1
|
Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, Lim SY, Li L, Kashem MA, Wan Y, Correia-Pinto JF, Seaman MS, Liu XQ, Balshaw RF, Li Q, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest 2021; 130:6429-6442. [PMID: 32853182 DOI: 10.1172/jci138728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
After over 3 decades of research, an effective anti-HIV vaccine remains elusive. The recently halted HVTN702 clinical trial not only further stresses the challenge to develop an effective HIV vaccine but also emphasizes that unconventional and novel vaccine strategies are urgently needed. Here, we report that a vaccine focusing the immune response on the sequences surrounding the 12 viral protease cleavage sites (PCSs) provided greater than 80% protection to Mauritian cynomolgus macaques against repeated intravaginal SIVmac251 challenges. The PCS-specific T cell responses correlated with vaccine efficacy. The PCS vaccine did not induce immune activation or inflammation known to be associated with increased susceptibility to HIV infection. Machine learning analyses revealed that the immune microenvironment generated by the PCS vaccine was predictive of vaccine efficacy. Our study demonstrates, for the first time to our knowledge, that a vaccine which targets only viral maturation, but lacks full-length Env and Gag immunogens, can prevent intravaginal infection in a stringent macaque/SIV challenge model. Targeting HIV maturation thus offers a potentially novel approach to developing an effective HIV vaccine.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jorge F Correia-Pinto
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiao Qing Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert F Balshaw
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Karlsson I, Borggren M, Jensen SS, Heyndrickx L, Stewart-Jones G, Scarlatti G, Fomsgaard A, on behalf of the NGIN Consortium. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model. AIDS Res Hum Retroviruses 2018; 34:206-217. [PMID: 28982260 DOI: 10.1089/aid.2017.0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKRCCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Marie Borggren
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
| | - Sanne Skov Jensen
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Leo Heyndrickx
- Biomedical Department, Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guillaume Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Anders Fomsgaard
- Department of Virology and Special Microbial Diagnostic, Statens Serum Institut, Copenhagen, Denmark
- Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
3
|
Moseri A, Sinha E, Zommer H, Arshava B, Naider F, Anglister J. Immunofocusing using conformationally constrained V3 peptide immunogens improves HIV-1 neutralization. Vaccine 2017; 35:222-230. [DOI: 10.1016/j.vaccine.2016.11.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
4
|
Abstract
Antibodies (Abs) are a critical component of the human immune response against viral infections. In HIV-infected patients, a robust Ab response against the virus develops within months of infection; however, due to numerous strategies, the virus usually escapes the biological effects of the various Abs. Here we provide an overview of the different viral evasion mechanisms, including glycosylation, high mutation rate, and conformational masking by the envelope glycoproteins of the virus. In response to virus infection and to its evolution within a host, "conventional Abs" are generated, and these can also be induced by immunization; generally, these Abs are limited in their neutralization breadth and potency. In contrast, "exceptional Abs" require extended exposure to virus to generate the required hypermutation in the immunoglobulin variable regions, and they occur only in rare HIV-infected individuals, but they display impressive breadth and potency. In this review, we describe the major regions of the HIV envelope spike that are targeted by conventional and exceptional Abs. These include the first, second, and third variable loops (V1, V2, and V3) located at the apex of the envelope trimer, the CD4 binding site, and the membrane-proximal external region of the gp41 ectodomain. Lastly, we discuss the challenging task of HIV immunogen design and approaches for choosing which immunogens might be used to elicit protective Abs.
Collapse
|
5
|
Sneha Priya R, Veena M, Kalisz I, Whitney S, Priyanka D, LaBranche CC, Sri Teja M, Montefiori DC, Pal R, Mahalingam S, Kalyanaraman VS. Antigenicity and immunogenicity of a trimeric envelope protein from an Indian clade C HIV-1 isolate. J Biol Chem 2015; 290:9195-208. [PMID: 25691567 PMCID: PMC4423705 DOI: 10.1074/jbc.m114.621185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.
Collapse
Affiliation(s)
- Rangasamy Sneha Priya
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Menon Veena
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Irene Kalisz
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Stephen Whitney
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | | | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Mullapudi Sri Teja
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | - Ranajit Pal
- Advanced Bioscience Laboratories Inc., Rockville, Maryland 20850, and
| | - Sundarasamy Mahalingam
- From the Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India,
| | | |
Collapse
|
6
|
Borthwick NJ, Rosario M, Schiffner T, Bowles E, Ahmed T, Liljeström P, Stewart-Jones GE, Drijfhout JW, Melief CJM, Hanke T. Humoral responses to HIVconsv induced by heterologous vaccine modalities in rhesus macaques. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:82-93. [PMID: 26029368 PMCID: PMC4444151 DOI: 10.1002/iid3.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/17/2022]
Abstract
Vaccines delivering T cell immunogen HIVconsv vectored by plasmid DNA, non-replicating simian adenovirus and non-replicating modified vaccinia virus Ankara (MVA) are under clinical evaluation in phase I/IIa trials in UK, Europe, and Africa. While these vaccines aim to induce effector T cell responses specific for HIV-1, we here characterized the humoral responses induced by HIVconsv administration to macaques using six different vaccine modalities: plasmid DNA, human adenovirus serotype 5, simian adenovirus serotype 63, MVA, Semliki Forest virus replicons, and adjuvanted overlapping synthetic long peptides (SLP). We found that only the SLP formulation, but none of the genetic vaccine platforms induced antibodies recognizing linear HIVconsv epitopes, median 32/46 SLP.HIVconsv peptides. These antibodies bound to 15-mer and SLP peptides, recombinant gp120 and trimeric gp140 of HIV-1 Bal, YU2, JRFL, and UG037, but failed to react with HIV-1 Bal and IIIB virions and HIV-1 Bal- and IIIB-infected human cells, and consequently failed to induce neutralizing antibodies. The HIVconsv immunogen contains conserved regions derived from Gag, Pol, Vif, and Env proteins of HIV-1, and antibodies induced by the SLP.HIVconsv vaccination resulted in positive signals in routine HIV-1 tests. Thus, only HIVconsv delivered by SLP resulted in seroconversion, an observation that provides important guidance for recruiting volunteers into future clinical trials. Furthermore, our data confirms that vaccine delivery by SLP induces humoral as well as cellular immune responses and could be considered for inclusion in future vaccine regimens where this is required.
Collapse
Affiliation(s)
- Nicola J Borthwick
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK
| | - Maximillian Rosario
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Torben Schiffner
- Nuffield Department of Medicine, The Sir William Dunn School of Pathology, University of Oxford, South Parks Road Oxford, OX1 3RE, UK
| | - Emma Bowles
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Tina Ahmed
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Guillaume E Stewart-Jones
- Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| | - Jan W Drijfhout
- Departement of Immunohematology and Blood Transfusion, Leiden University Medical Centre Leiden, the Netherlands
| | - Cornelis J M Melief
- Departement of Immunohematology and Blood Transfusion, Leiden University Medical Centre Leiden, the Netherlands
| | - Tomáš Hanke
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive Oxford, OX3 7DQ, UK ; Nuffield Department of Medicine, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Oxford, OX3 9DS, UK
| |
Collapse
|
7
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|