Qi Luo
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.,Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
18
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
19
|
Ding M, Pan J, Guo Z, Liu Q, Yang C, Mao L. SATB1 is a Novel Molecular Target for Cancer Therapy. Cancer Invest 2018; 36:28-36. [PMID: 29381393 DOI: 10.1080/07357907.2018.1423688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meng Ding
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Jun Pan
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Zhicheng Guo
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Quhe Liu
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| | - Chunhua Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
| | - Lijun Mao
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou University, Xuzhou, China
- Department of Urinary Surgery, The Affiliated Hospital of University Medical College, Xuzhou, China
| |
Collapse
|
20
|
Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine (Lond) 2017; 13:89-103. [PMID: 29199893 DOI: 10.2217/nnm-2017-0230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanomedicines allow for the delivery of small interfering RNAs (siRNAs) that are otherwise barely suitable as therapeutics for inducing RNA interference (RNAi). In preclinical studies on siRNA-based glioma treatment in vivo, various groups of nanoparticle systems, routes of administration and target genes have been explored. Targeted delivery by functionalization of nanoparticles with a ligand for crossing the blood-brain barrier and/or for enhanced target cell transfection has been described as well. Focusing on nanoparticle developments in the last approximately 10 years, this review article gives a comprehensive overview of nanoparticle systems for siRNA delivery into glioma and of preclinical in vivo studies. Furthermore, it discusses various target genes and highlights promising strategies with regard to target gene selection and combination therapies.
Collapse
Affiliation(s)
- Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology & Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Guo L, Zheng J, Yu T, Liu Y, Duo L. Elevated expression of SATB1 is involved in pancreatic tumorigenesis and is associated with poor patient survival. Mol Med Rep 2017; 16:8842-8848. [PMID: 28990092 PMCID: PMC5779964 DOI: 10.3892/mmr.2017.7683] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a master chromatin organizer which has been reported to be implicated in tumor progression in breast and lung cancer. However, its functions in pancreatic tumorigenesis have yet to be elucidated. In the present study, the involvement of SATB1 in pancreatic cancer development was investigated in human BxPC-3 pancreatic adenocarcinoma cells. Short hairpin (sh)RNA was used to stably downregulate SATB1 expression, and functional assays, including cell proliferation, colony formation, soft agar and migration assays, were performed in vitro. In addition, a mouse pancreatic cancer xenograft model was created to examine the tumor-promoting properties of SATB1 in vivo. The present findings demonstrated that stable knockdown of SATB1 expression inhibited the proliferation, colony formation, anchorage-independent growth and suppressed the migratory capabilities of BxPC-3 cells in vitro. In addition, SATB1 downregulation significantly inhibited tumor growth in xenografted mice in vivo. Furthermore, SATB1 was revealed to be upregulated in human pancreatic cancer tissue samples compared with matched non-cancerous adjacent tissues, and high SATB1 expression was associated with poor patient survival. Overall, the present study demonstrated that SATB1 promoted the proliferation of pancreatic cancer cells in vitro. In addition, SATB1 expression was revealed to be upregulated in human pancreatic cancer tissues and its upregulation was associated with poor patient survival. Therefore, SATB1 may have potential as a novel prognostic biomarker and therapeutic target for the treatment of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Lei Guo
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Jianjiang Zheng
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Tao Yu
- Department of Surgery, People's Hospital of Wujiaqu Wujiaqu, Xinjiang 831300, P.R. China
| | - Yuequan Liu
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| | - Lukun Duo
- Department of Pancreatic Surgery, People's Hospital of Xinjiang, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
22
|
Effects of RNA interference-mediated gene silencing of VEGF on the ultrafiltration failure in a rat model of peritoneal dialysis. Biosci Rep 2017; 37:BSR20170342. [PMID: 28733472 PMCID: PMC5577175 DOI: 10.1042/bsr20170342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
We investigated the effects of RNAi-mediated gene silencing of vascular endothelial growth factor (VEGF) on ultrafiltration failure (UFF) in rats with peritoneal dialysis (PD). Sprague–Dawley (SD) male rats were classified into normal, sham operation, and uremic model groups. Uremic rats were subcategorized into uremia, PD2, VEGF shRNA-2, vector-2, PD2 + Endostar, PD4, VEGF shRNA-4, Vector-4, and PD4 + Endostar groups. Peritoneal Equilibration Test (PET) was conducted to assess ultrafiltration volume (UFV) and mass transfer of glucose (MTG). mRNA and protein expressions of VEGF were detected using quantitative real-time PCR (qRT-PCR) and Western blotting. Immunohistochemistry was performed to detect microvessel density (MVD). Compared with the normal group, decreased UFV and increased MTG were observed in rest of the groups. Compared with the uremia group, UFV decreased, while MTG, expression of VEGFs, and number of new blood capillaries increased in the PD2, Vector-2, PD4, and Vector-4 groups. The PD4 and Vector-4 groups exhibited lower UFV and higher MTG than the PD2 group. In the VEGF shRNA-2, PD2 + Endostar, VEGF shRNA-4, and in PD4 + Endostar group increased UFV, reduced MTG and expression of VEGF, and decreased number of new blood capillaries were detected. Compared with the PD4 group, in the VEGF shRNA-4 and PD4 + Endostar groups, UFV increased, MTG and expression of VEGF decreased, and number of new blood capillaries reduced. VEGF expression was negatively correlated with UFV, but positively correlated with MTG. The results obtained in the study revealed that down-regulation of VEGF by RNAi could be a novel target approach for the treatment of UFF.
Collapse
|
23
|
Qi H, Fu X, Li Y, Pang X, Chen S, Zhu X, Li F, Tan W. SATB1 promotes epithelial-mesenchymal transition and metastasis in prostate cancer. Oncol Lett 2017; 13:2577-2582. [PMID: 28454436 PMCID: PMC5403494 DOI: 10.3892/ol.2017.5765] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
Special AT-rich sequence-binding protein-1 (SATB1) is associated with cancer progression and poor clinical outcome. The present study aims to evaluate whether SATB1 affects the biological behaviors of prostate cancer (PCa), and furthermore, to elucidate whether this effect works through the epithelial-mesenchymal transition (EMT) pathway. Firstly, the expression of SATB1 was investigated in a series of PCa tissues as well as in a panel of PCa cell lines. Cell proliferation, migration and invasion were evaluated in SATB1 knockdown and overexpressed PCa cell lines by MTT and Transwell assays. The results showed that the expression of SATB1 was markedly upregulated in PCa tissues and all PCa cell lines (P<0.001). Ectopic expression of SATB1 promoted PCa cell proliferation and migration. Knockdown of SATB1 repressed the ability of cell proliferation and migration of PCa cells. In addition, inhibition of SATB1 could reverse the EMT processes through upregulation of E-cadherin and downregulation of vimentin. The present study provided evidence that SATB1 may act as a potential therapeutic target in PCa patients.
Collapse
Affiliation(s)
- Honggang Qi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Xinyang Fu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yeping Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiang Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Sansan Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaojun Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
24
|
Analysis of cellular and molecular antitumor effects upon inhibition of SATB1 in glioblastoma cells. BMC Cancer 2017; 17:3. [PMID: 28049521 PMCID: PMC5209874 DOI: 10.1186/s12885-016-3006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/15/2016] [Indexed: 01/28/2023] Open
Abstract
Background The Special AT-rich Sequence Binding Protein 1 (SATB1) regulates the expression of many genes by acting as a global chromatin organizer. While in many tumor entities SATB1 overexpression has been observed and connected to pro-tumorigenic processes, somewhat contradictory evidence exists in brain tumors with regard to SATB1 overexpression in glioblastoma and its association with poorer prognosis and tumor progression. On the functional side, initial data indicate that SATB1 may be involved in several tumor cell-relevant processes. Methods For the detailed analysis of the functional relevance and possible therapeutic potential of SATB1 inhibition, we employ transient siRNA-mediated knockdown and comprehensively analyze the cellular and molecular role of SATB1 in glioblastoma. Results In various cell lines with different SATB1 expression levels, a SATB1 gene dose-dependent inhibition of anchorage-dependent and –independent proliferation is observed. This is due to cell cycle-inhibitory and pro-apoptotic effects of SATB1 knockdown. Molecular analyses reveal SATB1 knockdown effects on multiple important (proto-) oncogenes, including Myc, Bcl-2, Pim-1, EGFR, β-catenin and Survivin. Molecules involved in cell cycle, EMT and cell adhesion are affected as well. The putative therapeutic relevance of SATB1 inhibition is further supported in an in vivo tumor xenograft mouse model, where the treatment with polymeric nanoparticles containing SATB1-specific siRNAs exerts antitumor effects. Conclusion Our results demonstrate that SATB1 may represent a promising target molecule in glioblastoma therapy whose inhibition or knockdown affects multiple crucial pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3006-6) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Donakonda S, Sinha S, Dighe SN, Rao MRS. System analysis identifies distinct and common functional networks governed by transcription factor ASCL1, in glioma and small cell lung cancer. MOLECULAR BIOSYSTEMS 2017; 13:1481-1494. [DOI: 10.1039/c6mb00851h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Systematic functional network analysis of ASCL1 revealed that it regulates mitosis and cell proliferation pathways and has distinct functions in glioma and SCLC.
Collapse
Affiliation(s)
- Sainitin Donakonda
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Swati Sinha
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Shrinivas Nivrutti Dighe
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - Manchanahalli R Satyanarayana Rao
- Chromatin Biology Laboratory
- Molecular Biology and Genetics Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| |
Collapse
|
26
|
Li YC, Bu LL, Mao L, Ma SR, Liu JF, Yu GT, Deng WW, Zhang WF, Sun ZJ. SATB1 promotes tumor metastasis and invasiveness in oral squamous cell carcinoma. Oral Dis 2016; 23:247-254. [PMID: 27783844 DOI: 10.1111/odi.12602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Our aim is to evaluate the expression of SATB1 in human oral squamous cell carcinomas (OSCC) and its role in the invasiveness and metastasis of OSCC. SUBJECTS AND METHODS A human OSCC tissue microarray was used to evaluate the expression pattern of SATB1. SATB1 mRNA knockdown was performed in human OSCC cell lines SCC25 and Cal27 to assess the function of SATB1 in the invasiveness and metastasis of OSCC. RESULTS SATB1 is highly expressed in human OSCC determined by immunohistochemistry, and its nuclear/cytoplasmic ratio of histoscore is significantly correlated with patients' prognosis. Reduced cell motility, invasiveness, expression of epithelial to mesenchymal transition (EMT) markers (N-cadherin and β-catenin), and elevated expression of epithelial markers were observed in SATB1-knockdown cells in in vitro studies. Depletion of SATB1 also restored a cobblestone-like morphology in TGF-β1-treated cells. CONCLUSIONS These findings suggest SATB1 may play an important role in OSCC invasiveness and metastasis.
Collapse
Affiliation(s)
- Y-C Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L-L Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - S-R Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-F Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G-T Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W-W Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - W-F Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z-J Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Mansour MA, Hyodo T, Akter KA, Kokuryo T, Uehara K, Nagino M, Senga T. SATB1 and SATB2 play opposing roles in c-Myc expression and progression of colorectal cancer. Oncotarget 2016; 7:4993-5006. [PMID: 26701851 PMCID: PMC4826260 DOI: 10.18632/oncotarget.6651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
Special AT-rich sequence-binding protein 1 and 2 (SATB1/2) are nuclear matrix-associated proteins involved in chromatin remodeling and regulation of gene expression. SATB2 acts as a tumor suppressor in laryngeal squamous cell carcinoma and colon cancer, whereas SATB1 promotes the progression of numerous types of cancers. In this study, we examined the effects of SATB1 and SATB2 on the malignant characteristics of colorectal cancer cells. SATB1 and SATB2 expression were negatively correlated in colorectal cancer specimens. SATB1 expression was increased, whereas SATB2 expression was reduced, in colorectal cancer tissues compared to control tissues. Exogenous expression of SATB2 in colorectal cancer cells suppressed cell proliferation, colony formation and tumor proliferation in mice. c-Myc was reduced by SATB2 expression, and exogenous expression of c-Myc in SATB2-expressing cells restored proliferation, colony formation and in vivo tumor growth of colorectal cancer cells. We also showed that c-Myc reduction by SATB2 was mediated by the inactivation of ERK5. In contrast, SATB1 promoted c-Myc expression. The expression of SATB1 in colorectal cancer tissues was positively correlated with c-Myc expression, and SATB1 knockdown reduced c-Myc expression in colorectal cancer cells. Finally, we showed that SATB1 knockdown in colorectal cancer cells suppressed cell proliferation, colony formation and cell invasion. Our results reveal interesting features of how the structural homologs SATB1 and SATB2 exert opposing functions in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan.,Biochemistry Section, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Toshinori Hyodo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Khondker Ayesha Akter
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Toshio Kokuryo
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Keisuke Uehara
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Masato Nagino
- Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa, Nagoya, 466-8550 Japan
| |
Collapse
|
28
|
Wu D, Zeng L, Liu F, Zhong Q, Zhang D, Cai C, Zhang W, Wu L, Chen H. Special AT-rich DNA-binding protein-1 expression is associated with liver cancer metastasis. Oncol Lett 2016; 12:4377-4384. [PMID: 28101200 PMCID: PMC5228311 DOI: 10.3892/ol.2016.5281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/25/2016] [Indexed: 01/22/2023] Open
Abstract
To aim of the present study was to investigate the association between special AT-rich DNA-binding protein-1 (SATB1) expression and liver cancer metastasis. SATB1 mRNA and protein expression in hepatocellular carcinoma tissues was analyzed by immunohistochemistry, and in two hepatocellular cancer cell lines, MHCC-97H (high metastatic potential) and HepG2 (low metastatic potential), by reverse transcription-polymerase chain reaction and western blot analysis. Transwell migration and wound-healing assays were also performed to investigate the metastasis of liver cancer following upregulation or silencing of SATB1 expression. The results revealed that SATB1 expression was significantly higher in hepatocellular carcinoma tissues compared with carcinoma-adjacent tissues. Furthermore, SATB1 expression was correlated with tumor size, differentiation degree, hemorrhage and/or necrosis, invasion and/or metastases and TNM stage. Both the mRNA and protein expression of SATB1 was higher in MHCC-97H cells than HepG2 cells. In addition, the migration capability of MHCC-97H cells was decreased after SATB1 silencing, whereas the migration capability of HepG2 cells was increased after SATB1 upregulation. SATB1 expression was demonstrated to be positively correlated with liver cancer metastasis. These results indicate that liver cancer metastasis is regulated by SATB1 expression. Thus, immunohistochemical SATB1 expression may present an independent risk factor for the metastasis of liver cancer.
Collapse
Affiliation(s)
- Dongmei Wu
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liangtao Zeng
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fanrong Liu
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qingling Zhong
- Department of Nursing, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deyuan Zhang
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang Cai
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen Zhang
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liqing Wu
- Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He Chen
- Molecular Biology Center, Second Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
29
|
Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy. Brain Tumor Pathol 2015; 32:229-36. [PMID: 26437643 DOI: 10.1007/s10014-015-0233-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most highly malignant brain tumor in the human central nerve system. In this paper, we review new and significant molecular findings on angiogenesis and possible resistance mechanisms. Expression of a number of genes and regulators has been shown to be upregulated in GBM microvessel cells, such as interleukin-8, signal transducer and activator of transcription 3, Tax-interacting protein-1, hypoxia induced factor-1 and anterior gradient protein 2. The regulator factors that may strongly promote angiogenesis by promoting endothelial cell metastasis, changing the microenvironment, enhancing the ability of resistance to anti-angiogenic therapy, and that inhibit angiogenesis are reviewed. Based on the current knowledge, several potential targets and strategies are proposed for better therapeutic outcomes, such as its mRNA interference of DII4-Notch signaling pathway and depletion of b1 integrin expression. We also discuss possible mechanisms underlying the resistance to anti-angiogenesis and future directions and challenges in developing new targeted therapy for GBM.
Collapse
|
30
|
Mir R, Pradhan SJ, Patil P, Mulherkar R, Galande S. Wnt/β-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression. Oncogene 2015; 35:1679-91. [PMID: 26165840 DOI: 10.1038/onc.2015.232] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/09/2022]
Abstract
The chromatin organizer SATB1 has been implicated in the development and progression of multiple cancers including breast and colorectal cancers. However, the regulation and role of SATB1 in colorectal cancers is poorly understood. Here, we demonstrate that expression of SATB1 is induced upon hyperactivation of Wnt/β-catenin signaling and repressed upon depletion of TCF7L2 (TCF4) and β-catenin. Using several colorectal cancer cell line models and the APC min mutant zebrafish in vivo model, we established that SATB1 is a novel target of Wnt/β-catenin signaling. We show that direct binding of TCF7L2/β-catenin complex on Satb1 promoter is required for the regulation of SATB1. Moreover, SATB1 is sufficient to regulate the expression of β-catenin, members of TCF family, multiple downstream effectors and mediators of Wnt pathway. SATB1 potentiates the cellular changes and expression of key cancer-associated genes in non-aggressive colorectal cells, promotes their aggressive phenotype and tumorigenesis in vivo. Conversely, depletion of SATB1 from aggressive cells reprograms the expression of cancer-associated genes, reverses their cancer phenotype and reduces the potential of these cells to develop tumors in vivo. We also show that SATB1 and β-catenin bind to the promoters of TCF7L2 and the downstream targets of Wnt signaling and regulate their expression. Our findings suggest that SATB1 shares a feedback regulatory network with TCF7L2/β-catenin signaling and is required for Wnt signaling-dependent regulation of β-catenin. Collectively, these results provide unequivocal evidence to establish that SATB1 reprograms the expression of tumor growth- and metastasis-associated genes to promote tumorigenesis and functionally overlaps with Wnt signaling critical for colorectal cancer tumorigenesis.
Collapse
Affiliation(s)
- R Mir
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | - S J Pradhan
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | - P Patil
- Tata Memorial Hospital, Parel, Mumbai, India
| | - R Mulherkar
- Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | - S Galande
- Indian Institute of Science Education and Research, Pashan, Pune, India.,National Centre for Cell Science, Pune, India
| |
Collapse
|
31
|
Nicotinamide induces apoptosis of F9 mouse teratocarcinoma stem cells by downregulation of SATB1 expression. Tumour Biol 2015; 36:4339-48. [PMID: 25596087 DOI: 10.1007/s13277-015-3073-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022] Open
Abstract
The aim of this study was to decide whether nicotinamide (NA) could induce apoptosis of F9 mouse teratocarcinoma stem cells (MF9) by downregulation of special AT-rich sequence binding protein 1 (SATB1) expression. We used different concentrations of NA (0, 1.5, 2, and 2.5 mmol/L) to treat MF9 cells and analyze SATB1 expression by RT-qPCR and Western blotting; in addition, the cell proliferation was detected in a microplate reader with Cell Counting Kit-8 (CCK-8), and the cell cycle and apoptosis were analyzed using flow cytometry. We found that the expression of SATB1 was decreased significantly in NA-treated groups than in the control group, and its expression level was inversely related to the NA concentration. In addition, CCK-8 analysis showed that NA significantly inhibited the proliferation of MF9 cells, and flow cytometry showed that NA blocked MF9 cells to G1 phase and significantly promoted apoptosis in any treated groups. To confirm the results, we constructed small interference RNA (siRNA) targeting at mouse SATB1 and transferred into MF9 cells. The results indicated that the expression of SATB1 in both mRNA and protein levels was significantly decreased after cells transferred with siRNA sequence for 48 h, the proliferation of MF9 cells was significantly inhibited, and most of MF9 cells were blocked at G1 phase, and the apoptosis rate was increased obviously. The results showed that NA could inhibit the proliferation and induce apoptosis of MF9 cells. These findings might be used as an efficient candidate for teratocarcinoma therapy.
Collapse
|
32
|
Abstract
The special AT-rich sequence-binding proteins 1 and 2 (SATB1/2) are nuclear matrix associated proteins that are transcription factors involved in chromatin remodeling and gene regulation. Expression of the SATB2 gene is tissue-specific, and the only epithelial cells expressing SATB2 are the glandular cells of the lower gastrointestinal tract where its expression is regulated by microRNA-31 (miR-31) and miR-182. SATB2, along with its homolog SATB1, are thought to be involved in various cancers with their roles in this disease being specific to the type of cancer. Colorectal cancer (CRC) provides the largest association of SATB2 with cancer and the roles of SATB2 are better defined and more studied in CRC than in any other cancer type. SATB1 displays a negative association with SATB2 in CRC. The various studies that have investigated the involvement of SATB1 and 2 in CRC have produced consistent findings. Here, we form four major conclusions regarding the role of these proteins in CRC and their potential clinical value: (i) SATB2 is a sensitive marker to distinguish CRC from other cancer types, (ii) Reduced expression of SATB2 in CRC is associated with poor prognosis, (iii) High levels of SATB1 expression facilitate CRC and are associated with poor prognosis and (iv) Overexpression of miR-31 and -182 in CRC leads to more aggressive cancer. This review will describe several of the key investigations that established these conclusions and highlight results that offer opportunities for future research in the treatment and diagnosis of CRC.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987, USA
| |
Collapse
|
33
|
Elebro J, Heby M, Gaber A, Nodin B, Jonsson L, Fristedt R, Uhlén M, Jirström K, Eberhard J. Prognostic and treatment predictive significance of SATB1 and SATB2 expression in pancreatic and periampullary adenocarcinoma. J Transl Med 2014; 12:289. [PMID: 25323550 PMCID: PMC4232660 DOI: 10.1186/s12967-014-0289-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic cancer and other pancreaticobiliary type periampullary adenocarcinomas have a dismal prognosis even after resection and neoadjuvant chemotherapy. Intestinal type periampullary adenocarcinomas generally have a better prognosis, but little is known on optimal neoadjuvant and adjuvant treatment. New prognostic and treatment predictive biomarkers are needed for improved treatment stratification of patients with both types of periampullary adenocarcinoma. Expression of the Special AT-rich sequence-binding protein 1 (SATB1) has been demonstrated to confer a worse prognosis in several tumour types, whereas its close homologue SATB2 is a proposed diagnostic and favourable prognostic marker for colorectal cancer. The prognostic value of SATB1 and SATB2 expression in periampullary adenocarcinoma has not yet been described. METHODS Immunohistochemical expression of SATB1 and SATB2 was analysed in tissue microarrays with primary tumours and a subset of paired lymph node metastases from 175 patients operated with pancreaticoduodenectomy for periampullary adenocarcinoma. Kaplan-Meier and Cox regression analysis were applied to explore the impact of SATB1 and SATB2 expression on recurrence free survival (RFS) and overall survival (OS). RESULTS Positive expression of SATB1 was denoted in 16/106 primary pancreatobiliary type tumours and 11/65 metastases, and in 15/63 primary intestinal type tumours and 4/26 metastases, respectively. Expression of SATB1 was an independent predictor of a significantly shorter RFS and OS in pancreatobiliary type, but not in intestinal type adenocarcinomas. Moreover, SATB1 expression predicted an improved response to adjuvant chemotherapy in both tumour types. SATB2-expression was seen in 3/107 pancreatobiliary type primary tumours, and in 8/61 intestinal type primary tumours. The small number of cases with positive SATB2 expression did not allow for any firm conclusions on its prognostic value. CONCLUSIONS These findings demonstrate the potential utility of SATB1 as a prognostic and predictive biomarker for chemotherapy response in both intestinal type and pancreatobiliary type periampullary adenocarcinomas, including pancreatic cancer.
Collapse
Affiliation(s)
- Jacob Elebro
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Margareta Heby
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Alexander Gaber
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Liv Jonsson
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Richard Fristedt
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Mathias Uhlén
- Science for Life Laboratory, Royal Institute of Technology, 171 21, Stockholm, Sweden. .,School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, 106 91, Stockholm, Sweden.
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden.
| |
Collapse
|
34
|
Cheng C, Wan F, Liu L, Zeng F, Xing S, Wu X, Chen X, Zhu Z. Overexpression of SATB1 is associated with biologic behavior in human renal cell carcinoma. PLoS One 2014; 9:e97406. [PMID: 24835085 PMCID: PMC4023980 DOI: 10.1371/journal.pone.0097406] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/17/2014] [Indexed: 12/24/2022] Open
Abstract
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of SATB1 in RCC remains unclear. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of SATB1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of SATB1 was significantly associated with depth of invasion (P<0.001), lymph node status (P = 0.001) and TNM stage (P = 0.009). SATB1 knockdown inhibited the proliferation, migration and invasion of 786-O cells, whereas SATB1 overexpression promoted the growth and aggressive phenotype of ACHN cells in vitro. Furthermore, SATB1 expression was positively correlated with ZEB2 expression (P = 0.013), and inversely linked to levels of SATB2 and E-cadherin (P = 0.005 and P<0.001, respectively) in ccRCC tissues. Our data provide a basis for the concept that overexpression of SATB1 may play a critical role in the acquisition of an aggressive phenotype for RCC cells through EMT, providing new insights into the significance of SATB1 in invasion and metastasis of ccRCC, which may contribute to fully elucidating the exact mechanism of development and progression of RCC.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Wan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lian Liu
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqing Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi'an Xing
- Central Laboratory of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofei Wu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuepan Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Frömberg A, Rabe M, Aigner A. Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma. Int J Cancer 2014; 135:2537-46. [PMID: 24729451 DOI: 10.1002/ijc.28895] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
SATB1 (special AT-rich binding protein 1) is a global chromatin organizer regulating the expression of a large number of genes. Overexpression has been found in various solid tumors and positively correlated with prognostic and clinicopathological properties. In colorectal cancer (CRC), SATB1 overexpression and its correlation with poor differentiation, invasive depth, TNM (tumor, nodes, metastases) stage and prognosis have been demonstrated. However, more detailed studies on the SATB1 functions in CRC are warranted. In this article, we comprehensively analyze the cellular and molecular role of SATB1 in CRC cell lines with different SATB1 expression levels by using RNAi-mediated knockdown. Using siRNAs with different knockdown efficacies, we demonstrate antiproliferative, cell cycle-inhibitory and proapoptotic effects of SATB1 knockdown in a SATB1 gene dose-dependent manner. Tumor growth inhibition is confirmed in vivo in a subcutaneous tumor xenograft mouse model using stable knockdown cells. The in-depth analysis of cellular effects reveals increased activities of caspases-3, -7, -8, -9 and other mediators of apoptotic pathways. Similarly, the analysis of E- and N-cadherin, slug, twist, β-catenin and MMP7 indicates SATB1 effects on epithelial-mesenchymal transition (EMT) and matrix breakdown. Our results also establish SATB1 effects on receptor tyrosine kinases and (proto-)oncogenes such as HER receptors and Pim-1. Taken together, this suggests a more complex molecular interplay between tumor-promoting and possible inhibitory effects in CRC by affecting multiple pathways and molecules involved in proliferation, cell cycle, EMT, invasion and cell survival.
Collapse
Affiliation(s)
- Anja Frömberg
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
36
|
Grzanka D, Gagat M, Izdebska M. Involvement of the SATB1/F-actin complex in chromatin reorganization during active cell death. Int J Mol Med 2014; 33:1441-50. [PMID: 24676287 PMCID: PMC4055304 DOI: 10.3892/ijmm.2014.1710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022] Open
Abstract
Over the past years, confirmations on the presence of actin and/or its polymerized form, F-actin, in the cell nucleus are progressively accumulating. Nevertheless, the function and localization of F-actin in the nucleus is still not fully characterized. Thus, the aim of the present study was to evaluate the association between F-actin and sequence-binding protein 1 (SATB1) and their involvement in chromatin remodeling associated with active cell death. Both SATB1 and F-actin were colocalized in the transcriptional active regions of the cell nucleus and a functional interaction was observed between SATB1 and higher-organized nuclear F-actin structures at the border between condensed and decondensed chromatin. These results extend the knowledge on the role of SATB1 and nuclear F-actin in three-dimensional chromatin organization and their functions during active cell death. Additionally, this study opens the discussion on the involvement of the SATB1/F-actin functional complex in active cell death; further studies are required to fully elucidate these issues.
Collapse
Affiliation(s)
- Dariusz Grzanka
- Department and Clinic of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
37
|
Chu SH, Zhou ZM, Karri S, Li ZQ, Zhao JM. In vitro and in vivo radiosensitization of human glioma U251 cells induced by upregulated expression of SLC22A18. Cancer Gene Ther 2014; 21:103-109. [PMID: 24481489 DOI: 10.1038/cgt.2014.4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/01/2014] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
Abstract
Our previous study showed that solute carrier family 22 (organic cation transporter) member 18 (SLC22A18) downregulation via promoter methylation was associated with the development and progression of glioma, and the elevated expression of SLC22A18 was found to increase the sensitivity of glioma U251 cells to the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea. In this study, we investigated the possible upregulated expression of SLC22A18-induced enhancement of radiosensitivity of human glioma U251 cells in order to provide evidence in support of further clinical investigations. Stably overexpressing SLC22A18 human glioma U251 cells were generated to investigate the effect of SLC22A18 on the sensitivity of cells to irradiation in vitro using clonogenic survival assay. The apoptosis of U251 cells was examined with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. DNA damage and repair were measured using γH2AX foci. The effect of SLC22A18 on the in vivo tumor radiosensitivity was investigated in the orthotopic mice model. Upregulated expression of SLC22A18 enhanced the radiosensitivity of glioma U251 cells and also enhanced irradiation-induced apoptosis of U251 cells, but irradiation-induced apoptosis did not correlate with radiosensitizing effect of upregulated expression of SLC22A18. The repair of irradiation-induced double-strand-breaks was retarded in stably overexpressing SLC22A18 U251 cells. In the orthotopic mice model, the upregulated expression of SLC22A18 in U251 cells enhanced the effect of irradiation treatment and increased the survival time of mice. These results show that upregulated expression of SLC22A18 radiosensitizes human glioma U251 cells by suppressing DNA repair capacity.
Collapse
Affiliation(s)
- S-H Chu
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z-M Zhou
- Department of Neurosurgery, Dujiangyan Medical Center, Chengdu, China
| | - S Karri
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Z-Q Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J-M Zhao
- Department of Radiology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Ye CS, Zhou DN, Yang QQ, Deng YF. Silencing SATB1 influences cell invasion, migration, proliferation, and drug resistance in nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:914-922. [PMID: 24696710 PMCID: PMC3971293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Special AT rich sequence binding protein 1 (SATB1) play an important role in many cancers, but the role of SATB1 in nasopharyngeal carcinoma (NPC) is still not full understand. Immunofluorescence staining showed that SATB1 was mainly localized in the nuclei in CNE-2 cell. After successful down-regulation of SABT1 in NPC cell line CNE-2 by shRNA, compared to parental CNE-2 and control shRNA group, the capacity of the proliferation, migration, invasion and drug resistance of CNE-2 cell was reduced, which indicated that SATB1 may be involved in NPC development and progression. SATB1 may be a promising therapeutic target for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Chun-Sheng Ye
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen UniversityXiamen, China
| | - Dong-Ni Zhou
- Department of Pathology, Zhongshan Hospital, Xiamen UniversityXiamen, China
| | - Qing-Qing Yang
- Department of Otolaryngology-Head and Neck Surgery, Union School of Clinical Medicine, Fujian Medical UniversityFuzhou, China
| | - Yan-Fei Deng
- Department of Otolaryngology-Head and Neck Surgery, Zhongshan Hospital, Xiamen UniversityXiamen, China
- Department of Otolaryngology-Head and Neck Surgery, Union School of Clinical Medicine, Fujian Medical UniversityFuzhou, China
| |
Collapse
|
39
|
Chu SH, Zhou ZM, Feng DF, Ma YB. Inhibition of human glioma U251 cells growth in vitro and in vivo by hydroxyapatite nanoparticle-assisted delivery of short hairpin RNAs against SATB1. Mol Biol Rep 2014; 41:977-986. [PMID: 24370885 DOI: 10.1007/s11033-013-2942-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
Abstract
Special AT-rich sequence-binding protein-1 (SATB1) has been reported to be over-expressed in many human tumors and knockdown of SATB1 can inhibit tumor growth. The present study was designed to determine the role of SATB1 in the growth of human glioma U251 cells using the plasmid-based SATB1 short hairpin RNA (shRNA) delivered by hydroxyapatite nanoparticles in vitro and in vivo. The in vitro growth, invasion and angiogenesis assays of human glioma U251 cells were done. U251 cells tumor blocks were transplanted into the nude mice. CaCl2-modified hydroxyapatite nanoparticles carrying shRNA-SATB1 plasmids were injected into the tumors. The apoptosis of the tumor U251 cells was examined with TUNEL assay and flow cytometer (FCM). The tumor growth and immunohistochemistry were measured. The expression level of SATB1 mRNA was investigated by RT-PCR. The expression levels of SATB1, Cyclin D1, MMP-2, VEGF, Bax and Caspase-9 protein were determined by western blot analysis. The results showed that hydroxyapatite nanoparticles-delivered shRNA-SATB1 could significantly inhibit the growth, invasion and angiogenesis of U251 cells in vitro and the growth of U251 cells in vivo. FCM results showed that Nano HAP-shRNA-SATB1-induced apoptosis (up to 67.8 %). SATB1 expression was strongly down-regulated in the tumor U251 cells. Cyclin D1, MMP-2 and VEGF were also down-regulated in the tumor tissues that also displayed significant increased in Bax expression and Caspase-9 activity. These results show that Nano HAP-shRNA-SATB1 can inhibit the growth of human glioma U251 cells in vitro and in vivo, and hydroxyapatite nanoparticles can be used for the in vitro and in vivo delivery of plasmid-based shRNAs into U251 cells.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201900, China,
| | | | | | | |
Collapse
|
40
|
Zhang H, Su X, Guo L, Zhong L, Li W, Yue Z, Wang X, Mu Y, Li X, Li R, Wang Z. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci 2014; 11:1262-9. [PMID: 25317073 PMCID: PMC4196128 DOI: 10.7150/ijms.10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/27/2014] [Indexed: 11/05/2022] Open
Abstract
In a previous study, we found that the global genome organizer Special AT-rich binding protein 1 (SATB1) is highly expressed in mesenchymal-derived human osteosarcoma U2OS cells and that the knock-down of SATB1 results in the inhibition of cell proliferation. The present study was aimed at investigating the effect of silencing SATB1 on cell migration, invasion, apoptosis and resistance to the chemotherapeutic drug arsenic trioxide. Cell migration and invasion were detected by wound-healing assays and trans-well invasion assays, respectively. Cell apoptosis was analyzed by an in situ Cell Death Detection POD Kit, based on terminal deoxynucleotydyl transferase mediated dUTP nick-end labeling (TUNEL) staining and mRNAs were analyzed by real time qRT-PCR. We found that cell migration and invasion were inhibited and that the proportion of apoptotic cells and sensitivities to the chemotherapeutic drug arsenic trioxide were enhanced by knockdown of SATB1 in U2OS cells. Furthermore, mRNA of ABCC1 and ABCG2 were decreased strikingly after SATB1 silencing. It was concluded that the elevated expression of SATB1 in U2OS cells contributes to maintenance of the malignant phenotype and resistance to chemotherapeutic drugs ATO, suggesting that silencing SATB1 in the cells might improve the effects of arsenic trioxides in the treatment of osteosarcoma in which SATB1 is over-expressed and that ABCC1 and ABCG2 were involved in SATB1 mediated resistance of U2OS cells to ATO.
Collapse
Affiliation(s)
- Haiying Zhang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xuejin Su
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Li Guo
- 2. School of Public Health, Jilin University, Changchun, China
| | - Lingzhi Zhong
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Wenxue Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhen Yue
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xiaotong Wang
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yan Mu
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xinna Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Ronggui Li
- 1. Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zonggui Wang
- 3. The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Phosphorylated SATB1 is associated with the progression and prognosis of glioma. Cell Death Dis 2013; 4:e901. [PMID: 24176859 PMCID: PMC3920943 DOI: 10.1038/cddis.2013.433] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/17/2013] [Accepted: 10/02/2013] [Indexed: 02/07/2023]
Abstract
Special AT-rich sequence-binding protein 1 (SATB1) is a global chromatin organizer and gene regulator, and high expression of SATB1 is associated with progression and poor prognosis in several malignancies. Here, we examine the expression pattern of SATB1 in glioma. Microarray analysis of 127 clinical samples showed that SATB1 mRNA was expressed at lower levels in highly malignant glioblastoma multiforme (GBM) than in low-grade glioma and normal brain tissue. This result was further confirmed by real-time RT-PCR in the clinical samples, three GBM cell lines, primary SU3 glioma cells and tumor cells harvested by laser-capture microdissection. Consistent with the mRNA levels, SATB1 protein expression was downregulated in high-grade glioma, as shown by western blotting. However, phospho-SATB1 levels showed an opposite pattern, with a significant increase in these tumors. Immunohistochemical analysis of phospho-SATB1 expression in tissue microarrays with tumors from 122 glioma cases showed that phospho-SATB1 expression was significantly associated with high histological grade and poor survival by Kaplan–Meier analysis. In vitro transfection analysis showed that phospho-SATB1 DNA binding has a key role in regulating the proliferation and invasion of glioma cells. The effect of SATB1 in glioma cell is mainly histone deacetylase (HDAC1)-dependent. We conclude that phospho-SATB1, but not SATB1 mRNA expression, is associated with the progression and prognosis of glioma. By interaction with HDAC1, phospho-SATB1 contributes to the invasive and proliferative phenotype of GBM cells.
Collapse
|
42
|
Shen Z, Zeng Y, Guo J, Wu Y, Jiang X, Ding R, Wu C, Li R, Luo B, Zeng C, Jiang H, Jie W. Over-expression of the special AT rich sequence binding protein 1 (SATB1) promotes the progression of nasopharyngeal carcinoma: association with EBV LMP-1 expression. J Transl Med 2013; 11:217. [PMID: 24047082 PMCID: PMC3850651 DOI: 10.1186/1479-5876-11-217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/17/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Special AT rich sequence binding protein 1 (SATB1) plays a crucial role in the biology of various types of human cancer. However, the role of SATB1 in human nasopharyngeal carcinoma (NPC) remains unknown. In the present study, we sought to investigate the contribution of aberrant SATB1 expression in the progression of NPC and its association with the Epstein Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1). METHODS Immunohistochemical analysis was performed to detect SATB1 and LMP-1 protein in clinical samples, and the association of SATB1 protein expression with patient clinicopathological characteristics and LMP-1 expression were analyzed. SATB1 expression profiles were evaluated in well-differentiated NPC cell line CNE1, poorly-differentiated CNE2Z, undifferentiated C666-1 and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. After inhibition the SATB1 expression by using SATB1 specific small interfering RNA in these cell lines, the change of cell proliferation was investigated by western blotting analysis of PCNA (proliferating cell nuclear antigen) expression and CCK-8 assay, and the cell migration was assessed by Transwell migration assay. Finally, the expressions of SATB1 and PCNA were examined in CNE1 cells that forced LMP-1 expression by fluorescent staining and RT-PCR. RESULTS Immunohistochemical analysis revealed that SATB1 protein expression was elevated in NPC tissues compared to benign nasopharyngeal tissues (P = 0.005). Moreover, high levels of SATB1 protein expression were positively correlated with clinical stage (P = 0.025), the status of lymph node metastasis (N classification) (P = 0.018), distant metastasis (M classification) (P = 0.041) and LMP-1 expression status (r = 2.35, P < 0.01) in NPC patients. In vitro experiments demonstrated that an inverse relationship between SATB1 expression and NPC differentiation status, with SATB1 weakly expressed in NP-69 cells and CNE1 cells, and significant increasingly expressed in CNE-2Z and C666-1 cells. Targeted knockdown of SATB1 expression obviously attenuated the proliferation and migration of highly SATB1-expressing CNE2Z and C666-1 cells, but not NP-69 and CNE1 cells. Interestingly, forced LMP-1 expression in CNE1 cells led to a surprisingly increasing SATB1 expression and nuclear location, companying with an up-regulated PCNA expression. CONCLUSIONS Our results reveal that EBV LMP-1-mediated over-expression of SATB1 is associated with NPC progression, suggesting SATB1 may represent a promising biomarker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chu SH, Karri S, Ma YB, Feng DF, Li ZQ. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles. Neuro Oncol 2013; 15:880-890. [PMID: 23519742 PMCID: PMC3688012 DOI: 10.1093/neuonc/not030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/08/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. METHODS In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. RESULTS Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. CONCLUSIONS These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201900, China.
| | | | | | | | | |
Collapse
|
44
|
Mao L, Yang C, Wang J, Li W, Wen R, Chen J, Zheng J. SATB1 is overexpressed in metastatic prostate cancer and promotes prostate cancer cell growth and invasion. J Transl Med 2013; 11:111. [PMID: 23642278 PMCID: PMC3651708 DOI: 10.1186/1479-5876-11-111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/29/2013] [Indexed: 01/01/2023] Open
Abstract
Background Special AT-rich sequence binding protein 1 (SATB1) is a nuclear factor that functions as the global chromatin organizer to regulate chromatin structure and gene expression gene expression. SATB1 has been shown to be abnormally expressed in various types of cancer. However, the expression and role of SATB1 in prostate cancer remain unclear. Methods 120 cases of prostatic carcinoma and 60 cases of benign prostate hyperplasia were analyzed for SATB1 expression by immunohistochemistry. LNCaP, DU-145, and PC3 prostate cancer cells were examined for SATB1 expression by Western blot analysis. Cell proliferation and invasion was evaluated by CCK8 and transwell invasion assay, respectively. Results SATB1 staining was stronger in prostatic carcinomas with metastasis than in those without metastasis, but was absent in benign prostate hyperplasia. Furthermore, SATB1 expression was positively correlated with bone metastasis and the Gleason score. SATB1 overexpression promoted the proliferation and invasion of LNCaP cells while SATB1 knockdown inhibited the proliferation and invasion of DU-145 cells. Conclusions These findings provide novel insight into oncogenic role of SATB1 in prostate cancer, suggesting that SATB1 is a promising biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lijun Mao
- Department of Urology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kapoor S. Letter to the Editor: glioma grade. J Neurosurg 2013; 118:1151. [PMID: 23521550 DOI: 10.3171/2012.11.jns122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Chu SH, Ma YB, Feng DF, Li ZQ, Jiang PC. Predictive value of the SLC22A18 protein expression in glioblastoma patients receiving temozolomide therapy. J Transl Med 2013; 11:69. [PMID: 23514245 PMCID: PMC3610152 DOI: 10.1186/1479-5876-11-69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/13/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Our previous study showed that SLC22A18 downregulation and promoter methylation were associated with the development and progression of glioma and the elevated expression of SLC22A18 was found to increase the sensitivity of glioma U251 cells to the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). In this study, we investigated the predictive value of SLC22A18 promoter methylation and protein expression in glioblastoma multiforme (GBM) patients receiving temozolomide (TMZ) therapy. PATIENTS AND METHODS SLC22A18 promoter methylation and protein expression were examined by methylation-specific polymerase chain reaction (MSP) and Western blotting respectively, then we compared SLC22A18 promoter methylation and protein expression in tumor cell explants in regard to prediction of TMZ response and survival time of 86 GBM patients. RESULTS SLC22A18 promoter methylation was detected in 61 of 86 (71%) samples, whereas 36 of 86 (42%) cases were scored positive for SLC22A18 protein expression. Overall SLC22A18 promoter methylation was significantly related to SLC22A18 protein expression, but a subgroup of cases did not follow this association. Multivariate Cox regression analysis indicated that SLC22A18 protein expression, but not promoter methylation, was significantly correlated with TMZ therapy. SLC22A18 protein expression predicted a significantly shorter overall survival in 51 patients receiving TMZ therapy, whereas no differences in overall survival were observed in 35 patients without TMZ therapy. CONCLUSIONS These results show that lack of SLC22A18 protein expression is superior to promoter methylation as a predictive tumor biomarker in GBM patients receiving temozolomide therapy.
Collapse
Affiliation(s)
- Sheng-Hua Chu
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, 280 Mohe Road, Baoshan District, Shanghai 201900, China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, 280 Mohe Road, Baoshan District, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, 280 Mohe Road, Baoshan District, Shanghai 201900, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Pu-Cha Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
47
|
Wang M, Yin B, Matsueda S, Deng L, Li Y, Zhao W, Zou J, Li Q, Loo C, Wang RF, Wang HY. Identification of special AT-rich sequence binding protein 1 as a novel tumor antigen recognized by CD8+ T cells: implication for cancer immunotherapy. PLoS One 2013; 8:e56730. [PMID: 23437226 PMCID: PMC3578933 DOI: 10.1371/journal.pone.0056730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A large number of human tumor-associated antigens that are recognized by CD8(+) T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines. METHODOLOGY/PRINCIPAL FINDINGS Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02(+) healthy donors and/or HLA-A*02(+) cancer patients. The recognition of HLA-A*02(+) SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1(565-574) frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1(565-574)-specific T cells recognized and killed HLA-A*02(+) SATB1(+) cancer cells in an HLA-I-restricted manner. CONCLUSIONS/SIGNIFICANCE We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8(+) T cells, which, in turn, recognizes and kills HLA-A*02(+) SATB1(+) tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.
Collapse
Affiliation(s)
- Mingjun Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bingnan Yin
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Satoko Matsueda
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lijuan Deng
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Ying Li
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Zhao
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Jia Zou
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Qingtian Li
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Christopher Loo
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
| | - Helen Y. Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Huang B, Zhou H, Wang X, Liu Z. Silencing SATB1 with siRNA inhibits the proliferation and invasion of small cell lung cancer cells. Cancer Cell Int 2013; 13:8. [PMID: 23379909 PMCID: PMC3582488 DOI: 10.1186/1475-2867-13-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Small cell lung cancer (SCLC) is a special kind of lung cancers, lymph or blood metastasis of SCLC usually occurs in early stage. Studies in breast and colon cancer showed over expression of SATB1 could promote tumor cell growth and inhibit apoptosis. Therefore, we studied the expression of SATB1 in SCLC. METHODS The level of SATB1 was analyzed in SCLC tissues, metastatic lymphoid nodes and adjacent normal lung tissues by immunohistochemistry. Meanwhile, small interfering SATB1-targeting RNA was constructed and transfected into human SCLC cell line NCI-H446 to evaluate the effects of SATB1-siRNA on cell proliferation, invasion and apoptosis. RESULT SATB1 protein was overexpressed in SCLC tissues and metastasis lymphoid nodes compared with adjacent normal lung tissues. Compared with control group, SATB1-siRNA inhibits the proliferation and invasion of SCLC cells and induces SCLC cells apoptosis statistically (P<0.05) in vitro. CONCLUSION Our results suggest that SATB1 plays an important role in the metastasis of human SCLC cell.
Collapse
Affiliation(s)
- Bo Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Hongli Zhou
- Department of Kidney diseases, the First Affiliated Hospital of Liaoning Medical University, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Xiaodong Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| | - Zhiliang Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Liaoning Medical University, No. 2 People street, 121000, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
49
|
Kapoor S. SATB1 expression and its association with tumour prognosis in systemic malignancies: an evolving concept in oncology. Liver Int 2013; 33:322. [PMID: 23121661 DOI: 10.1111/liv.12019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
50
|
Nodin B, Hedner C, Uhlén M, Jirström K. Expression of the global regulator SATB1 is an independent factor of poor prognosis in high grade epithelial ovarian cancer. J Ovarian Res 2012; 5:24. [PMID: 22992394 PMCID: PMC3472180 DOI: 10.1186/1757-2215-5-24] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background The global gene regulator Special AT-rich sequence-binding protein1 (SATB1) has been reported to reprogramme tumour cells into a more malignant phenotype and associate with poor clinical outcome in several cancer forms. In this study, we investigated the molecular correlates and prognostic impact of SATB1 expression in human epithelial ovarian cancer (EOC). Findings Immunohistochemical expression of SATB1 was examined in tissue microarrays with tumours from 151 incident EOC cases from two prospective, population-based cohorts. Benign-appearing fallopian tube epithelium from 32 cases was also analyzed. A multiplier of nuclear fraction and staining intensity of SATB1 was calculated. While barely expressed in tubal epithelium, nuclear SATB1 expression was denoted in 35/151 (23.2%) EOC cases. Spearman´s Rho test revealed an inverse correlation between SATB1 expression and histological grade (R = -0.22, p = 0.006) and a positive correlation with expression of dachshund 2 protein (R = 0.28, p = 0.001), phosphorylated Chek1 (R = 0.26, p = 0.002) and minichromosome maintenance protein 3 (R = 0.17, p = 0.042). Univariable Cox regression analysis revealed that SATB1 expression, while not prognostic in the full cohort, was associated with a reduced ovarian cancer-specific survival and 5-year overall survival in high grade tumours (n = 105) (HR = 2.14 and HR = 1.96, respectively). This association remained significant in multivariable analysis, adjusted for age and clinical stage (HR = 2.20 and HR = 2.06, respectively). Conclusions These results demonstrate that SATB1 expression is an independent factor of poor prognosis in high grade EOC and correlates in vivo with cellular processes involved in the maintenance of DNA integrity. The functional basis for these observations merits further investigation.
Collapse
Affiliation(s)
- Björn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Lund, SE-221 85, Sweden.
| | | | | | | |
Collapse
|