1
|
Hameduh T, Miller AD, Heger Z, Haddad Y. The proteomic code: Novel amino acid residue pairing models "encode" protein folding and protein-protein interactions. Comput Biol Med 2025; 190:110033. [PMID: 40112562 DOI: 10.1016/j.compbiomed.2025.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Recent advances in protein 3D structure prediction using deep learning have focused on the importance of amino acid residue-residue connections (i.e., pairwise atomic contacts) for accuracy at the expense of mechanistic interpretability. Therefore, we decided to perform a series of analyses based on an alternative framework of residue-residue connections making primary use of the TOP2018 dataset. This framework of residue-residue connections is derived from amino acid residue pairing models both historic and new, all based on genetic principles complemented by relevant biophysical principles. Of these pairing models, three new models (named the GU, Transmuted and Shift pairing models) exhibit the highest observed-over-expected ratios and highest correlations in statistical analyses with various intra- and inter-chain datasets, in comparison to the remaining models. In addition, these new pairing models are universally frequent across different connection ranges, secondary structure connections, and protein sizes. Accordingly, following further statistical and other analyses described herein, we have come to a major conclusion that all three pairing models together could represent the basis of a universal proteomic code (second genetic code) sufficient, in and of itself, to "encode" for both protein folding mechanisms and protein-protein interactions.
Collapse
Affiliation(s)
- Tareq Hameduh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00, Brno, Czech Republic; MendelFOLD s.r.o., Zezulova 174/3, CZ-613 00, Brno, Czech Republic
| | - Andrew D Miller
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00, Brno, Czech Republic; MendelFOLD s.r.o., Zezulova 174/3, CZ-613 00, Brno, Czech Republic; Veterinary Research Institute, Hudcova 296/70, CZ-621 00, Brno, Czech Republic; KP Therapeutics (Europe) s.r.o., Purkyňova 649/127, CZ-612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00, Brno, Czech Republic; MendelFOLD s.r.o., Zezulova 174/3, CZ-613 00, Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1665/1, CZ-613 00, Brno, Czech Republic; MendelFOLD s.r.o., Zezulova 174/3, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Tozzi A, Mazzeo M. The First Nucleic Acid Strands May Have Grown on Peptides via Primeval Reverse Translation. Acta Biotheor 2023; 71:23. [PMID: 37947915 DOI: 10.1007/s10441-023-09474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The central dogma of molecular biology dictates that, with only a few exceptions, information proceeds from DNA to protein through an RNA intermediate. Examining the enigmatic steps from prebiotic to biological chemistry, we take another road suggesting that primordial peptides acted as template for the self-assembly of the first nucleic acids polymers. Arguing in favour of a sort of archaic "reverse translation" from proteins to RNA, our basic premise is a Hadean Earth where key biomolecules such as amino acids, polypeptides, purines, pyrimidines, nucleosides and nucleotides were available under different prebiotically plausible conditions, including meteorites delivery, shallow ponds and hydrothermal vents scenarios. Supporting a protein-first scenario alternative to the RNA world hypothesis, we propose the primeval occurrence of short two-dimensional peptides termed "selective amino acid- and nucleotide-matching oligopeptides" (henceforward SANMAOs) that noncovalently bind at the same time the polymerized amino acids and the single nucleotides dispersed in the prebiotic milieu. In this theoretical paper, we describe the chemical features of this hypothetical oligopeptide, its biological plausibility and its virtues from an evolutionary perspective. We provide a theoretical example of SANMAO's selective pairing between amino acids and nucleosides, simulating a poly-Glycine peptide that acts as a template to build a purinic chain corresponding to the glycine's extant triplet codon GGG. Further, we discuss how SANMAO might have endorsed the formation of low-fidelity RNA's polymerized strains, well before the appearance of the accurate genetic material's transmission ensured by the current translation apparatus.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | - Marco Mazzeo
- Erredibi Srl, Via Pazzigno 117, 80146, Naples, Italy
| |
Collapse
|
3
|
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Scherf M, Koy C, Röwer C, Neamtu A, Glocker MO. Characterization of Phosphorylation-Dependent Antibody Binding to Cancer-Mutated Linkers of C 2H 2 Zinc Finger Proteins by Intact Transition Epitope Mapping-Thermodynamic Weak-Force Order Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:171-181. [PMID: 36656134 DOI: 10.1021/jasms.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With Intact Transition Epitope Mapping-Thermodynamic Weak-force Order (ITEM-TWO) analysis in combination with molecular modeling, the phosphorylation-dependent molecular recognition motif of the anti-HpTGEKP antibody has been investigated with binary and ternary component mixtures consisting of antibody and (phospho-) peptides. Amino acid sequences have been selected to match either the antibody's recognition motif or the cancer-related zinc finger protein mutations and phosphorylations of the respective amino acid residues. Upon electrospraying of all the components of the mixtures, that is, hexapeptides, antibody, and intact immune complexes, the produced ions were subjected to mass spectrometric mass filtering. The antibody ions as well as the immune complex ions traversed into the mass spectrometer's collision chamber, whereas paths of unbound peptide ions were blocked prior to entering the collision cell. After dissociation of the multiply charged immune complexes in the gas phase, the complex-released peptide ions were recorded after having traversed the second mass filter. Complex-released peptides were unambiguously identified by their masses using mass analysis with isotope resolution. From the results of our studies with seven (phospho-) peptides with distinct amino acid sequences, which resembled either the antibody's binding motif or mutations, we conclude the following: (i) A negatively charged phospho group, located near the peptide's N-terminus is mandatory for antibody binding when placed on the peptide surface at a precise distance to the C-terminally located positively charged ε-amino group of a lysinyl residue. (ii) A bulky amino acid residue, such as the tyrosinyl residue at the N-terminal position of the (phospho-) threoninyl residue, abolishes antibody binding. (iii) Two closely spaced phospho groups negatively interfere with the surface polarity pattern and abolish antibody binding as well. (iv) Non-phosphorylated peptides are not binding partners of the anti-HpTGEKP antibody.
Collapse
Affiliation(s)
- Maximilian Scherf
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Claudia Röwer
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| | - Andrei Neamtu
- TRANSCEND Centre, Regional Institute of Oncology (IRO) Iasi, Str. General Henri Mathias Berthelot Nr. 2-4, 700483 Iasi, Romania
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Str. Universitatii Nr. 16, 700115 Iasi, Romania
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18059 Rostock, Germany
| |
Collapse
|
5
|
Sheng L, Jin Y, Hou H, Huang Y, Zhao R. Hydrazone bond-oriented molecularly imprinted nanocomposites for the selective separation of protein via the well-defined recognition sites. Mikrochim Acta 2022; 189:246. [PMID: 35674804 DOI: 10.1007/s00604-022-05308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
The development of hydrazone bond-oriented epitope imprinting strategy is reported to synthesize the polymeric binders for the selective recognition of a protein-β2-microglobulin through either its N- or C-terminal epitope. The dynamic reversibility of hydrazone bond facilitated not only the oriented assembly of the template peptide hydrazides onto the substrate but also the efficient removal of them from the imprinted cavities. The well-defined surface imprinted layer was successfully constructed through the precise control over the polymerization of silicate esters. Binding performance of the C-terminal peptide imprinted nanocomposite was significantly improved after tuning the non-covalent interactions using the sequence-matching aromatic co-monomers. The dissociation constant (Kd) between the optimized nanocomposite and epitope peptide was 0.5 µmol L-1. The nanomaterial was utilized for the selective extraction and determination of β2-microglobulin from human urine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and HPLC-UV with satisfied recoveries of 93.1-112.3% in a concentration range 1.0-50.0 μg⋅mL-1.
Collapse
Affiliation(s)
- Le Sheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, People's Republic of China. .,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Thambu K, Glomb V, Hernadez R, Facelli JC. Microproteins: a 3D protein structure prediction analysis. J Biomol Struct Dyn 2021; 40:13738-13746. [PMID: 34705603 PMCID: PMC9489054 DOI: 10.1080/07391102.2021.1993343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
Microproteins are a novel and expanding group of small proteins encoded by less than 100-150 codons that are translated from small open reading frames (smORFs). It has been shown that smORFs and their corresponding microproteins make up a sizable fraction of the genome and proteome, but very little information on microproteins' structural features exists in the literature. In this paper, we present the results of analyzing the predicted structures of 44 microproteins. The results show that this set of microproteins have a different amino acid composition profiles, similar structural characteristics and fewer small-molecule ligand binding sites than regular proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kishan Thambu
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah
| | - Victoria Glomb
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah
| | - Rolando Hernadez
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah
| | - Julio C. Facelli
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah
- Center for Clinical and Translational Science, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Štambuk N, Konjevoda P, Pavan J. Antisense Peptide Technology for Diagnostic Tests and Bioengineering Research. Int J Mol Sci 2021; 22:9106. [PMID: 34502016 PMCID: PMC8431130 DOI: 10.3390/ijms22179106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.
Collapse
Affiliation(s)
- Nikola Štambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Josip Pavan
- Department of Ophthalmology, University Hospital Dubrava, Avenija Gojka Šuška 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
8
|
Dayhoff GW, Regenmortel MHV, Uversky VN. Intrinsic disorder in protein sense‐antisense recognition. J Mol Recognit 2020; 33:e2868. [DOI: 10.1002/jmr.2868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Guy W. Dayhoff
- Department of Chemistry, College of Art and SciencesUniversity of South Florida Tampa Florida USA
| | | | - Vladimir N. Uversky
- Laboratory of New Methods in BiologyInstitute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteMorsani College of Medicine, University of South Florida Tampa Florida USA
| |
Collapse
|
9
|
Determining amino acid scores of the genetic code table: Complementarity, structure, function and evolution. Biosystems 2020; 187:104026. [DOI: 10.1016/j.biosystems.2019.104026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
|
10
|
Targeting Tumor Markers with Antisense Peptides: An Example of Human Prostate Specific Antigen. Int J Mol Sci 2019; 20:ijms20092090. [PMID: 31035335 PMCID: PMC6540241 DOI: 10.3390/ijms20092090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/05/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this paper was to outline the development of short peptide targeting of the human prostate specific antigen (hPSA), and to evaluate its effectiveness in staining PSA in human prostate cancer tissue. The targeting of the hPSA antigen by means of antisense peptide AVRDKVG was designed according to a three-step method involving: 1. The selection of the molecular target (hPSA epitope), 2. the modeling of an antisense peptide (paratope) based on the epitope sequence, and 3. the spectroscopic evaluation of sense–antisense peptide binding. We then modified standard hPSA immunohistochemical staining practice by using a biotinylated antisense peptide instead of the standard monoclonal antibody and compared the results of both procedures. Immunochemical testing on human tissue showed the applicability of the antisense peptide technology to human molecular targets. This methodology represents a new approach to deriving peptide ligands and potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.
Collapse
|
11
|
Genetic coding algorithm for sense and antisense peptide interactions. Biosystems 2018; 164:199-216. [DOI: 10.1016/j.biosystems.2017.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
|
12
|
Van Regenmortel MHV. Structure-Based Reverse Vaccinology Failed in the Case of HIV Because it Disregarded Accepted Immunological Theory. Int J Mol Sci 2016; 17:E1591. [PMID: 27657055 PMCID: PMC5037856 DOI: 10.3390/ijms17091591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022] Open
Abstract
Two types of reverse vaccinology (RV) should be distinguished: genome-based RV for bacterial vaccines and structure-based RV for viral vaccines. Structure-based RV consists in trying to generate a vaccine by first determining the crystallographic structure of a complex between a viral epitope and a neutralizing monoclonal antibody (nMab) and then reconstructing the epitope by reverse molecular engineering outside the context of the native viral protein. It is based on the unwarranted assumption that the epitope designed to fit the nMab will have acquired the immunogenic capacity to elicit a polyclonal antibody response with the same protective capacity as the nMab. After more than a decade of intensive research using this type of RV, this approach has failed to deliver an effective, preventive HIV-1 vaccine. The structure and dynamics of different types of HIV-1 epitopes and of paratopes are described. The rational design of an anti-HIV-1 vaccine is shown to be a misnomer since investigators who claim that they design a vaccine are actually only improving the antigenic binding capacity of one epitope with respect to only one paratope and not the immunogenic capacity of an epitope to elicit neutralizing antibodies. Because of the degeneracy of the immune system and the polyspecificity of antibodies, each epitope studied by the structure-based RV procedure is only one of the many epitopes that the particular nMab is able to recognize and there is no reason to assume that this nMab must have been elicited by this one epitope of known structure. Recent evidence is presented that the trimeric Env spikes of the virus possess such an enormous plasticity and intrinsic structural flexibility that it is it extremely difficult to determine which Env regions are the best candidate vaccine immunogens most likely to elicit protective antibodies.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France.
| |
Collapse
|
13
|
Van Regenmortel MHV. Specificity, polyspecificity, and heterospecificity of antibody-antigen recognition. J Mol Recognit 2015; 27:627-39. [PMID: 25277087 DOI: 10.1002/jmr.2394] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/09/2022]
Abstract
The concept of antibody specificity is analyzed and shown to reside in the ability of an antibody to discriminate between two antigens. Initially, antibody specificity was attributed to sequence differences in complementarity determining regions (CDRs), but as increasing numbers of crystallographic antibody-antigen complexes were elucidated, specificity was analyzed in terms of six antigen-binding regions (ABRs) that only roughly correspond to CDRs. It was found that each ABR differs significantly in its amino acid composition and tends to bind different types of amino acids at the surface of proteins. In spite of these differences, the combined preference of the six ABRs does not allow epitopes to be distinguished from the rest of the protein surface. These findings explain the poor success of past and newly proposed methods for predicting protein epitopes. Antibody polyspecificity refers to the ability of one antibody to bind a large variety of epitopes in different antigens, and this property explains how the immune system develops an antibody repertoire that is able to recognize every antigen the system is likely to encounter. Antibody heterospecificity arises when an antibody reacts better with another antigen than with the one used to raise the antibody. As a result, an antibody may sometimes appear to have been elicited by an antigen with which it is unable to react. The implications of antibody polyspecificity and heterospecificity in vaccine development are pointed out.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Wallenberg Research Center, Stellenbosch Institute for Advanced Study, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Carels N, Ponce de Leon M. An Interpretation of the Ancestral Codon from Miller's Amino Acids and Nucleotide Correlations in Modern Coding Sequences. Bioinform Biol Insights 2015; 9:37-47. [PMID: 25922573 PMCID: PMC4401237 DOI: 10.4137/bbi.s24021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Miguel Ponce de Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
15
|
Miller AD. Sense–antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science. Expert Opin Biol Ther 2015; 15:245-67. [DOI: 10.1517/14712598.2015.983069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Martinić R, Sošić H, Turčić P, Konjevoda P, Fučić A, Stojković R, Aralica G, Gabričević M, Weitner T, Stambuk N. Hepatoprotective effects of Met-enkephalin on acetaminophen-induced liver lesions in male CBA mice. Molecules 2014; 19:11833-45. [PMID: 25105920 PMCID: PMC6270943 DOI: 10.3390/molecules190811833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 11/16/2022] Open
Abstract
Recent histopathological investigations in patients with hepatitis suggested possible involvement of Met-enkephalin and its receptors in the pathophysiology of hepatitis. Consequently, we evaluated the potential hepatoprotective effects of this endogenous opioid pentapeptide in the experimental model of acetaminophen induced hepatotoxicity in male CBA mice. Met-enkephalin exhibited strong hepatoprotective effects in a dose of 7.5 mg/kg, which corresponds to the protective dose reported for several different animal disease models. In this group plasma alanine aminotransferase and aspartate aminotransferase enzyme activities, as well as liver necrosis score were significantly reduced in comparison to control animals treated with physiological saline (p>0.01). The specificity of the peptide hepatoprotection was investigated from the standpoint of the receptor and peptide blockade. It was concluded that Met-enkephalin effects on the liver were mediated via δ and ζ opioid receptors. Genotoxic testing of Met-enkephalin confirmed the safety of the peptide.
Collapse
Affiliation(s)
- Roko Martinić
- Department for Clinical Pathophysiology, Clinical Hospital Centre Split, Šoltanska 1, 21000 Split, Croatia.
| | - Hrvoje Sošić
- Department of Urology, University Clinical Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia.
| | - Petra Turčić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000 Zagreb, Croatia.
| | - Paško Konjevoda
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Aleksandra Fučić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10001 Zagreb, Croatia.
| | - Ranko Stojković
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Gorana Aralica
- University Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia.
| | - Mario Gabričević
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Tin Weitner
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Nikola Stambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| |
Collapse
|
17
|
Štambuk N, Manojlović Z, Turčić P, Martinić R, Konjevoda P, Weitner T, Wardega P, Gabričević M. A simple three-step method for design and affinity testing of new antisense peptides: an example of erythropoietin. Int J Mol Sci 2014; 15:9209-23. [PMID: 24865486 PMCID: PMC4100090 DOI: 10.3390/ijms15069209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022] Open
Abstract
Antisense peptide technology is a valuable tool for deriving new biologically active molecules and performing peptide-receptor modulation. It is based on the fact that peptides specified by the complementary (antisense) nucleotide sequences often bind to each other with a higher specificity and efficacy. We tested the validity of this concept on the example of human erythropoietin, a well-characterized and pharmacologically relevant hematopoietic growth factor. The purpose of the work was to present and test simple and efficient three-step procedure for the design of an antisense peptide targeting receptor-binding site of human erythropoietin. Firstly, we selected the carboxyl-terminal receptor binding region of the molecule (epitope) as a template for the antisense peptide modeling; Secondly, we designed an antisense peptide using mRNA transcription of the epitope sequence in the 3'→5' direction and computational screening of potential paratope structures with BLAST; Thirdly, we evaluated sense-antisense (epitope-paratope) peptide binding and affinity by means of fluorescence spectroscopy and microscale thermophoresis. Both methods showed similar Kd values of 850 and 816 µM, respectively. The advantages of the methods were: fast screening with a small quantity of the sample needed, and measurements done within the range of physicochemical parameters resembling physiological conditions. Antisense peptides targeting specific erythropoietin region(s) could be used for the development of new immunochemical methods. Selected antisense peptides with optimal affinity are potential lead compounds for the development of novel diagnostic substances, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Nikola Štambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Zoran Manojlović
- Croatian Institute for Toxicology and Antidoping, Borongajska 83 g, 10000 Zagreb, Croatia.
| | - Petra Turčić
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, 10000 Zagreb, Croatia.
| | - Roko Martinić
- Department for Clinical Pathophysiology, Clinical Hospital Centre Split, Šoltanska 1, 21000 Split, Croatia.
| | - Paško Konjevoda
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia.
| | - Tin Weitner
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| | - Piotr Wardega
- NanoTemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany.
| | - Mario Gabričević
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Gupta P, Nayak KK. Characteristics of protein-based biopolymer and its application. POLYM ENG SCI 2014. [DOI: 10.1002/pen.23928] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pratima Gupta
- Department of Biotechnology; National Institute of Technology Raipur; Chhattisgarh 492010 India
| | - Kush Kumar Nayak
- Department of Biotechnology; National Institute of Technology Raipur; Chhattisgarh 492010 India
| |
Collapse
|
19
|
Biro JC, Biro JM. The concept of RNA-assisted protein folding: Representation of amino acid kinetics at the tRNA level. J Theor Biol 2013; 317:168-74. [DOI: 10.1016/j.jtbi.2012.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
20
|
Biro JC. Coding nucleic acids are chaperons for protein folding: a novel theory of protein folding. Gene 2012; 515:249-57. [PMID: 23266645 DOI: 10.1016/j.gene.2012.12.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 11/29/2022]
Abstract
The arguments for nucleic acid chaperons are reviewed and three new lines of evidence are added. (1) It was found that amino acids encoded by codons in short nucleic acid loops frequently form turns and helices in the corresponding protein structures. (2) The amino acids encoded by partially complementary (1st and 3rd nucleotides) codons are more frequently co-located in the encoded proteins than expected by chance. (3) There are significant correlations between thermodynamic changes (ddG) caused by codon mutations in nucleic acids and the thermodynamic changes caused by the corresponding amino acid mutations in the encoded proteins. We conclude that the concept of the Proteomic Code and nucleic acid chaperons seems correct from the bioinformatics point of view, and we expect to see direct biochemical experiments and evidence in the near future.
Collapse
Affiliation(s)
- Jan C Biro
- Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
21
|
Illingworth CJR, Chintipalli SV, Serapian SA, Miller AD, Veverka V, Carr MD, Reynolds CA. The statistical significance of selected sense-antisense peptide interactions. J Comput Chem 2012; 33:1440-7. [PMID: 22488506 DOI: 10.1002/jcc.22977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 11/11/2022]
Abstract
Sense and antisense peptides, encoded by sense and corresponding antisense DNA strands, are capable of specific interactions that could be a driving force to mediate protein-protein or protein-peptide binding associations. The complementary residue hypothesis suggests that these interactions are founded upon the sum of pairwise interactions between amino acids encoded by corresponding sense and antisense codons. Despite many successful experimental results obtained with the hypothesis, however, the physicochemical basis for these interactions is poorly understood. We examined the potential of the hypothesis for general identification of protein-protein interaction sites, and the possible role of the hypothesis in determining folding in a broad set of protein structures. In addition, we performed a structural study to investigate the binding of a complementary peptide to IL-1F2. Our results suggest that complementary residue pairs are no more frequent or conserved than average in protein-protein interfaces, and are statistically under-represented amongst contacting residue pairs in folded protein structures. Although our structural results matched experimental observations of binding between the peptide and IL-1F2, complementary residue interactions do not appear to be dominant in the bound structure. Overall, our data do not allow us to conclude that the complementary residue hypothesis accounts for specific sense-antisense peptide interactions.
Collapse
|
22
|
Biro JC. The concept of RNA-assisted protein folding: the role of tRNA. Theor Biol Med Model 2012; 9:10. [PMID: 22462735 PMCID: PMC3359187 DOI: 10.1186/1742-4682-9-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023] Open
Abstract
We suggest that tRNA actively participates in the transfer of 3D information from mRNA to peptides--in addition to its well-known, "classical" role of translating the 3-letter RNA codes into the one letter protein code. The tRNA molecule displays a series of thermodynamically favored configurations during translation, a movement which places the codon and coded amino acids in proximity to each other and make physical contact between some amino acids and their codons possible. This specific codon-amino acid interaction of some selected amino acids is necessary for the transfer of spatial information from mRNA to coded proteins, and is known as RNA-assisted protein folding.
Collapse
Affiliation(s)
- Jan C Biro
- Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
23
|
Interaction of α-melanocortin and its pentapeptide antisense LVKAT: effects on hepatoprotection in male CBA mice. Molecules 2011; 16:7331-43. [PMID: 21873934 PMCID: PMC6264190 DOI: 10.3390/molecules16097331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/17/2022] Open
Abstract
The genetic code defines nucleotide patterns that code for individual amino acids and their complementary, i.e., antisense, pairs. Peptides specified by the complementary mRNAs often bind to each other with a higher specificity and efficacy. Applications of this genetic code property in biomedicine are related to the modulation of peptide and hormone biological function, selective immunomodulation, modeling of discontinuous and linear epitopes, modeling of mimotopes, paratopes and antibody mimetics, peptide vaccine development, peptidomimetic and drug design. We have investigated sense-antisense peptide interactions and related modulation of the peptide function by modulating the effects of α-MSH on hepatoprotection with its antisense peptide LVKAT. First, transcription of complementary mRNA sequence of α-MSH in 3’→5’ direction was used to design antisense peptide to the central motif that serves as α-MSH pharmacophore for melanocortin receptors. Second, tryptophan spectrofluorometric titration was applied to evaluate the binding of α-MSH and its central pharmacophore motif to the antisense peptide, and it was concluded that this procedure represents a simple and efficient method to evaluate sense-antisense peptide interaction in vitro. Third, we showed that antisense peptide LVKAT abolished potent hepatoprotective effects of α-MSH in vivo.
Collapse
|
24
|
Agutter PS. Stoichiometry-driven Protein Folding: A Comment. J Biomol Struct Dyn 2011; 28:643-4; discussion 669-674. [DOI: 10.1080/073911011010524974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Agutter PS. Editorial: hypotheses about protein folding--the proteomic code and wonderfolds. THEORETICAL BIOLOGY & MEDICAL MODELLING 2009; 6:31. [PMID: 20034380 PMCID: PMC2803780 DOI: 10.1186/1742-4682-6-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/24/2009] [Indexed: 11/22/2022]
Abstract
Theoretical biology journals can contribute in many ways to the progress of knowledge. They are particularly well-placed to encourage dialogue and debate about hypotheses addressing problematical areas of research. An online journal provides an especially useful forum for such debate because of the option of posting comments within days of the publication of a contentious article.
Collapse
|
26
|
Carels N, Vidal R, Frías D. Universal Features for the Classification of Coding and Non-coding DNA Sequences. Bioinform Biol Insights 2009; 3:37-49. [PMID: 20140069 PMCID: PMC2808180 DOI: 10.4137/bbi.s2236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we revisited simple features that allow the classification of coding sequences (CDS) from non-coding DNA. The spectrum of codon usage of our sequence sample is large and suggests that these features are universal. The features that we investigated combine (i) the stop codon distribution, (ii) the product of purine probabilities in the three positions of nucleotide triplets, (iii) the product of Cytosine, Guanine, Adenine probabilities in 1st, 2nd, 3rd position of triplets, respectively, (iv) the product of G and C probabilities in 1st and 2nd position of triplets. These features are a natural consequence of the physico-chemical properties of proteins and their combination is successful in classifying CDS and non-coding DNA (introns) with a success rate >95% above 350 bp. The coding strand and coding frame are implicitly deduced when the sequences are classified as coding.
Collapse
Affiliation(s)
- Nicolas Carels
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
27
|
Biro JC. Discovery of proteomic code with mRNA assisted protein folding. Int J Mol Sci 2008; 9:2424-2446. [PMID: 19330085 PMCID: PMC2635648 DOI: 10.3390/ijms9122424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/24/2008] [Accepted: 12/02/2008] [Indexed: 01/18/2023] Open
Abstract
The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions) in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding.
Collapse
Affiliation(s)
- Jan C Biro
- Homulus Foundation, 612 S Flower St, Los Angeles, 90 017 CA, USA. E-Mail:
; Tel. +1-213-627-6134
| |
Collapse
|