1
|
Hörstke NV, Vogl T. Deciphering the autoreactome: Massively parallelized methods for autoantibody detection in humans. J Immunol Methods 2025:113876. [PMID: 40339788 DOI: 10.1016/j.jim.2025.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Autoantibodies have a substantial impact on human health ranging from autoimmune diseases to cancer diagnostics. Knowledge of the antigens recognized can allow for more accurate diagnostics, a better understanding of pathogeneses and thus improved prevention, as well as laying the foundation for the development of new therapies. A critical step to acquire this knowledge is to detect the exact self-antigens targeted by autoantibodies out of the pool of 20,000 human proteins against which reactivities could be observed. Here, we review established and emerging methods for highly parallelized autoantigen detection such as human proteome microarrays, serological identification of antigens by screening of cDNA expression libraries (SEREX), serological proteome analysis (SERPA), phage display immunoprecipitation sequencing (PhIP-Seq), parallel analysis of translated ORFs (PLATO), and rapid extracellular antigen profiling (REAP). We highlight advantages and limitations of these methods, aiming to give a guideline to choose the appropriate method for a certain application.
Collapse
Affiliation(s)
- Nicolai V Hörstke
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Mondal R, Deb S, Shome G, Sarkar V, Lahiri D, Datta SS, Benito-León J. Molecular dynamics of amyloid-β transport in Alzheimer's disease: Exploring therapeutic plasma exchange with albumin replacement - Current insights and future perspectives. Neurologia 2025; 40:306-328. [PMID: 40280630 DOI: 10.1016/j.nrleng.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION The complex process of amyloid-β (Aβ) transportation across the blood-brain and blood-cerebrospinal fluid barriers is crucial for preventing Aβ accumulation, which linked to dementia and neurodegeneration. This review explores therapeutic plasma exchange with albumin replacement in Alzheimer's disease, based on the dynamics of amyloid-β between the brain, plasma, and cerebrospinal fluid. METHODOLOGY A comprehensive literature review was conducted using PubMed/Medline, Cochrane Library, and open databases (bioRxiv, MedRixv, preprint.org) up to April 30, 2023. The first search utilized the following MeSH terms and keywords: 'Plasma Exchange', 'Plasmapheresis', 'Therapeutic plasma exchange', 'Apheresis', 'Aβ', 'p-tau', 'Total-tau', 'Alzheimer's disease', 'Cognitive dysfunction', 'neurodegenerative diseases', 'centrifugation', 'membranous', and 'filtration' in the Title/Abstract, yielding 146 results. A second search with the keywords: 'Albumin', 'Aβ', 'BBB', 'Alzheimer's dementia', and 'Nerve degeneration' resulted in 125 additional articles for analysis. Finally, a third search using keywords: 'Albumin structural domains', 'Albumin-Aβ interactions', 'Albumin-endothelial interactions', and 'Post-Translational Modification' produced 193 results for further review. RESULTS/DISCUSSION Therapeutic plasma exchange shows potential as a disease-modifying therapy for dementia, specifically for Alzheimer's disease. Additionally, the promising role of albumin supplementation in cognitive improvement has attracted attention. However, clinical evidence supporting therapeutic plasma exchange for dementia remains limited, necessitating further research and development to mitigate potential adverse effects. A deeper understanding of the molecular dynamics of Aβ transportation and the mechanisms of therapeutic plasma exchange is essential. A critical evaluation of existing evidence highlights the importance of balancing potential benefits with associated risks, which will guide the development and application of these treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India
| | - S Deb
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - G Shome
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - V Sarkar
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - D Lahiri
- Baycrest Academy of Research and Education, Toronto, Canada; Rotman Research Institute, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Canada; Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - S S Datta
- Department of Transfusion Medicine, Tata Medical Center, Kolkata 700160, India
| | - J Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
3
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Schreiner TG, Croitoru CG, Hodorog DN, Cuciureanu DI. Passive Anti-Amyloid Beta Immunotherapies in Alzheimer's Disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024; 12:1096. [PMID: 38791059 PMCID: PMC11117736 DOI: 10.3390/biomedicines12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain. This review offers an original and critical analysis of anti-amyloid immunotherapies by exploring several aspects. Firstly, the mechanisms of action of these therapies are reviewed, focusing on their ability to promote Aβ degradation and enhance its efflux from the central nervous system. Subsequently, the extensive history of clinical trials involving anti-amyloid antibodies is presented, from initial efforts using first-generation molecules leading to mixed results to recent clinically approved drugs. Along with undeniable progress, the authors also highlight the pitfalls of this approach to offer a balanced perspective on this topic. Finally, based on its potential and limitations, the future directions of this promising therapeutic strategy for Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Cristina Georgiana Croitoru
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Immunology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Nicoleta Hodorog
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Dan Iulian Cuciureanu
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
5
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Kronimus Y, Albus A, Hasenberg M, Walkenfort B, Seifert M, Budeus B, Gronewold J, Hermann DM, Ross JA, Lochnit G, Galuska SP, Marcus K, Sitek B, Klotsche J, Mengel D, Neumann S, Dodel R. Fc N-glycosylation of autoreactive Aβ antibodies as a blood-based biomarker for Alzheimer's disease. Alzheimers Dement 2023; 19:5563-5572. [PMID: 37260026 DOI: 10.1002/alz.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Naturally occurring autoantibodies (nAbs) against the pathologic isoform of amyloid beta (Aβ42 ) were found in body fluids and indicate a systemic B cell response that may prevent Alzheimer's disease (AD) onset. N-glycans attached to immunoglobulin G-Fab/Fc fragments are features that influence their mechanism of action. The aim was to study the role of N-glycans in nAbs-Aβ42 . METHODS nAbs-Aβ42 were isolated from AD patients and age-/sex-matched controls (n = 40) and immunoglobulin preparations. Glycosylated/deglycosylated nAbs-Aβ42 were analyzed for their effect on Aβ42 's aggregation, toxicity, and phagocytosis. Glycan structure was analyzed using matrix assisted laser desorption ionization time of flight mass spectrometry. RESULTS Deglycosylation of nAbs-Aβ42 had a major impact on Aβ42 's aggregation/toxicity/phagocytosis. The glycan structure showed considerable differences between AD and controls. We were able to predict disease status with a sensitivity/specificity of 95% (confidence interval [CI]: 76.4-99.7%)/100% (CI: 83.9-100%). DISCUSSION N-glycosylation has been identified as a critical attribute maintaining the beneficial effects of autoreactive Aβ antibodies. These data have consequences for the development of monocloncal Aβ antibodies and may open new avenues for diagnostics.
Collapse
Affiliation(s)
- Yannick Kronimus
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Alexandra Albus
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Mike Hasenberg
- Imaging Center Essen (Electron Microscopy), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (Electron Microscopy), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Janine Gronewold
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - J Alexander Ross
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Günter Lochnit
- Protein Analytics, Department of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty; Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Medical Faculty; Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Jens Klotsche
- Epidemiology Unit, German Rheumatism Research Center Berlin - a Leibniz Institute (DRFZ), Berlin, Germany
| | - David Mengel
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sascha Neumann
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine and Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
8
|
Chen HY, Zhao Y, Xie YZ. Immunosenescence of brain accelerates Alzheimer's disease progression. Rev Neurosci 2023; 34:85-101. [PMID: 35791032 DOI: 10.1515/revneuro-2022-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 01/07/2023]
Abstract
Most of Alzheimer's disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Collapse
Affiliation(s)
- Hou-Yu Chen
- Department of Abdominal Surgery, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangdong 510095, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yong-Zhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
9
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
10
|
Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Kim K, Wang X, Ragonnaud E, Bodogai M, Illouz T, DeLuca M, McDevitt RA, Gusev F, Okun E, Rogaev E, Biragyn A. Therapeutic B-cell depletion reverses progression of Alzheimer's disease. Nat Commun 2021; 12:2185. [PMID: 33846335 PMCID: PMC8042032 DOI: 10.1038/s41467-021-22479-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2021] [Indexed: 01/16/2023] Open
Abstract
The function of B cells in Alzheimer's disease (AD) is not fully understood. While immunoglobulins that target amyloid beta (Aβ) may interfere with plaque formation and hence progression of the disease, B cells may contribute beyond merely producing immunoglobulins. Here we show that AD is associated with accumulation of activated B cells in circulation, and with infiltration of B cells into the brain parenchyma, resulting in immunoglobulin deposits around Aβ plaques. Using three different murine transgenic models, we provide counterintuitive evidence that the AD progression requires B cells. Despite expression of the AD-fostering transgenes, the loss of B cells alone is sufficient to reduce Aβ plaque burden and disease-associated microglia. It reverses behavioral and memory deficits and restores TGFβ+ microglia, respectively. Moreover, therapeutic depletion of B cells at the onset of the disease retards AD progression in mice, suggesting that targeting B cells may also benefit AD patients.
Collapse
Affiliation(s)
- Ki Kim
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Xin Wang
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Emeline Ragonnaud
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Monica Bodogai
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Tomer Illouz
- The Mina and Everard Goodman faculty of Life Sciences, Ramat Gan, Israel
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar Ilan University, Ramat Gan, Israel
| | - Marisa DeLuca
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA
| | - Ross A McDevitt
- Mouse Phenotyping Unit, Comparative Medicine Section, National Institute on Aging, Baltimore, MD, USA
| | - Fedor Gusev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Eitan Okun
- The Mina and Everard Goodman faculty of Life Sciences, Ramat Gan, Israel
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer's disease research, Bar Ilan University, Ramat Gan, Israel
| | - Evgeny Rogaev
- Department of Genomics and Human Genetics, Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Center for Genetics and Genetic Technologies, Faculty of Biology, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
- Sirius University of Science and Technology, Sochi, Russia
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Immunology and Molecular Biology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
12
|
Albus A, Kronimus Y, Neumann S, Vidovic N, Frenzel A, Kuhn P, Seifert M, Ziehm T, van der Wurp H, Dodel R. Effects of a Multimerized Recombinant Autoantibody Against Amyloid-β. Neuroscience 2021; 463:355-369. [PMID: 33958140 DOI: 10.1016/j.neuroscience.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease; thus, the search for a cure or causal therapy has become necessary. Despite intense research on this topic in recent decades, there is no curative therapy up today, and also no disease-modifying treatment has been approved. As promising approach passive immunization strategies have thereby come forth. In this study, we focused on naturally occurring autoantibodies against the AD-associated peptide amyloid-β. These antibodies have already reported to show beneficial functions in vitro and in mouse models of AD. However, their availability is limited due to their low abundance in peripheral blood. In a recent study, we were able to generate four recombinant antibodies against amyloid-β. In the present study, we tested these antibodies in ELISA and SPR assays for their binding behavior and by aggregation- and phagocytosis assays as functional evidences to characterize their amyloid-β-related neutralizing and clearance abilities. Further ex vivo assay on organotypic hippocampal slice cultures gave first evidence of microglial activation and inflammatory features. The tested recombinant antibodies in IgG format showed, in comparison to naturally occurring autoantibodies against amyloid-β, insufficient binding capacities and -affinities. However, after conversion of one antibody into a single chain format multimerization of the scFv-Fc construct, the investigated binding capacity and -affinity showed improvements. Further functional assays predict a protective effect of this antibody. Although, all four recombinant antibodies showed binding to amyloid-β, promising features were only detectable after conversion into a multimeric format. The multimeric scFv-Fc antibody exhibited thereby strong impact on amyloid-β clearance and inhibition of oligomerization.
Collapse
Affiliation(s)
- Alexandra Albus
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | - Yannick Kronimus
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | - Sascha Neumann
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany
| | - Natascha Vidovic
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany
| | | | | | - Marc Seifert
- Institute of Cell Biology (Cancer Research), Medical Faculty, University Duisburg-Essen, Germany
| | - Tamar Ziehm
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Hendrik van der Wurp
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Duisburg-Essen, Germany; Department of Neurology, Philipps-University, Marburg, Germany.
| |
Collapse
|
13
|
Zhao Y, Zhan JK, Liu Y. A Perspective on Roles Played by Immunosenescence in the Pathobiology of Alzheimer's Disease. Aging Dis 2020; 11:1594-1607. [PMID: 33269109 PMCID: PMC7673850 DOI: 10.14336/ad.2020.0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Aging is the most significant risk factor for late-onset AD. The age-associated changes in the immune system are termed immunosenescence. A close connection between immunosenescence and AD is increasingly recognized. This article provides an overview of immunosenescence and evidence for its role in the pathogenesis of AD and possible mechanisms as well as the outlook for drug development.
Collapse
Affiliation(s)
| | | | - Youshuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
14
|
Albus A, Jördens M, Möller M, Dodel R. Encoding the Sequence of Specific Autoantibodies Against beta-Amyloid and alpha-Synuclein in Neurodegenerative Diseases. Front Immunol 2019; 10:2033. [PMID: 31507618 PMCID: PMC6718452 DOI: 10.3389/fimmu.2019.02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023] Open
Abstract
There is no effective disease-modifying therapy for Alzheimer's or Parkinson's disease. As pathological hallmarks, the specific peptide amyloid-β and the specific protein α-Synuclein aggregate and deposit in and destabilize neurons, which lead to their degeneration. Within the context of a potential immunization strategy for these diseases, naturally occurring autoantibodies could play a crucial role in treatment due to their ability to inhibit peptide/protein aggregation and mediate their phagocytosis. We developed a procedure to extract the genetic information of such amyloid-β- and α-Synuclein- specific naturally occurring autoantibodies for future passive immunization strategies. We performed FACS-based single-cell sorting on whole blood donated from healthy individuals and performed single-cell RT-PCR analysis to amplify the coding sequences of antigen-binding regions of each antibody-secreting B1 cell. Sequences were further analyzed to determine CDR sequences and germline expression. Therefore, only low percentages of B1 cells obtained were amyloid-β+/α-Synuclein+. After cell sorting, the variable regions of full IgGs were sequenced, demonstrating preferred usage of IGVH3 and IGKV1. The study we present herein describes an approaching for extracting and amplifying the sequence information of autoantibodies based on single-cell analysis of donated blood and producing a recombinant antibody pool for potential passive immunization against neurodegenerative diseases. We sorted a small pool of CD20+ CD27+ CD43+ CD69− IgG+ and Aβ+/α-Syn+ B cells.
Collapse
Affiliation(s)
- Alexandra Albus
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| | - Marit Jördens
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Moritz Möller
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Richard Dodel
- Chair of Geriatric Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Neurology, Philipps-University, Marburg, Germany
| |
Collapse
|
15
|
Activation of Macrophages by Oligomeric Proteins of Different Size and Origin. Mediators Inflamm 2018; 2018:7501985. [PMID: 30581370 PMCID: PMC6276464 DOI: 10.1155/2018/7501985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of macrophages is one of the key processes in generating the immune response against pathogens or misfolded/aggregated otherwise unharmful host's proteins. Antigens and their immune complexes (IC) may shape macrophage phenotype in various directions. Data on the impact of protein structure during inflammation are evident; however, some separate steps of this process involving changes in macrophage phenotype are not fully understood. Our aim was to investigate the phenotype of macrophages after activation with different oligomeric proteins and their IC. We have used amyloid beta (Aβ 1-42) that plays a role in neurodegenerative inflammation as a model of host-associated protein and three oligomeric viral antigens as pathogen-associated proteins. Murine cell lines J774, BV-2, and macrophage primary cell culture were treated with oligomeric proteins and their IC. After 48 h, expression of surface markers F4/80, CD68, CD86, and CD206 and secreted cytokines IL-10, IL-12, IL-23, and TNF-α was analysed. Aβ 1-42 oligomers stimulated expression of both inflammatory and anti-inflammatory molecules; however, fibrils induced less intense expression of markers investigated as compared to small and large oligomers. Two out of three viral oligomeric proteins induced the inflammatory response of macrophages. Data suggest that macrophage activation pattern depends on the origin, size, and structure of oligomeric proteins.
Collapse
|
16
|
Extending the functional characteristics of naturally occurring autoantibodies against β-Amyloid, Prion Protein and α-Synuclein. PLoS One 2018; 13:e0202954. [PMID: 30157279 PMCID: PMC6114858 DOI: 10.1371/journal.pone.0202954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Abnormal aggregation of proteins induces neuronal cell loss in neurodegenerative disorders such as Alzheimer’s Disease, Creutzfeldt-Jakob Disease and Parkinson’s Disease. Specific stimuli initialize conformational changes in physiological proteins, causing intra- or extracellular protein aggregation. We and other groups have identified naturally occurring autoantibodies (nAbs) as part of the human antibody pool that are able to prevent peptide fibrillation. These nAbs show a rescue effect following exposure of toxic aggregates on neurons, and they support microglial uptake of aggregated peptides. Objective Identification of a putative common epitope among the relevant proteins β-Amyloid, α-Synuclein and Prion Protein for the respective nAbs. Material and methods Binding affinity between the aforementioned proteins and nAbs was tested by Dot Blot, ELISA and SPR-technology. Furthermore, the functionality of the protein-nAbs-complexes was studied in Thioflavin-T assays and microglial uptake experiments to study dependent inhibition of protein aggregation and enhancement of Fcγ mediated uptake by microglial cells. Results β-Amyloid and Prion Protein fragment showed considerable binding affinity and functional efficacy for all applied nAbs. Thereby, no significant difference within the different nAbs was detected. In contrast, α-Synuclein was bound exclusively by nAbs-α-Synuclein, which was reproduced in all binding studies. Surprisingly, functional assays with α-Synuclein revealed no significant effect of nAbs in comparison to IVIg treatment. However, all applied nAbs as well as IVIg show a minimal functionality on the microglial uptake of α-Synuclein. Conclusion nAbs-Aβ, nAbs-PrP possibly display comparable affinity to the same structural epitope within Aβ and PrP106-126 A117V whereas the epitope recognized by nAbs-α-Syn is only present in α-Syn. The structural similarity of Aβ and PrP fragment promotes the outline for an efficient antibody for the treatment of several neurodegenerative disorders and extend the functional characteristics of the investigated nAbs.
Collapse
|
17
|
Braczynski AK, Schulz JB, Bach JP. Vaccination strategies in tauopathies and synucleinopathies. J Neurochem 2017; 143:467-488. [PMID: 28869766 DOI: 10.1111/jnc.14207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
Vaccination therapies constitute potential treatment options in neurodegenerative disorders such as Alzheimer disease or Parkinson disease. While a lot of research has been performed on vaccination against extracellular amyloid β, the focus recently shifted toward vaccination against the intracellular proteins tau and α-synuclein, with promising results in terms of protein accumulation reduction. In this review, we briefly summarize lessons to be learned from clinical vaccination trials in Alzheimer disease that target amyloid β. We then focus on tau and α-synuclein. For both proteins, we provide important data on protein immunogenicity, and put them into context with data available from both animals and human vaccination trials targeted at tau and α-synuclein. Together, we give a comprehensive overview about current clinical data, and discuss associated problems.
Collapse
Affiliation(s)
- Anne K Braczynski
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,Jülich Aachen Research Alliance (JARA) - JARA-Institute Molecular Neuroscience and Neuroimaging, FZ Jülich and RWTH University, Aachen, Germany
| | - Jan-Philipp Bach
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
18
|
Marciani DJ. A retrospective analysis of the Alzheimer's disease vaccine progress - The critical need for new development strategies. J Neurochem 2016; 137:687-700. [PMID: 26990863 DOI: 10.1111/jnc.13608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022]
Abstract
The promising results obtained with aducanumab and solanezumab against Alzheimer's disease (AD) strengthen the vaccine approach to prevent AD, despite of the many clinical setbacks. It has been problematic to use conjugated peptides with Th1/Th2 adjuvants to induce immune responses against conformational epitopes formed by Aβ oligomers, which is critical to induce protective antibodies. Hence, vaccination should mimic natural immunity by using whole or if possible conjugated antigens, but biasing the response to Th2 with anti-inflammatory adjuvants. Also, selection of the carrier and cross-linking agents is important to prevent suppression of the immune response against the antigen. That certain compounds having phosphorylcholine or fucose induce a sole Th2 immunity would allow antigens with T-cell epitopes without inflammatory autoimmune reactions to be used. Another immunization method is DNA vaccines combined with antigenic ones, which favors the clonal selection and expansion of high affinity antibodies needed for immune protection, but this also requires Th2 immunity. Since AD transgenic mouse models have limited value for immunogen selection as shown by the clinical studies, screening may require the use of validated antibodies and biophysical methods to identify the antigens that would be most likely recognized by the human immune system and thus capable to stimulate a protective antibody response. To induce an anti-Alzheimer's disease protective immunity and prevent possible damage triggered by antigens having B-cell epitopes-only, whole antigens might be used; while inducing Th2 immunity with sole anti-inflammatory fucose-based adjuvants. This approach would avert a damaging systemic inflammatory immunity and the suppression of immunoresponse against the antigen because of carrier and cross-linkers; immune requirements that extend to DNA vaccines.
Collapse
|
19
|
Wang T, Xie XX, Ji M, Wang SW, Zha J, Zhou WW, Yu XL, Wei C, Ma S, Xi ZY, Pang GL, Liu RT. Naturally occurring autoantibodies against Aβ oligomers exhibited more beneficial effects in the treatment of mouse model of Alzheimer's disease than intravenous immunoglobulin. Neuropharmacology 2016; 105:561-576. [PMID: 26907803 DOI: 10.1016/j.neuropharm.2016.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, intracellular neurofibrillary tangles, and extracellular plaque deposits composed of β-amyloid (Aβ). Previous reports showed that naturally occurring autoantibodies, such as intravenous immunoglobulin (IVIG), benefited patients with moderate-stage AD who carried an APOE-ε4 allele. However, the mechanism underlying the role of IVIG remains unclear. In this study, we identified naturally occurring autoantibodies against Aβ oligomers (NAbs-Aβo), which were purified by Aβ42 oligomer or Cibacron Blue affinity chromatography from IVIG and termed as Oli-NAbs and Blue-NAbs, respectively. Oli-NAbs and Blue-NAbs recognized Aβ42 oligomers or both Aβ40 and 42 oligomers, differently. Both antibodies inhibited Aβ42 aggregation and attenuated Aβ42-induced cytotoxicity. Compared with vehicles, Oli-NAbs, Blue-NAbs and IVIG significantly improved the memory and cognition, and reduced the soluble and oligomeric Aβ levels in APPswe/PS1dE9 transgenic mice. Further investigation showed that Blue-NAbs at increased doses effectively decreased plaque burden and insoluble Aβ levels, whereas Oli-NAbs significantly declined the microgliosis and astrogliosis, as well as the production of proinflammatory cytokines in vivo. Therefore, high levels of these antibodies against oligomeric Aβ40 or Aβ42 were required, correspondingly, to achieve the optimal effect. NAbs-Aβo could be condensed to a high concentration by affinity chromatography and its isolation from IVIG may not interfere with the normal function of conventional IVIG as its concentration is very low. Thus, the isolated NAbs-Aβo as an extra product of plasma required low cost and the enriched NAbs-Aβo may be more feasible than IVIG for the treatment of AD.
Collapse
Affiliation(s)
- Teng Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Life Science, AnHui Agricultural University, HeFei 230036, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mei Ji
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shao-Wei Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Zha
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei-Wei Zhou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Lin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Wei
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Shan Ma
- Shandong Institute of Biological Products, Taian 2710000, China
| | - Zhi-Ying Xi
- Shandong Institute of Biological Products, Taian 2710000, China
| | - Guang-Li Pang
- Shandong Institute of Biological Products, Taian 2710000, China.
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Späni C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F, Gericke C, Nitsch RM, Kulic L. Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer's disease lacking functional B and T cells. Acta Neuropathol Commun 2015; 3:71. [PMID: 26558367 PMCID: PMC4642668 DOI: 10.1186/s40478-015-0251-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction In Alzheimer’s disease, accumulation and pathological aggregation of amyloid β-peptide is accompanied by the induction of complex immune responses, which have been attributed both beneficial and detrimental properties. Such responses implicate various cell types of the innate and adaptive arm of the immunesystem, both inside the central nervous system, and in the periphery. To investigate the role of the adaptive immune system in brain β-amyloidosis, PSAPP transgenic mice, an established mouse model of Alzheimer’s disease, were crossbred with the recombination activating gene-2 knockout (Rag2 ko) mice lacking functional B and T cells. In a second experimental paradigm, aged PSAPP mice were reconstituted with bone marrow cells from either Rag2 ko or wildtype control mice. Results Analyses from both experimental approaches revealed reduced β-amyloid pathology and decreased brain amyloid β-peptide levels in PSAPP mice lacking functional adaptive immune cells. The decrease in brain β-amyloid pathology was associated with enhanced microgliosis and increased phagocytosis of amyloid β-peptide aggregates. Conclusion The results of this study demonstrate an impact of the adaptive immunity on cerebral β-amyloid pathology in vivo and suggest an influence on microglia-mediated amyloid β-peptide clearance as a possible underlying mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0251-x) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Naturally occurring alpha-synuclein autoantibodies in Parkinson's disease: sources of (error) variance in biomarker assays. PLoS One 2014; 9:e114566. [PMID: 25470145 PMCID: PMC4255021 DOI: 10.1371/journal.pone.0114566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023] Open
Abstract
Alpha-synuclein (α-Syn) plays a pivotal role in the pathophysiology of Parkinson’s disease (PD), which can partly be modulated by innate and adaptive immune functions, and vice versa. Here, naturally occurring α-Syn autoantibodies (α-Syn-nAbs) may be effective against α-Syn pathoetiology and may serve as a PD biomarker. However, serum and cerebrospinal fluid α-Syn-nAbs levels still lack consistent evidence as required for a reliable PD biomarker. Serum and cerebrospinal fluid α-Syn-nAbs levels of 66 PD patients and 69 healthy controls were assessed using a validated ELISA assay. Moreover, potential sources of error variance including unspecific ELISA background signals, free serum hemoglobin concentrations, α-Syn plate coating procedures, and differences in α-Syn-nAbs standards, were investigated. PD patients and controls did not differ in serum (p = .49) nor cerebrospinal fluid (p = .29) α-Syn-nAbs levels. Interestingly, free serum hemoglobin concentrations were negatively correlated with α-Syn-nAbs levels in controls (Spearman = −.41, p<.001), but not in PD patients ( = .16, p = .21). ELISA α-Syn plate coating procedures impacted inter-assay variability (same day coating: 8–16%; coating on different days: 16–58%). α-Syn-nAbs standards from different purification batches differed regarding optical density measured in ELISAs suggesting differences in α-Syn affinity. While α-Syn-nAbs levels may represent a potential PD biomarker, several methodological issues have to be considered to increase reproducibility of α-Syn-nAbs findings. Further studies using standardized protocols minimizing sources of error variance may be necessary to establish a reliable PD α-Syn-nAbs biomarker.
Collapse
|
22
|
Knight EM, Gandy S. Immunomodulation and AD--down but not out. J Clin Immunol 2014; 34 Suppl 1:S70-3. [PMID: 24781637 DOI: 10.1007/s10875-014-0039-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in the elderly. Interventions that remove existing fibrillar and oligomeric amyloid-β (Aβ) are believed to be essential for the success of any attempt at stabilization of brain function and mitigation of cognitive decline. Many of these strategies have focused on Aβ vaccination and administration of anti-Aβ antibodies. Both active and passive immunotherapies have been successful in mouse models, but both have had limited effect in clinical trials. Intravenous immunoglobulin (IVIG) has been proposed as a potential treatment for AD following evidence for behavioral benefit in AD models and cognitive benefit in early phase 1 and phase 2 clinical trials. A phase 3 trial IVIG trial failed to meet its primary outcomes. While there was a statistically significant benefit in moderate stage AD patients who carried an APOE ε4 allele, this stabilization of cognition was evident only on neuropsychological examination. No benefit on activities of daily living was evident, therefore failing to qualify AD as a new indication for IVIG. Identifying the biologically active component (s) responsible for the neuropsychological benefit in APOE ε4-positive AD patients could enable the development of a compound with greater potency that would qualify for FDA (US Food and Drug Administration) registration.
Collapse
Affiliation(s)
- E M Knight
- Departments of Neurology and Psychiatry and Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, 10029, USA,
| | | |
Collapse
|
23
|
Gandy S. Alzheimer's disease: new data highlight nonneuronal cell types and the necessity for presymptomatic prevention strategies. Biol Psychiatry 2014; 75:553-7. [PMID: 24373429 PMCID: PMC4013678 DOI: 10.1016/j.biopsych.2013.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/23/2013] [Accepted: 11/22/2013] [Indexed: 02/04/2023]
Abstract
Despite compelling genetic evidence indicating that cerebral amyloidosis can be, at least sometimes, the primary cause of Alzheimer's disease (AD), clinical trials for symptomatic AD with amyloid-reducing agents have succeeded at target engagement but failed to cause clinical benefit. In a landmark shift, the U.S. Food and Drug Administration now proposes to approve prophylaxis that alters the trajectory of what is now believed to be typical AD biomarker evolution. The first prevention trials are now beginning in patients with genetic guarantees for or high genetic risks for AD. The expectation is that clues to their outcomes will begin to emerge from these trials in approximately 2018. In the meantime, new strategies point to nonneuronal cells and to system pathology. A review of the current state of the art of AD science follows herein.
Collapse
Affiliation(s)
- Sam Gandy
- Departments of Neurology and Psychiatry, and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, and James J. Peters VA Medical Center, New York, New York.
| |
Collapse
|
24
|
Prion peptide uptake in microglial cells--the effect of naturally occurring autoantibodies against prion protein. PLoS One 2013; 8:e67743. [PMID: 23840767 PMCID: PMC3695867 DOI: 10.1371/journal.pone.0067743] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/22/2013] [Indexed: 12/02/2022] Open
Abstract
In prion disease, a profound microglial activation that precedes neurodegeneration has been observed in the CNS. It is still not fully elucidated whether microglial activation has beneficial effects in terms of prion clearance or whether microglial cells have a mainly detrimental function through the release of pro-inflammatory cytokines. To date, no disease-modifying therapy exists. Several immunization attempts have been performed as one therapeutic approach. Recently, naturally occurring autoantibodies against the prion protein (nAbs-PrP) have been detected. These autoantibodies are able to break down fibrils of the most commonly used mutant prion variant PrP106-126 A117V and prevent PrP106-126 A117V-induced toxicity in primary neurons. In this study, we examined the phagocytosis of the prion peptide PrP106-126 A117V by primary microglial cells and the effect of nAbs-PrP on microglia. nAbs-PrP considerably enhanced the uptake of PrP106-126 A117V without inducing an inflammatory response in microglial cells. PrP106-126 A117V uptake was at least partially mediated through scavenger receptors. Phagocytosis of PrP106-126 A117V with nAbs-PrP was inhibited by wortmannin, a potent phosphatidylinositol 3-kinase inhibitor, indicating a separate uptake mechanism for nAbs-PrP mediated phagocytosis. These data suggest the possible mechanisms of action of nAbs-PrP in prion disease.
Collapse
|