1
|
Phung AT, Shah JR, Dong T, Reid T, Larson C, Sanchez AB, Oronsky B, Trogler WC, Kummel AC, Aisagbonhi O, Blair SL. CAR expression in invasive breast carcinoma and its effect on adenovirus transduction efficiency. Breast Cancer Res 2024; 26:131. [PMID: 39256827 PMCID: PMC11389499 DOI: 10.1186/s13058-024-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death in women, with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) as the two most common forms of invasive breast cancer. While estrogen receptor positive (ER+) IDC and ILC are treated similarly, the multifocality of ILC presents challenges in detection and treatment, worsening long-term clinical outcomes in patients. With increasing documentation of chemoresistance in ILC, additional treatment options are needed. Oncolytic adenoviral therapy may be a promising option, but cancer cells must express the coxsackievirus & adenovirus receptor (CAR) for adenoviral therapy to be effective. The present study aims to evaluate the extent to which CAR expression is observed in ILC in comparison to IDC, and how the levels of CAR expression correlate with adenovirus transduction efficiency. The effect of liposome encapsulation on transduction efficiency is also assessed. METHODS To characterize CAR expression in invasive breast carcinoma, 36 formalin-fixed paraffin-embedded (FFPE) human breast tumor samples were assayed by CAR immunohistochemistry (IHC). Localization of CAR in comparison to other junctional proteins was performed using a multiplex immunofluorescence panel consisting of CAR, p120-catenin, and E-cadherin. ILC and IDC primary tumors and cell lines were transduced with E1- and E3-deleted adenovirus type 5 inserted with a GFP transgene (Ad-GFP) and DOTAP liposome encapsulated Ad-GFP (DfAd-GFP) at various multiplicities of infection (MOIs). Transduction efficiency was measured using a fluorescence plate reader. CAR expression in the human primary breast carcinomas and cell lines was also evaluated by IHC. RESULTS We observed membranous CAR, p120-catenin and E-cadherin expression in IDC. In ILC, we observed cytoplasmic expression of CAR and p120-catenin, with absent E-cadherin. Adenovirus effectively transduced high-CAR IDC cell lines, at MOIs as low as 12.5. Ad-GFP showed similar transduction as DfAd-GFP in high-CAR IDC cell lines. Conversely, Ad-GFP transduction of ILC cell lines was observed only at MOIs of 50 and 100. Furthermore, Ad-GFP did not transduce CAR-negative IDC cell lines even at MOIs greater than 100. Liposome encapsulation (DfAd-GFP) improved transduction efficiency 4-fold in ILC and 17-fold in CAR-negative IDC cell lines. CONCLUSION The present study demonstrates that oncolytic adenoviral therapy is less effective in ILC than IDC due to differences in spatial CAR expression. Liposome-enhanced delivery may be beneficial for patients with ILC and tumors with low or negative CAR expression to improve adenoviral therapeutic effectiveness.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Adenoviridae/genetics
- Transduction, Genetic
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism
- Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics
- Cell Line, Tumor
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/therapy
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Cadherins/metabolism
- Cadherins/genetics
- Genetic Vectors/genetics
- Genetic Vectors/administration & dosage
- Liposomes
Collapse
Affiliation(s)
- Abraham T Phung
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jaimin R Shah
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Tony Reid
- EpicentRx, Inc, La Jolla, CA, 92037, USA
| | | | | | | | - William C Trogler
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
| | - Andrew C Kummel
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92037, USA
| | - Omonigho Aisagbonhi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Sarah L Blair
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA.
- Department of Surgery, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Chu Z, Li Z, Yong H, Che D, Li B, Yan C, Zhou T, Wang X, Feng Y, Guo K, Geng S. Enhanced gene transfection and induction of apoptosis in melanoma cells by branched poly(β-amino ester)s with uniformly distributed branching units. J Control Release 2024; 367:197-208. [PMID: 38246205 DOI: 10.1016/j.jconrel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Melanoma, one of the most devastating forms of skin cancer, currently lacks effective clinical treatments. Delivery of functional genes to modulate specific protein expression to induce melanoma cell apoptosis could be a promising therapeutic approach. However, transfecting melanoma cells using non-viral methods, particularly with cationic polymers, presents significant challenges. In this study, we synthesized three branched poly(β-amino ester)s (HPAEs) with evenly distributed branching units but varying space lengths through a two-step "oligomer combination" strategy. The unique topological structure enables HPAEs to condense DNA to form nano-sized polyplexes with favorable physiochemical properties. Notably, HPAEs, especially HPAE-2 with intermediate branching unit space length, demonstrated significantly higher gene transfection efficiency than the leading commercial gene transfection reagent, jetPRIME, in human melanoma cells. Furthermore, HPAE-2 efficiently delivered the Bax-encoding plasmid into melanoma cells, leading to a pronounced pro-apoptotic effect without causing noticeable cytotoxicity. This study establishes a potent non-viral platform for gene transfection of melanoma cells by harnessing the distribution of branching units, paving the way for potential clinical applications of gene therapy in melanoma treatment.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Delu Che
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingjie Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Cong Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuqing Feng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Gao S, Lv R, Hao N, Wang H, Lv Y, Li Y, Ji Y, Liu Y. Fabrication of pH/photothermal-responsive ZIF-8 nanocarriers loaded with baicalein for effective drug delivery and synergistic chem-photothermal effects. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Ribaux P, Wuillemin C, Petignat P, Delie F, Cohen M. NANO-SBT-PEDF delivery system: A promising approach against ovarian cancer? Heliyon 2023; 9:e13676. [PMID: 36873150 PMCID: PMC9975102 DOI: 10.1016/j.heliyon.2023.e13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein involved in various biological processes. Its expression declines during ovarian carcinogenesis where it could decrease macrophages polarization, inhibit angiogenesis and induce apoptosis. Altogether, PEDF represents an ideal anti-cancer agent against ovarian cancer. We previously proposed the non-viral Sleeping Beauty transposon (SBT) system to stably integrate the PEDF transgene into ovarian cancer cells. Here, we report the development of liposomes and lipid nanoparticles for SBT-PEDF gene therapy. We determined that the SBT-PEDF nanolipid delivery system was the best system to increase the expression of PEDF in ovarian cancer spheroids. We also developed an ex vivo model of ovarian tumors which allowed us to show that nanolipoplexe in combination to paclitaxel exhibits synergistic and effective anti-tumor efficacy on ovarian tumors. These findings demonstrate that lipid nanoparticle for SBT-PEDF gene therapy may be a promising therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Pascale Ribaux
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Christine Wuillemin
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Patrick Petignat
- Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| | - Florence Delie
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Marie Cohen
- Translational Research Centre in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Department of Pediatric, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Huang CH, Dong T, Phung AT, Shah JR, Larson C, Sanchez AB, Blair SL, Oronsky B, Trogler WC, Reid T, Kummel AC. Full Remission of CAR-Deficient Tumors by DOTAP-Folate Liposome Encapsulation of Adenovirus. ACS Biomater Sci Eng 2022; 8:5199-5209. [PMID: 36395425 DOI: 10.1021/acsbiomaterials.2c00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenovirus (Ad)-based vectors have shown considerable promise for gene therapy. However, Ad requires the coxsackievirus and adenovirus receptor (CAR) to enter cells efficiently and low CAR expression is found in many human cancers, which hinder adenoviral gene therapies. Here, cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-folate liposomes (Df) encapsulating replication-deficient Ad were synthesized, which showed improved transfection efficiency in various CAR-deficient cell lines, including epithelial and hematopoietic cell types. When encapsulating replication-competent oncolytic Ad (TAV255) in DOTAP-folate liposome (TAV255-Df), the adenoviral structural protein, hexon, was readily produced in CAR-deficient cells, and the tumor cell killing ability was 5× higher than that of the non-encapsulated Ad. In CAR-deficient CT26 colon carcinoma murine models, replication-competent TAV255-Df treatment of subcutaneous tumors by intratumoral injection resulted in 67% full tumor remission, prolonged survival, and anti-cancer immunity when mice were rechallenged with cancer cells with no further treatment. The preclinical data shows that DOTAP-folate liposomes could significantly enhance the transfection efficiency of Ad in CAR-deficient cells and, therefore, could be a feasible strategy for applications in cancer treatment.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Abraham T Phung
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Jaimin R Shah
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Christopher Larson
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Ana B Sanchez
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Sarah L Blair
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Bryan Oronsky
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - William C Trogler
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Tony Reid
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Andrew C Kummel
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
7
|
Abooshahab R, Al-Salami H, Dass CR. The increasing role of pigment epithelium-derived factor in metastasis: from biological importance to a promising target. Biochem Pharmacol 2021; 193:114787. [PMID: 34571004 DOI: 10.1016/j.bcp.2021.114787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serpin (serine protease inhibitor) family and is a well-known potent anti-tumor factor in a variety of cancers. It has been ascertained that PEDF regulates multiple metastatic processes through various plausible mechanisms, including inhibiting angiogenesis, inducing apoptosis, stimulating extracellular matrix (ECM) degradation, and suppressing the epithelial-to-mesenchymal transition (EMT) process. Although PEDF has been recognized as an anti-metastatic marker in most studies, its role remains controversial with conflicting reports of PEDF as a metastatic marker. The emerging insights into the mechanism(s) of PEDF in tumor progression and its therapeutic effects are discussed systematically in this review, aiming to improve our understanding in the context of metastasis and drug development.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Al-Salami
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
8
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
9
|
Yamagishi SI, Koga Y, Sotokawauchi A, Hashizume N, Fukahori S, Matsui T, Yagi M. Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer. Curr Pharm Des 2020; 25:313-324. [PMID: 30892156 DOI: 10.2174/1381612825666190319112106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is one of the serine protease inhibitors with multifunctional properties, which is produced by various types of organs and tissues. There is an accumulating body of evidence that PEDF plays an important role in the maintenance of tissue homeostasis. Indeed, PEDF not only works as an endogenous inhibitor of angiogenesis, but also suppresses oxidative stress, inflammatory and thrombotic reactions in cell culture systems, animal models, and humans. Furthermore, we, along with others, have found that PEDF inhibits proliferation of, and induces apoptotic cell death in, numerous kinds of tumors. In addition, circulating as well as tumor expression levels of PEDF have been inversely associated with tumor growth and metastasis. These observations suggest that supplementation of PEDF proteins and/or enhancement of endogenous PEDF expression could be a novel therapeutic strategy for the treatment of cancer. Therefore, in this paper, we review the effects of PEDF on diverse types of cancer, and discuss its therapeutic perspectives.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Koga
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan.,Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Naoki Hashizume
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Suguru Fukahori
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Minoru Yagi
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
10
|
Jiang Q, Yuan Y, Gong Y, Luo X, Su X, Hu X, Zhu W. Therapeutic delivery of microRNA-143 by cationic lipoplexes for non-small cell lung cancer treatment in vivo. J Cancer Res Clin Oncol 2019; 145:2951-2967. [PMID: 31654121 DOI: 10.1007/s00432-019-03051-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide and new improvements are urgently needed. Several miRNA-targeted therapeutics have reached clinical development. MicroRNA-143 (miR-143) was found to significantly suppress the migration and invasion of NSCLC. It might be of great potential for NSCLC treatment. However, the therapeutic effect of miR-143 against NSCLC in vivo has not been explored until now. METHODS The cationic liposome/pVAX-miR-143 complex (CL-pVAX-miR-143) was prepared and its biodistribution was assessed. The tumor suppression effects of CL-pVAX-miR-143 were evaluated in early-stage and advanced experimental lung cancer metastasis mice models by systemic delivery, respectively, and also in subcutaneous tumor models by intratumoral injection. The toxicity of CL-pVAX-miR-143 was assessed by H&E analysis and biochemical measurements. The preliminary mechanism of CL-pVAX-miR-143 on tumor suppression was explored by immunochemistry and western blotting. RESULTS The assays on the stability and safety of CL-pVAX-miR-143 showed that it mainly accumulated in the lung after systemic administration. The intratumoral delivery of CL-pVAX-miR-143 effectively inhibited A549 subcutaneous tumor growth. Notably, systemic delivery of CL-pVAX-miR-143 significantly inhibited tumor metastasis and prolonged survival dose dependently in early-stage experimental lung cancer metastasis models. More importantly, same results were shown in advanced mice models with metastasis. CL-pVAX-miR-143 treatment did not induce obvious acute toxicity. The preliminary mechanism on inhibiting tumor metastasis might be induced by targeting CD44v3. CONCLUSIONS Our results suggested that CL-pVAX-miR-143 might be a promising strategy for clinical treatment of non-small cell lung cancer, especially for advanced NSCLC with metastasis.
Collapse
Affiliation(s)
- Qianqian Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Yue Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Yi Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xinmei Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Xueting Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy, No. 1, Keyuan 4th Road, Gaopeng Street, High Technological Development Zone, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Ribaux P, Britan A, Thumann G, Delie F, Petignat P, Cohen M. Malignant ascites: a source of therapeutic protein against ovarian cancer? Oncotarget 2019; 10:5894-5905. [PMID: 31666922 PMCID: PMC6800269 DOI: 10.18632/oncotarget.27185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in the world. Some ovarian cancer patients present large amount of ascites at the time of diagnosis which may play an active role in tumor development. In earlier studies, we demonstrated that the acellular fraction of ascites can induce apoptosis of ovarian cancer cells. The current study identifies pigment epithelium derived factor (PEDF) as the molecule responsible for the apoptotic effect of ascites and evaluates the Sleeping Beauty transposon (SBT) system as a new tool for PEDF gene therapy against ovarian cancer. We utilize gel filtration, mass spectrometry, affinity column, cell viability assay, tumor development on chick chorioallantoic membrane and molecular biology techniques for these purposes. PEDF was thus identified as the agent responsible for the effects of ascites on ovarian cancer cell viability and tumor growth. Interestingly, the PEDF expression is decreased in ovarian cancer cells compared to healthy ovarian cells. However, the level of PEDF is higher in ascites than in serum of ovarian cancer patients suggesting that cells present in the tumor environment are able to secrete PEDF. We then used the SBT system to stably induce PEDF expression in ovarian cancer cells. The overexpression of PEDF significantly reduced the tumor growth derived from these cells. In conclusion, the results presented here establish that PEDF is a therapeutic target and that PEDF from ascites or SBT could be utilized as a therapeutic strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Pascale Ribaux
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, Geneva 1206, Switzerland.,Translational Research Center in Oncohaematology, Faculty of Medicine, Geneva 1206, Switzerland
| | - Aurore Britan
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, Geneva 1206, Switzerland
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, Geneva 1205, Switzerland.,Department of Ophthalmology, University Hospitals of Geneva, Geneva 1205, Switzerland
| | - Florence Delie
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva 1205, Switzerland
| | - Patrick Petignat
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, Geneva 1206, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, Geneva 1206, Switzerland.,Translational Research Center in Oncohaematology, Faculty of Medicine, Geneva 1206, Switzerland
| |
Collapse
|
12
|
Balakrishnan B, David E. Biopolymers augment viral vectors based gene delivery. J Biosci 2019; 44:84. [PMID: 31502562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The success of viral vectors mediated gene therapy is still hampered by immunogenicity and insufficient transgene expression. Alternatively, non-viral vectors mediated gene delivery has the advantage of low immunogenicity despite showing low transgene expression. By carefully considering the advantages of each approach, hybrid vectors are currently being developed by modifying the viral vectors using non-viral biopolymers. This review provides an overview of the hybrid vectors currently being developed.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Haematology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | | |
Collapse
|
13
|
|
14
|
Gao X, Guo L, Li J, Thu HE, Hussain Z. Nanomedicines guided nanoimaging probes and nanotherapeutics for early detection of lung cancer and abolishing pulmonary metastasis: Critical appraisal of newer developments and challenges to clinical transition. J Control Release 2018; 292:29-57. [PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023]
Abstract
Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
Collapse
Affiliation(s)
- Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lihua Guo
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hnin Ei Thu
- Department of Pharmacology and Dental Therapeutics, Faculty of Dentistry, Lincoln University College, Jalan Stadium, SS 7/15, Kelana Jaya, 47301 Petaling Jaya, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
15
|
Wong CY, Martinez J, Al-Salami H, Dass CR. Quantification of BSA-loaded chitosan/oligonucleotide nanoparticles using reverse-phase high-performance liquid chromatography. Anal Bioanal Chem 2018; 410:6991-7006. [PMID: 30206665 DOI: 10.1007/s00216-018-1319-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Therapeutic proteins are administered subcutaneously because of their instability in the gastrointestinal tract. Current research suggests that polymeric-based nanoparticles, microparticles and liposomes are ideal nanocarriers to encapsulate proteins for disease management. In order to develop a successful drug delivery system, it is crucial to determine drug release profile and stability. However, the non-active excipients in polymeric formulations can influence the quantification of proteins in analytical techniques. This study investigated the effect of nine common polymers on quantification of bovine serum albumin (BSA) using RP-HPLC method. The technique offers advantages such as short analytical time, high accuracy and selectivity. In the meantime, the technique can be employed to separate proteins including BSA, insulin and pigment epithelium-derived factor (PEDF). Furthermore, the RP-HPLC method was applied to quantify the drug release pattern of a novel BSA-loaded nanoparticulate formulation in simulated gastric and intestinal fluids. The nanoparticles were formulated by natural polymer (chitosan) and oligonucleotide (Dz13Scr) using complex coacervation. The prepared particles were found to have small size (337.87 nm), low polydispersity index (0.338) and be positively charged (10.23 mV). The in vitro drug release patterns were characterised using the validated RP-HPLC method over 12 h. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, 6102, Australia. .,Curtin Health Innovation Research Institute, Bentley, 6102, Australia.
| |
Collapse
|
16
|
Low-Salt or Salt-Free Dyeing of Cotton Fibers with Reactive Dyes using Liposomes as Dyeing/Level-Dyeing Promotors. Sci Rep 2018; 8:13045. [PMID: 30158565 PMCID: PMC6115468 DOI: 10.1038/s41598-018-31501-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
The main aim of this investigation was to promote the dyeing and level-dyeing effect of reactive dyes on cotton-fiber dyeing by encapsulating reactive dyes in liposomes as an alternative to sodium chloride. The results obtained indicated that liposomes, especially cationic liposomes, have a remarkable level-dyeing promoting effect on cotton fibers, although the dyeing promoting effect was not as good as that of sodium chloride. The optimum dyeing and level-dyeing effects were achieved at a dye-fixing temperature of 85 °C, sodium carbonate concentration of 10 g/L and dye dosage of 2% (on the basis of oven-dry cotton fibers) when liposomes were used as the dyeing and level-dyeing promoters. The combination of cationic liposomes and sodium chloride can significantly promote both the dyeing and level-dyeing of cotton fibers. These results indicated the potential of cationic liposomes as novel dyeing and level-dyeing promoters or microencapsulated dye wall materials for reactive-dye dyeing applications.
Collapse
|
17
|
Plebanek MP, Angeloni NL, Vinokour E, Li J, Henkin A, Martinez-Marin D, Filleur S, Bhowmick R, Henkin J, Miller SD, Ifergan I, Lee Y, Osman I, Thaxton CS, Volpert OV. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun 2017; 8:1319. [PMID: 29105655 PMCID: PMC5673063 DOI: 10.1038/s41467-017-01433-3] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Metastatic cancers produce exosomes that condition pre-metastatic niches in remote microenvironments to favor metastasis. In contrast, here we show that exosomes from poorly metastatic melanoma cells can potently inhibit metastasis to the lung. These "non-metastatic" exosomes stimulate an innate immune response through the expansion of Ly6Clow patrolling monocytes (PMo) in the bone marrow, which then cause cancer cell clearance at the pre-metastatic niche, via the recruitment of NK cells and TRAIL-dependent killing of melanoma cells by macrophages. These events require the induction of the Nr4a1 transcription factor and are dependent on pigment epithelium-derived factor (PEDF) on the outer surface of exosomes. Importantly, exosomes isolated from patients with non-metastatic primary melanomas have a similar ability to suppress lung metastasis. This study thus demonstrates that pre-metastatic tumors produce exosomes, which elicit a broad range of PMo-reliant innate immune responses via trigger(s) of immune surveillance, causing cancer cell clearance at the pre-metastatic niche.
Collapse
Affiliation(s)
- Michael P Plebanek
- Department of Urology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
- Simpson-Querrey Institute for Bionantechnology in Medicine, 303 E. Superior St, Chicago, IL, 60611, USA
| | - Nicholas L Angeloni
- Department of Urology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
- Simpson-Querrey Institute for Bionantechnology in Medicine, 303 E. Superior St, Chicago, IL, 60611, USA
| | - Elena Vinokour
- Department of Urology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Jia Li
- Department of Urology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Anna Henkin
- The Department for Health and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA, 02139, USA
| | - Dalia Martinez-Marin
- Department of Urology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6591, USA
| | - Stephanie Filleur
- Department of Urology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX, 79430-6591, USA
| | - Reshma Bhowmick
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Igal Ifergan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Yesung Lee
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 240 East 38th Street, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University, Langone Medical Center, 160 East 34th Street, New York, NY, 10016, USA
| | - Iman Osman
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, 240 East 38th Street, New York, NY, 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University, Langone Medical Center, 160 East 34th Street, New York, NY, 10016, USA
| | - C Shad Thaxton
- Department of Urology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
- Simpson-Querrey Institute for Bionantechnology in Medicine, 303 E. Superior St, Chicago, IL, 60611, USA
- Northwestern University International Institute for Nanotechnology, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Olga V Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
18
|
Wong JK, Mohseni R, Hamidieh AA, MacLaren RE, Habib N, Seifalian AM. Will Nanotechnology Bring New Hope for Gene Delivery? Trends Biotechnol 2017; 35:434-451. [DOI: 10.1016/j.tibtech.2016.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
|
19
|
Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 2016; 34:291-301. [PMID: 25948376 DOI: 10.1007/s10555-015-9554-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
20
|
Current advances in developing cationic lipid-based nanoparticles as a vehicle for improving adenoviral gene delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2016. [DOI: 10.1007/s40005-016-0261-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, Hou X, Xiang R, Cheng P. Mesenchymal Stem Cells Engineered to Secrete Pigment Epithelium-Derived Factor Inhibit Tumor Metastasis and the Formation of Malignant Ascites in a Murine Colorectal Peritoneal Carcinomatosis Model. Hum Gene Ther 2016; 27:267-77. [PMID: 26756933 DOI: 10.1089/hum.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC.
Collapse
Affiliation(s)
- Liping Yang
- 1 Tumor Biotherapy Center/Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Gansu Province, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuwei Zhang
- 2 Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Liuliu Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Dan Yue
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhu Ma
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Da Zhao
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoming Hou
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Rong Xiang
- 5 School of Medicine/Collaborative Innovation Center for Biotherapy, Nankai University , Tianjin, People's Republic of China
| | - Ping Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
22
|
Li XP, Zhang HL, Wang HJ, Li YX, Li M, Lu L, Wan Y, Zhou BL, Liu Y, Pan Y, Wu XZ, Fan YZ, Yu CH, Wei YQ, Shi HS. Ad-endostatin treatment combined with low-dose irradiation in a murine lung cancer model. Oncol Rep 2014; 32:650-8. [PMID: 24927253 DOI: 10.3892/or.2014.3253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/07/2014] [Indexed: 02/05/2023] Open
Abstract
Radiation therapy is a conventional strategy for treating advanced lung cancer yet is accompanied by serious side-effects. Its combination with other strategies, such as antiangiogenesis and gene therapy, has shown excellent prospects. As one of the potent endogenous vascular inhibitors, endostatin has been widely used in the antiangiogenic gene therapy of tumors. In the present study, LL/2 cells were infected with a recombinant adenovirus encoding endostatin (Ad-endostatin) to express endostatin. The results showed that LL/2 cells infected with the Ad-endostatin efficiently and longlastingly expressed endostatin. In order to further explore the role of Ad-endostatin combined with irradiation in the treatment of cancer, a murine lung cancer model was established and treated with Ad-endostatin combined with low-dose irradiation. The results showed that the combination treatment markedly inhibited tumor growth and metastasis, and prolonged the survival time of the tumor-bearing mice. Furthermore, this significant antitumor activity was associated with lower levels of microvessel density and anoxia factors in the Ad-Endo combined with irradiation group, and with an increased apoptotic index of tumor cells. In addition, no serious side-effects were noted in the combination group. Based on our findings, Ad-endostatin combined with low-dose irradiation may be a rational alternative treatment for lung cancer and other solid tumors.
Collapse
Affiliation(s)
- Xiao-Peng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai-Long Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hui-Juan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong-Xia Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bai-Ling Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Zhe Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying-Zi Fan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chao-Heng Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hua-Shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|