1
|
Rhew K, Chae YJ, Chang JE. Progress and recent trends in photodynamic therapy with nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Apoptosis-Associated Gene Expression Profiling Is One New Prognosis Risk Predictor of Human Rectal Cancer. DISEASE MARKERS 2022; 2022:4596810. [PMID: 35502302 PMCID: PMC9056267 DOI: 10.1155/2022/4596810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
Background. Prior research has revealed the predictive significance of a series of genetic markers in the prognosis of rectal cancer (RC), but the roles of apoptosis-associated genes in RC are rarely studied. Methods. The RNA-seq data as well as clinical data about patients with rectum adenocarcinoma (READ) were downloaded from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Additionally, 87 apoptosis-associated genes were downloaded and acquired from Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Comprehensive bioinformatics analysis was carried out for deep exploration of the expression and prognostic significance of these genes. Least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis was performed for the establishment of a risk scoring equation for the prognosis model and construction of a survival prognosis model. ROC curves were drawn for evaluating the accuracy of the model. A real-time quantitative PCR assay was conducted for quantification of apoptosis-associated proteins related to prognosis. Results. Eight genes were identified as hub genes associated with the prognosis of PFS. A risk model of prognosis prediction based on four gene signatures (CYCS, IKBKB, NFKB1, and TRADD) was constructed. According to further analysis of this model, the high-risk group experienced worse overall survival than the other. The prognosis model demonstrated a favorable predictive ability, with areas under the receiver operating characteristic curves (AUC) of 0.720, 0.641, and 0.677 in forecasting the 1-, 2-, and 3-year prognosis, respectively. In addition, CYCS and NFKB1 presented low expression, while IKBKB and TRADD presented high expression in TCGA and clinical tumor samples. Conclusions. A four-gene signature risk model for prognosis forecasting of RC has been constructed, which possesses favorable predictive ability, which offers ideas and breakthrough points to the apoptosis-associated development of RC.
Collapse
|
3
|
Development of erythrosine-based photodynamic therapy with a targeted drug delivery system to induce HepG2 cell apoptosis in vitro. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Liu Y, Chen Y, Fei W, Zheng C, Zheng Y, Tang M, Qian Y, Zhang X, Zhao M, Zhang M, Wang F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front Bioeng Biotechnol 2021; 9:733792. [PMID: 34557478 PMCID: PMC8452863 DOI: 10.3389/fbioe.2021.733792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Silica-based nanoframeworks have been extensively studied for diagnosing and treating hepatocellular carcinoma (HCC). Several reviews have summarized the advantages and disadvantages of these nanoframeworks and their use as drug-delivery carriers. Encouragingly, these nanoframeworks, especially those with metal elements or small molecular drugs doping into the skeleton structure or modifying onto the surface of nanoparticles, could be multifunctional components participating in HCC diagnosis and treatment rather than functioning only as drug-delivery carriers. Therefore, in this work, we described the research progress of silica-based nanoframeworks involved in HCC diagnosis (plasma biomarker detection, magnetic resonance imaging, positron emission tomography, photoacoustic imaging, fluorescent imaging, ultrasonography, etc.) and treatment (chemotherapy, ferroptotic therapy, radiotherapy, phototherapy, sonodynamic therapy, immunotherapy, etc.) to clarify their roles in HCC theranostics. Further, the future expectations and challenges associated with silica-based nanoframeworks were highlighted. We believe that this review will provide a comprehensive understanding for researchers to design novel, functional silica-based nanoframeworks that can effectively overcome HCC.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Chen
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yongquan Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ying Qian
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Zhang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Tao Y, Wang J, Xu X. Emerging and Innovative Theranostic Approaches for Mesoporous Silica Nanoparticles in Hepatocellular Carcinoma: Current Status and Advances. Front Bioeng Biotechnol 2020; 8:184. [PMID: 32211399 PMCID: PMC7075945 DOI: 10.3389/fbioe.2020.00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal solid cancers globally. To improve diagnosis sensitivities and treatment efficacies, the development of new theranostic nanoplatforms for efficient HCC management is urgently needed. In the past decade, mesoporous silica nanoparticles (MSNs) with tailored structure, large surface area, high agents loading volume, abundant chemistry functionality, acceptable biocompatibility have received more and more attention in HCC theranostic. This review outlines the recent advances in MSNs-based systems for HCC therapy and diagnosis. The multifunctional hybrid nanostructures that have both of therapy and diagnosis abilities are highlighted. And the precision delivery strategies of MSNs in HCC are also discussed. Final, we conclude with our personal perspectives on the future development and challenges of MSNs.
Collapse
Affiliation(s)
- Yaoye Tao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Health Commission (NHC) Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences (CAMS), Hangzhou, China
- Key Laboratory of Organ Transplantation, Hangzhou, China
| |
Collapse
|
6
|
Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706320. [PMID: 29577458 DOI: 10.1002/adma.201706320] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Cancer is one of the most deadly diseases threatening the lives of humans. Although many treatment methods have been developed to tackle cancer, each modality of cancer treatment has its own limitations and drawbacks. The development of minimally invasive treatment modalities for cancers remains a great challenge. Near-infrared (NIR) light-activated nanomaterial-mediated phototherapies, including photothermal and photodynamic therapies, provide an alternative means for spatially and temporally controlled minimally invasive treatments of cancers. Nanomaterials can serve as nanocargoes for the delivery of chemo-drugs, diagnostic contrast reagents, and organic photosensitizers, and can be used to directly generate heat or reactive oxygen species for the treatment of tumors without the need for organic photosensitizers with NIR-light irradiation. Here, current progress in NIR-light-activated nanomaterial-mediated photothermal therapy and photodynamic therapy is summarized. Furthermore, the effects of size, shape, and surface functionalities of nanomaterials on intracellular uptake, macrophage clearance, biodistribution, cytotoxicities, and biomedical efficacies are discussed. The use of various types of nanomaterials, such as gold nanoparticles, carbon nanotubes, graphene, and many other inorganic nanostructures, in combination with diagnostic and therapeutic modalities for solid tumors, is briefly reviewed.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC
| |
Collapse
|
7
|
Thomas E, Colombeau L, Gries M, Peterlini T, Mathieu C, Thomas N, Boura C, Frochot C, Vanderesse R, Lux F, Barberi-Heyob M, Tillement O. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int J Nanomedicine 2017; 12:7075-7088. [PMID: 29026302 PMCID: PMC5627731 DOI: 10.2147/ijn.s141559] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite combined treatments, glioblastoma outcome remains poor with frequent local recurrences, indicating that a more efficient and local therapy is needed. In this way, vascular-targeted photodynamic therapy (VTP) could help tumor eradication by destroying its neovessels. In this study, we designed a polysiloxane-based nanoparticle (NP) combining a magnetic resonance imaging (MRI) contrast agent, a photosensitizer (PS) and a new ligand peptide motif (KDKPPR) targeting neuropilin-1 (NRP-1), a receptor overexpressed by angiogenic endothelial cells of the tumor vasculature. This structure achieves the detection of the tumor tissue and its proliferating part by MRI analysis, followed by its treatment by VTP. The photophysical properties of the PS and the peptide affinity for NRP-1 recombinant protein were preserved after the functionalization of NPs. Cellular uptake of NPs by human umbilical vein endothelial cells (HUVEC) was increased twice compared to NPs without the KDKPPR peptide moiety or conjugated with a scramble peptide. NPs induced no cytotoxicity without light exposure but conferred a photocytotoxic effect to cells after photodynamic therapy (PDT). The in vivo selectivity, evaluated using a skinfold chamber model in mice, confirms that the functionalized NPs with KDKPPR peptide moiety were localized in the tumor vessel wall.
Collapse
Affiliation(s)
- Eloïse Thomas
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière, Lyon
| | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, Nancy
| | - Mickaël Gries
- Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN)
- CNRS, CRAN, Vandoeuvre-lès-Nancy
| | - Thibaut Peterlini
- Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN)
- CNRS, CRAN, Vandoeuvre-lès-Nancy
| | - Clélia Mathieu
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière, Lyon
| | - Noémie Thomas
- Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN)
- CNRS, CRAN, Vandoeuvre-lès-Nancy
| | - Cédric Boura
- Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN)
- CNRS, CRAN, Vandoeuvre-lès-Nancy
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, Nancy
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine-CNRS, Nancy, France
| | - François Lux
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière, Lyon
| | - Muriel Barberi-Heyob
- Université de Lorraine, Research Center for Automatic Control of Nancy (CRAN)
- CNRS, CRAN, Vandoeuvre-lès-Nancy
| | - Olivier Tillement
- Université Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut Lumière Matière, Lyon
| |
Collapse
|
8
|
Zhan J, Ma Z, Wang D, Li X, Li X, Le L, Kang A, Hu P, She L, Yang F. Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. Int J Nanomedicine 2017; 12:2733-2748. [PMID: 28442903 PMCID: PMC5396969 DOI: 10.2147/ijn.s127528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nonspecific targeting, large doses and phototoxicity severely hamper the clinical effect of photodynamic therapy (PDT). In this work, superparamagnetic Fe3O4 mesoporous silica nanoparticles grafted by pH-responsive block polymer polyethylene glycol-b-poly(aspartic acid) (PEG-b-PAsp) were fabricated to load the model photosensitizer rose bengal (RB) in the aim of enhancing the efficiency of PDT. Compared to free RB, the nanocomposites (polyethylene glycol-b-polyaspartate-modified rose bengal-loaded magnetic mesoporous silica [RB−MMSNs]) could greatly enhance the cellular uptake due to their effective endocytosis by mouse melanoma B16 cell and exhibited higher induced apoptosis although with little dark toxicity. RB−MMSNs had little dark toxicity and even much could be facilitated by magnetic field in vitro. RB−MMSNs demonstrated 10 times induced apoptosis efficiency than that of free RB at the same RB concentration, both by cell counting kit-8 (CCK-8) result and apoptosis detection. Furthermore, RB−MMSNs-mediated PDT in vivo on tumor-bearing mice showed steady physical targeting of RB−MMSNs to the tumor site; tumor volumes were significantly reduced in the magnetic field with green light irradiation. More importantly, the survival time of tumor-bearing mice treated with RB−MMSNs was much prolonged. Henceforth, polyethylene glycol-b-polyaspartate-modified magnetic mesoporous silica (MMSNs) probably have great potential in clinical cancer photodynamic treatment because of their effective and low-toxic performance as photosensitizers’ vesicles.
Collapse
Affiliation(s)
- Jieqiong Zhan
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei.,Department of Inorganic Chemistry, School of Pharmacy
| | - Zhiqiang Ma
- Department of Inorganic Chemistry, School of Pharmacy
| | - Dan Wang
- Department of Obstetrics and Gynecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xinfang Li
- Department of Inorganic Chemistry, School of Pharmacy
| | - Xiangui Li
- Department of Inorganic Chemistry, School of Pharmacy
| | - Lijing Le
- Department of Inorganic Chemistry, School of Pharmacy
| | - Anfeng Kang
- Department of Inorganic Chemistry, School of Pharmacy
| | - Pengwei Hu
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei
| | - Lan She
- Department of Inorganic Chemistry, School of Pharmacy
| | - Feng Yang
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei.,Department of Inorganic Chemistry, School of Pharmacy
| |
Collapse
|
9
|
Cheng J, Li W, Tan G, Wang Z, Li S, Jin Y. Synthesis and in vitro photodynamic therapy of chlorin derivative 131-ortho-trifluoromethyl-phenylhydrazone modified pyropheophorbide-a. Biomed Pharmacother 2017; 87:263-273. [DOI: 10.1016/j.biopha.2016.12.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
|
10
|
Xiong L, Liu Z, Ouyang G, Lin L, Huang H, Kang H, Chen W, Miao X, Wen Y. Autophagy inhibition enhances photocytotoxicity of Photosan-II in human colorectal cancer cells. Oncotarget 2017; 8:6419-6432. [PMID: 28031534 PMCID: PMC5351642 DOI: 10.18632/oncotarget.14117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as an attractive therapeutic treatment for colorectal cancer because of its accessibility through endoscopy and its ability to selectively target tumors without destroying the anatomical integrity of the colon. We therefore investigated the therapeutic relevance of the interplay between autophagy and apoptosis in Photosan-II (PS-II)-mediated photodynamic therapy (PS-PDT) in in vitro and in vivo models for human colorectal cancer. We observed that PS-PDT-induced dose-dependently triggered apoptosis and autophagy in both SW620 and HCT116 cells. PS-PDT-treated SW620 cells exhibited nuclear condensation and increased levels of cleaved caspase-3, PARP and Bax, which is reminiscent of apoptosis. PS-PDT also induced autophagic vacuoles, double membrane autophagosome structures and the autophagy-related proteins P62, Bcl-2, ATG7 and LC3-II. In addition, the AKT-mTOR pathway was downregulated, while AMPK was upregulated in PS-PDT-treated cells. Inhibiting autophagy using chloroquine or by downregulating ATG7 using shRNA further upregulated apoptosis, suggesting autophagy was probably was protective to PS-PDT-treated tumor cells. In vivo relevance was demonstrated when a combination of chloroquine and PS-PDT significantly reduced the tumor size in a xenograft mice model. Our findings demonstrate that combination therapy using PS-PDT and autophagy inhibitors may be an effective approach to treating colorectal cancer patients.
Collapse
Affiliation(s)
- Li Xiong
- General Surgery Department of Second Xiangya Hospital, Central South University, Changsha, HN, China
| | - Zhipeng Liu
- General Surgery Department of Second Xiangya Hospital, Central South University, Changsha, HN, China
| | - Guoqing Ouyang
- General Surgery Department of Second Xiangya Hospital, Central South University, Changsha, HN, China
| | - Liangwu Lin
- China State Key Laboratory for Powder Metallurgy, Central South University, Changsha, HN, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, HN, China
| | - Hongxiang Kang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Wei Chen
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - Xiongying Miao
- General Surgery Department of Second Xiangya Hospital, Central South University, Changsha, HN, China
| | - Yu Wen
- General Surgery Department of Second Xiangya Hospital, Central South University, Changsha, HN, China
| |
Collapse
|
11
|
Li W, Tan G, Cheng J, Zhao L, Wang Z, Jin Y. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells. Molecules 2016; 21:molecules21050558. [PMID: 27136527 PMCID: PMC6273471 DOI: 10.3390/molecules21050558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-31,131 bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm2). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jianjun Cheng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Lishuang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
12
|
|
13
|
Cheng J, Tan G, Li W, Li J, Wang Z, Jin Y. Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer. RSC Adv 2016. [DOI: 10.1039/c6ra03128e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Core–shell structure magneto-fluorescence chlorin pyropheorbide-a photosensitizer (MFNPs) with good water-dispersity and strong superparamagnetic for photodynamic therapy.
Collapse
Affiliation(s)
- Jianjun Cheng
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Wenting Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Jinghua Li
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials
- Ministry of Education
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
| |
Collapse
|
14
|
Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy. J Radioanal Nucl Chem 2015. [DOI: 10.1007/s10967-015-4081-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|