1
|
Liu Z, Larocque É, Xie Y, Xiao Y, Lemay G, Peloponese JM, Mesnard JM, Rassart É, Lin R, Zhou S, Zeng Y, Gao H, Cen S, Barbeau B. A newly identified interaction between nucleolar NPM1/B23 and the HTLV-I basic leucine zipper factor in HTLV-1 infected cells. Front Microbiol 2022; 13:988944. [PMID: 36532440 PMCID: PMC9753777 DOI: 10.3389/fmicb.2022.988944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 08/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.
Collapse
Affiliation(s)
- Zhenlong Liu
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Émilie Larocque
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xiao
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
| | - Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Éric Rassart
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Shuang Zhou
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yiming Zeng
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Benoit Barbeau
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Londhe R, Kulkarni S. HTLV-2 Encoded Antisense Protein APH-2 Suppresses HIV-1 Replication. Viruses 2021; 13:v13081432. [PMID: 34452297 PMCID: PMC8402832 DOI: 10.3390/v13081432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/31/2023] Open
Abstract
Antisense protein of Human T-cell Leukemia Virus Type 2 (HTLV-2), also called APH-2, negatively regulates the HTLV-2 and helps the virus to maintain latency via scheming the transcription. Despite the remarkable occurrence of HTLV-2/HIV-1 co-infection, the role of APH-2 influencing HIV-1 replication kinetics is poorly understood and needs investigation. In this study, we investigated the plausible role of APH-2 regulating HIV-1 replication. Herein, we report that the overexpression of APH-2 not only hampered the release of HIV-1 pNL4.3 from 293T cells in a dose-dependent manner but also affected the cellular gag expression. A similar and consistent effect of APH-2 overexpression was also observed in case of HIV-1 gag expression vector HXB2 pGag-EGFP. APH-2 overexpression also inhibited the ability of HIV-1 Tat to transactivate the HIV-1 LTR-driven expression of luciferase. Furthermore, the introduction of mutations in the IXXLL motif at the N-terminal domain of APH-2 reverted the inhibitory effect on HIV-1 Tat-mediated transcription, suggesting the possible role of this motif towards the downregulation of Tat-mediated transactivation. Overall, these findings indicate that the HTLV-2 APH-2 may affect the HIV-1 replication at multiple levels by (a) inhibiting the Tat-mediated transactivation and (b) hampering the virus release by affecting the cellular gag expression.
Collapse
Affiliation(s)
- Rajkumar Londhe
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India;
- Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Smita Kulkarni
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, Maharashtra, India;
- Savitribai Phule Pune University, Pune 411007, Maharashtra, India
- Correspondence:
| |
Collapse
|
3
|
The ESCRT-0 Protein HRS Interacts with the Human T Cell Leukemia Virus Type 2 Antisense Protein APH-2 and Suppresses Viral Replication. J Virol 2019; 94:JVI.01311-19. [PMID: 31597781 DOI: 10.1128/jvi.01311-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
The divergent clinical outcomes of human T cell leukemia virus type 1 (HTLV-1) and HTLV-2 infections have been attributed to functional differences in their antisense proteins. In contrast to HTLV-1 bZIP factor (HBZ), the role of the antisense protein of HTLV-2 (APH-2) in HTLV-2 infection is poorly understood. In previous studies, we identified the endosomal sorting complex required for transport 0 (ESCRT-0) subunit HRS as a novel interaction partner of APH-2 but not HBZ. HRS is a master regulator of endosomal protein sorting for lysosomal degradation and is hijacked by many viruses to promote replication. However, no studies to date have shown a link between HTLVs and HRS. In this study, we sought to characterize the interaction between HRS and APH-2 and to investigate the impact of HRS on the life cycle of HTLV-2. We confirmed a direct specific interaction between APH-2 and HRS and showed that the CC2 domain of HRS and the N-terminal domain of APH-2 mediate their interaction. We demonstrated that HRS recruits APH-2 to early endosomes, possibly furnishing an entry route into the endosomal/lysosomal pathway. We demonstrated that inhibition of this pathway using either bafilomycin or HRS overexpression substantially extends the half-life of APH-2 and stabilizes Tax2B expression levels. We found that HRS enhances Tax2B-mediated long terminal repeat (LTR) activation, while depletion of HRS enhances HTLV-2 production and release, indicating that HRS may have a negative impact on HTLV-2 replication. Overall, our study provides important new insights into the role of the ESCRT-0 HRS protein, and by extension the ESCRT machinery and the endosomal/lysosomal pathway, in HTLV-2 infection.IMPORTANCE While APH-2 is the only viral protein consistently expressed in infected carriers, its role in HTLV-2 infection is poorly understood. In this study, we characterized the interaction between the ESCRT-0 component HRS and APH-2 and explored the role of HRS in HTLV-2 replication. HRS is a master regulator of protein sorting for lysosomal degradation, a feature that is manipulated by several viruses to promote replication. Unexpectedly, we found that HRS targets APH-2 and possibly Tax2B for lysosomal degradation and has an overall negative impact on HTLV-2 replication and release. The negative impact of interactions between HTLV-2 regulatory proteins and HRS, and by extension the ESCRT machinery, may represent an important strategy used by HTLV-2 to limit virus production and to promote persistence, features that may contribute to the limited pathogenic potential of this infection.
Collapse
|
4
|
Harrod R. Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors. Retrovirology 2019; 16:25. [PMID: 31492165 PMCID: PMC6731619 DOI: 10.1186/s12977-019-0487-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans—as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-inflammatory disorders. Despite having significant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neurological symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simultaneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter—whereas p30II also inhibits PU.1-mediated inflammatory-signaling, differentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate inflammatory signaling associated with enhanced T-cell lymphoproliferation. This review will summarize our current understanding of the pX latency-maintenance factors of HTLV-1 and HTLV-2 and discuss how these products may contribute to the differences in pathogenicity between the human PTLVs.
Collapse
Affiliation(s)
- Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
5
|
Fochi S, Bergamo E, Serena M, Mutascio S, Journo C, Mahieux R, Ciminale V, Bertazzoni U, Zipeto D, Romanelli MG. TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Front Microbiol 2019; 10:1302. [PMID: 31244811 PMCID: PMC6581700 DOI: 10.3389/fmicb.2019.01302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Elisa Bergamo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Chloé Journo
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Fochi S, Mutascio S, Bertazzoni U, Zipeto D, Romanelli MG. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role. Front Microbiol 2018; 9:285. [PMID: 29515558 PMCID: PMC5826390 DOI: 10.3389/fmicb.2018.00285] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.
Collapse
Affiliation(s)
| | | | | | | | - Maria G. Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Positive and Negative Regulation of Type I Interferons by the Human T Cell Leukemia Virus Antisense Protein HBZ. J Virol 2017; 91:JVI.00853-17. [PMID: 28768861 DOI: 10.1128/jvi.00853-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of human T cell leukemia virus type 1 (HTLV-1) is strongly linked to the viral regulatory proteins Tax1 and HBZ, whose opposing functions contribute to the clinical outcome of infection. Type I interferons alpha and beta (IFN-α and IFN-β) are key cytokines involved in innate immunity, and IFN-α, in combination with other antivirals, is extensively used in the treatment of HTLV-1 infection. The relationship between HTLV-1 and IFN signaling is unclear, and to date the effect of HBZ on this pathway has not been examined. Here we report that HBZ significantly enhances interferon regulatory factor 7 (IRF7)-induced IFN-α- and IFN-stimulated response element (ISRE) promoter activities and IFN-α production and can counteract the inhibitory effect of Tax1. In contrast to this, we show that HBZ and Tax1 cooperate to inhibit the induction of IFN-β and ISRE promoters by IRF3 and IFN-β production. In addition, we reveal that HBZ enhances ISRE activation by IFN-α. We further show that HBZ enhances IRF7 and suppresses IRF3 activation by TBK1 and IKKε. We demonstrate that HBZ has no effect on virus-induced nuclear accumulation of IRF3, suggesting that it may inhibit IRF3 activity at a transcriptional level. We show that HBZ physically interacts with IRF7 and IKKε but not with IRF3 or TBK1. Overall, our findings suggest that both HBZ and Tax1 are negative regulators of immediate early IFN-β innate immune responses, while HBZ but not Tax1 positively regulates the induction of IFN-α and downstream IFN-α signaling.IMPORTANCE Type I interferons are powerful antiviral cytokines and are used extensively in the treatment of HTLV-1-induced adult T cell leukemia (ATL). To date, the relationship between HTLV-1 and the IFN pathway is poorly understood, and studies so far have focused on Tax1. Our study is unique in that it examined the effect of HBZ, alone or in combination with Tax1, on type I IFN signaling. This is important because HBZ is frequently the only viral protein expressed in infected cells, particularly at later stages of infection. A better understanding of the how HBZ regulates IFN signaling may lead to the development of therapeutics that can modify such responses and improve the clinical outcome for infected individuals.
Collapse
|
8
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA, Green PL. Functional Comparison of HBZ and the Related APH-2 Protein Provides Insight into Human T-Cell Leukemia Virus Type 1 Pathogenesis. J Virol 2016; 90:3760-72. [PMID: 26819304 PMCID: PMC4794683 DOI: 10.1128/jvi.03113-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cells in vitro but have distinct pathological outcomes in vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistence in vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells, hbz is often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2 in vivo results in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor β (TGF-β) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-β signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand genes hbz and aph-2 are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effects in vivo and hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-β signaling, NF-κB activation, and IRF-1 transactivation pathways.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Nathan J Dissinger
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Cory M Howard
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Brandon M Murphy
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Kristina Landes
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Does chronic infection in retroviruses have a sense? Trends Microbiol 2015; 23:367-75. [PMID: 25701112 DOI: 10.1016/j.tim.2015.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/06/2015] [Accepted: 01/20/2015] [Indexed: 01/12/2023]
Abstract
Over recent years, retroviral gene expression has been shown to depend on a promoter that is bidirectional. This promoter activity is likely to occur at either end of the retroviral genome and has important consequences at the level of retroviral gene expression. This review focuses on the recent discovery of retroviral antisense genes termed HBZ [in human T-cell leukemia virus type 1 (HTLV-1)] and ASP (in HIV-1) in terms of their function and the regulation of their expression, both of which are interconnected with the expression and function of other viral proteins. Emphasis is also given to the potential implication of these proteins in the maintenance of chronic infection in infected individuals. In light of recent findings, the discovery of these new genes opens a new avenue for the future treatment of HTLV-1- and HIV-1-infected individuals.
Collapse
|
11
|
Identification and characterization of HTLV-1 HBZ post-translational modifications. PLoS One 2014; 9:e112762. [PMID: 25389759 PMCID: PMC4229220 DOI: 10.1371/journal.pone.0112762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is estimated to infect 15–25 million people worldwide, with several areas including southern Japan and the Caribbean basin being endemic. The virus is the etiological agent of debilitating and fatal diseases, for which there is currently no long-term cure. In the majority of cases of leukemia caused by HTLV-1, only a single viral gene, hbz, and its cognate protein, HBZ, are expressed and their importance is increasingly being recognized in the development of HTLV-1-associated disease. We hypothesized that HBZ, like other HTLV-1 proteins, has properties and functions regulated by post-translational modifications (PTMs) that affect specific signaling pathways important for disease development. To date, PTM of HBZ has not been described. We used an affinity-tagged protein and mass spectrometry method to identify seven modifications of HBZ for the first time. We examined how these PTMs affected the ability of HBZ to modulate several pathways, as measured using luciferase reporter assays. Herein, we report that none of the identified PTMs affected HBZ stability or its regulation of tested pathways.
Collapse
|
12
|
Ciminale V, Rende F, Bertazzoni U, Romanelli MG. HTLV-1 and HTLV-2: highly similar viruses with distinct oncogenic properties. Front Microbiol 2014; 5:398. [PMID: 25120538 PMCID: PMC4114287 DOI: 10.3389/fmicb.2014.00398] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
HTLV-1 and HTLV-2 share broad similarities in their overall genetic organization and expression pattern, but they differ substantially in their pathogenic properties. This review outlines distinctive features of HTLV-1 and HTLV-2 that might provide clues to explain their distinct clinical outcomes. Differences in the kinetics of viral mRNA expression, functional properties of the regulatory and accessory proteins, and interactions with cellular factors and signal transduction pathways are discussed.
Collapse
Affiliation(s)
- Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Francesca Rende
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| |
Collapse
|
13
|
Human T-cell leukemia virus type 3 (HTLV-3) and HTLV-4 antisense-transcript-encoded proteins interact and transactivate Jun family-dependent transcription via their atypical bZIP motif. J Virol 2014; 88:8956-70. [PMID: 24872589 DOI: 10.1128/jvi.01094-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human T-cell leukemia virus types 3 and 4 (HTLV-3 and HTLV-4) are recently isolated retroviruses. We have previously characterized HTLV-3- and HTLV-4-encoded antisense genes, termed APH-3 and APH-4, respectively, which, in contrast to HBZ, the HTLV-1 homologue, do not contain a typical bZIP domain (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). As HBZ differentially modulates the transactivation potential of various Jun family members, the effect of APH-3 and APH-4 on JunD-, c-Jun-, and JunB-mediated transcriptional activation was investigated. We first showed that APH-3 and APH-4 upregulated the transactivation potential of all tested Jun family members. Using an human telomerase catalytic subunit (hTERT) promoter construct, our results also highlighted that, unlike HBZ, which solely modulates hTERT expression via JunD, both APH-3 and APH-4 acted positively on the transactivation of the hTERT promoter mediated by tested Jun factors. Coimmunoprecipitation experiments demonstrated that these Jun proteins interacted with APH-3 and APH-4. Although no activation domain was identified for APH proteins, the activation domain of c-Jun was very important in the observed upregulation of its activation potential. We further showed that APH-3 and APH-4 required their putative bZIP-like domains and corresponding leucine residues for interaction and modulation of the transactivation potential of Jun factors. Our results demonstrate that HTLV-encoded antisense proteins behave differently, and that the bZIP-like domains of both APH-3 and APH-4 have retained their interaction potential for Jun members. These studies are important in assessing the differences between HBZ and other antisense proteins, which might further contribute to determining the role of HBZ in HTLV-1-associated diseases. IMPORTANCE HBZ, the antisense transcript-encoded protein from HTLV-1, is now well recognized as a potential factor for adult T-cell leukemia/lymphoma development. In order to better appreciate the mechanism of action of HBZ, comparison to antisense proteins from other HTLV viruses is important. Little is known in relation to the seemingly nonpathogenic HTLV-3 and HTLV-4 viruses, and studies of their antisense proteins are limited to our previously reported study (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). Here, we demonstrate that Jun transcription factors are differently affected by APH-3 and APH-4 compared to HBZ. These intriguing findings suggest that these proteins act differently on viral replication but also on cellular gene expression, and that highlighting their differences of action might lead to important information allowing us to understand the link between HTLV-1 HBZ and ATL in infected individuals.
Collapse
|
14
|
Romanelli MG, Diani E, Bergamo E, Casoli C, Ciminale V, Bex F, Bertazzoni U. Highlights on distinctive structural and functional properties of HTLV Tax proteins. Front Microbiol 2013; 4:271. [PMID: 24058363 PMCID: PMC3766827 DOI: 10.3389/fmicb.2013.00271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
Collapse
|
15
|
Barbeau B, Peloponese JM, Mesnard JM. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 2013; 4:226. [PMID: 23966985 PMCID: PMC3736048 DOI: 10.3389/fmicb.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022] Open
Abstract
The production of antisense transcripts from the 3′ long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5′ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal Montréal, QC, Canada
| | | | | |
Collapse
|