1
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
2
|
Abstract
Infectious diseases caused by germs, parasites, fungi, virus and bacteria are one of the leading causes of death worldwide. Polymeric therapeutics are nanomedicines that offer several advantages making them useful for the treatment of infectious diseases such as targeted drug release mechanism, ability to maintain the drug concentration within a therapeutic window for a desired duration, biocompatibility with low immunogenicity and reduced drug toxicity resulting in enhanced therapeutic efficacy of the incorporated drug. Although polymeric therapeutics have been evaluated for the treatment of infectious diseases in vitro and in vivo with improved therapeutic efficacy, most treatments for infectious disease have not been evaluated using polymeric therapeutics. This review will focus on the applications of polymeric therapeutics for the treatment of infectious diseases (preclinical studies and clinical trials), with particular focus on parasitic and viral infections.
Collapse
|
3
|
Natfji AA, Osborn HM, Greco F. Feasibility of polymer-drug conjugates for non-cancer applications. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Palombo M, Deshmukh M, Myers D, Gao J, Szekely Z, Sinko PJ. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu Rev Pharmacol Toxicol 2013; 54:581-98. [PMID: 24160695 DOI: 10.1146/annurev-pharmtox-010611-134615] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Novel engineered nanomaterials (ENMs) are being developed to enhance therapy. The physicochemical properties of ENMs can be manipulated to control/direct biodistribution and target delivery, but these alterations also have implications for toxicity. It is well known that size plays a significant role in determining ENM effects since simply nanosizing a safe bulk material can render it toxic. However, charge, shape, rigidity, and surface modifications also have a significant influence on the biodistribution and toxicity of nanoscale drug delivery systems (NDDSs). In this review, NDDSs are considered in terms of platform technologies, materials, and physical properties that impart their pharmaceutical and toxicological effects. Moving forward, the development of safe and effective nanomedicines requires standardized protocols for determining the physical characteristics of ENMs as well as assessing their potential long-term toxicity. When such protocols are established, the remarkable promise of nanomedicine to improve the diagnosis and treatment of human disease can be fulfilled.
Collapse
Affiliation(s)
- Matthew Palombo
- School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854;
| | | | | | | | | | | |
Collapse
|
5
|
Parboosing R, Maguire GEM, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012; 4:488-520. [PMID: 22590683 PMCID: PMC3347320 DOI: 10.3390/v4040488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 01/25/2023] Open
Abstract
Suboptimal adherence, toxicity, drug resistance and viral reservoirs make the lifelong treatment of HIV infection challenging. The emerging field of nanotechnology may play an important role in addressing these challenges by creating drugs that possess pharmacological advantages arising out of unique phenomena that occur at the “nano” scale. At these dimensions, particles have physicochemical properties that are distinct from those of bulk materials or single molecules or atoms. In this review, basic concepts and terms in nanotechnology are defined, and examples are provided of how nanopharmaceuticals such as nanocrystals, nanocapsules, nanoparticles, solid lipid nanoparticles, nanocarriers, micelles, liposomes and dendrimers have been investigated as potential anti-HIV therapies. Such drugs may, for example, be used to optimize the pharmacological characteristics of known antiretrovirals, deliver anti-HIV nucleic acids into infected cells or achieve targeted delivery of antivirals to the immune system, brain or latent reservoirs. Also, nanopharmaceuticals themselves may possess anti-HIV activity. However several hurdles remain, including toxicity, unwanted biological interactions and the difficulty and cost of large-scale synthesis of nanopharmaceuticals.
Collapse
Affiliation(s)
- Raveen Parboosing
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-31-240-2816; Fax: +27-31-240-2797
| | - Glenn E. M. Maguire
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| | - Patrick Govender
- School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa; (P.G.)
| | - Hendrik G. Kruger
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| |
Collapse
|
6
|
Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem 2011; 22:1946-53. [PMID: 21863904 DOI: 10.1021/bc200148v] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addition chemistries are widely used in preparing biological conjugates, and in particular, maleimide-thiol adducts have been widely employed. Here, we show that the resulting succinimide thioether formed by the Michael-type addition of thiols to N-ethylmaleimide (NEM), generally accepted as stable, undergoes retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature, offering a novel strategy for controlled release. Model studies ((1)H NMR, HPLC) of NEM conjugated to 4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP) incubated with glutathione showed half-lives of conversion from 20 to 80 h, with extents of conversion from 20% to 90% for MPA and N-acetylcysteine conjugates. After ring-opening, the resultant succinimide thioether did not show retro and exchange reactions. The kinetics of the retro reactions and extent of exchange can be modulated by the Michael donor's reactivity; therefore, the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at time scales different than those currently possible via disulfide-mediated release. Such approaches may find a new niche for controlled release in reducing environments relevant in chemotherapy and subcellular trafficking.
Collapse
Affiliation(s)
- Aaron D Baldwin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | | |
Collapse
|
7
|
Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine (Lond) 2010; 5:915-35. [DOI: 10.2217/nnm.10.71] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Polymer therapeutics can be already considered as a promising field in the human healthcare context. The discovery of the enhanced permeability and retention effect by Maeda, together with the modular model for the polymer–drug conjugate proposed by Ringsdorf, directed the early steps of polymer therapeutics towards cancer therapy. Orthodox anticancer drugs were preferentially chosen in the development of the first conjugates. The fast evolution of polymer chemistry and bioconjugation techniques, and a deeper understanding of cell biology has opened up exciting new challenges and opportunities. Four main directions have to be considered to develop this ‘platform technology’ further: the control of the synthetic process, the exhaustive characterization of the conjugate architectures, the conquest of combination therapy and the disclosure of new therapeutic targets. We illustrate in this article the exciting approaches offered by polymer–drug conjugates beyond classical cancer therapy, focusing on new, more effective and selective targets in cancer and in their use as treatments for other major human diseases.
Collapse
Affiliation(s)
| | | | - Rut Lucas
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Medicinal Chemistry Department, Centro de Investigación Príncipe Felipe. Av. Autopista del Saler, 16. E-46012 Valencia, Spain
| |
Collapse
|
8
|
Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:518-31. [PMID: 19941919 PMCID: PMC2841563 DOI: 10.1016/j.addr.2009.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023]
Abstract
A variety of nanocarriers such as bioconjugates, dendrimers, liposomes, and nanoparticles have been widely evaluated as potential targeted drug delivery systems. Passive targeting of nanoscale carriers is based on a size-flow-filtration phenomenon that is usually limited to tumors, the reticular endothelial system, and possibly lymph nodes (LNs). In fact, targeting the delivery of drugs to pivotal physiological sites such as the lymph nodes has emerged as a promising strategy in treating HIV disease. Ligands for specific cell surface receptors can be displayed on nanocarriers in order to achieve active targeting. The approach has been extensively used preclinically in cancer where certain receptors are over-expressed at various stages of the disease. Unfortunately, markers of HIV infection are lacking and latently infected cells do not show any signs of infection on their surface. However, the disease naturally targets only a few cell types. The HIV receptor CD4, coreceptors (CCR5 and CXCR4), and some receptors relatively specific for macrophages provide potentially valuable surface targets for drug delivery to all susceptible cells in patients infected by HIV. This review focuses on nanoscale targeting with an emphasis on surface modifications of drug delivery nanocarriers for active targeting. A number of related issues, including HIV biology, targets, pharmacokinetics, and intracellular fate as well as literature-cited examples of emerging surface-modified targeted carrier systems are discussed.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
9
|
Gupta U, Jain NK. Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 2010; 62:478-90. [PMID: 19913579 DOI: 10.1016/j.addr.2009.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/14/2009] [Indexed: 12/18/2022]
Abstract
Development of an effective drug delivery approach for the treatment of HIV/AIDS is a global challenge. The conventional drug delivery approaches including Highly Active Anti Retroviral Therapy (HAART) have increased the life span of the HIV/AIDS patient. However, the eradication of HIV is still not possible with these approaches due to some limitations. Emergence of polymeric and non-polymeric nanotechnological approaches can be opportunistic in this direction. Polymeric carriers like, dendrimers and nanoparticles have been reported for the targeting of anti HIV drugs. The synthetic pathways as well polymeric framework create some hurdles in their successful formulation development as well as in the possible drug delivery approaches. In the present article, we have discussed the general physiological aspects of the infection along with the relevance of non-polymeric nanocarriers like liposomes, solid lipid nanoparticles (SLN), ethosomes, etc. in the treatment of this disastrous disease.
Collapse
|
10
|
Howl J, Jones S. Transport molecules using reverse sequence HIV-Tat polypeptides: not just any old Tat? (WO200808225). Expert Opin Ther Pat 2009; 19:1329-33. [PMID: 19555160 DOI: 10.1517/17530050902824829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Many polycationic cell penetrating peptides (CPPs), alternatively named protein transduction domains, have been used for the efficient intracellular delivery of biologically active agents. Patent WO2008/082885 relates to the properties and proposed biomedical applications of a CPP and putative-related sequences that represent the reverse sequence of a nonapeptide basic domain of the HIV-transactivator protein (Tat) (RRRQRRKKR). OBJECTIVE This evaluation critically assesses the reported utility of such transport molecules and the numerous potential embodiments of the invention, in comparison with other recent developments in the field. We also review recent biomedical applications of Tat-derived peptide transporters. METHODS The scope of this review includes both Tat-derived peptide transporters and other sequence-related CPPs that are polycationic in nature. RESULTS/CONCLUSION The patent application indicates that reverse sequence HIV-Tat polypeptides can increase the transdermal delivery of an iodinated mixture of botulinum toxin, albumin and accessory proteins (Neuronox), Medy-Tox, Inc., Seoul, South Korea) as a non-covalent complex. Moreover, the invention also contemplates all variants of the reverse-sequence polypeptide and claims a variety of potential biomedical applications using the reverse sequence peptide as a delivery vector. Unfortunately, in the absence of both rigorous comparative data and toxicological analyses, it is uncertain if these transport molecules offer any advantages compared with many existing and rigorously characterised CPP vector systems.
Collapse
Affiliation(s)
- John Howl
- University of Wolverhampton, Research Institute in Healthcare Science, School of Applied Sciences, Wulfruna Street, Wolverhampton, WV1 1LY, UK.
| | | |
Collapse
|
11
|
Palombo M, Singh Y, Sinko P. Prodrug and conjugate drug delivery strategies for improving HIV/AIDS therapy. J Drug Deliv Sci Technol 2009; 19:3-14. [DOI: 10.1016/s1773-2247(09)50001-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Wan L, Zhang X, Pooyan S, Palombo MS, Leibowitz MJ, Stein S, Sinko PJ. Optimizing size and copy number for PEG-fMLF (N-formyl-methionyl-leucyl-phenylalanine) nanocarrier uptake by macrophages. Bioconjug Chem 2007; 19:28-38. [PMID: 18092743 DOI: 10.1021/bc070066k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Curing HIV-1 infection has remained elusive because of low and fluctuating drug levels arising from poor absorption, the development of viral reservoirs and sanctuary sites, toxicity, and patient nonadherence. The present study addresses the issue of insufficient drug exposure in macrophages. Viral reservoir sites such as macrophages are believed to be responsible for the viral rebound effect observed upon the discontinuation of anti-HIV drug therapy. In our proposed model, a drug can be covalently attached to a nanocarrier in order to facilitate the delivery of therapeutic agents to the site(s) of infection. As an initial step, we propose the covalent attachment of several copies of N-formyl-Met-Leu-Phe (fMLF), a known chemo-attractant for macrophages. In this article, one or more copies of fMLF were conjugated to multifunctional commercially available or novel, peptide-based PEG nanocarriers in which the structure was varied by appending PEGs with average molecular weights of 5, 20, and 40 kDa. U937 cell-specific binding and cellular uptake were analyzed. The results of uptake studies indicate that (i) uptake is energy dependent and mediated by a fMLF receptor, (ii) appending only 2 copies of the targeting ligand to the multifunctional nanocarrier appears sufficient for binding in vitro, and (iii) of the three configurations studied, the nanocarrier with a molecular weight of about 20 kDa, corresponding to a size of 20-60 nm, demonstrated the highest uptake. The results of the current studies demonstrate the feasibility of targeting macrophages and the suitability of using these synthetically versatile peptide--backbone PEG nanocarriers. The convenience, flexibility and possible limitations of this nanocarrier approach are discussed.
Collapse
Affiliation(s)
- Li Wan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ding H, Kopecková P, Kopecek J. Self-association properties of HPMA copolymers containing an amphipathic heptapeptide. J Drug Target 2007; 15:465-74. [PMID: 17671893 DOI: 10.1080/10611860701500016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Receptor-binding peptides are suitable targeting moieties for macromolecular therapeutics. Binding several targeting peptides to one macromolecule may improve biorecognition due to the multivalency effect. On the other hand, the resulting amphipathic structure of such conjugates may result in the association of side-chains with a concomitant decrease in the accessibility of the side-chain-bound ligands. Using the one-bead one-compound combinatorial method, we have recently identified a heptapeptide (YILIHRN; HP) ligand for the CD21 receptor (Biomacromolecules 7, 3037, 2006). Here, we evaluated the relationship between structure and self-association of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-HP conjugates using fluorescence resonance energy transfer (FRET) to evaluate their conformation in solution. In addition to HP, HPMA copolymers containing side-chains terminating in tryptophan (energy donor) and dansyl (energy acceptor) were synthesized, and solutions were evaluated using an excitation wavelength of 295 nm (ratio of emission intensity 510 nm/370 nm indicated energy transfer efficiency). It was found that higher HP content correlated with higher FRET efficiency, indicating the formation of compact coils. Modification of the HPMA copolymer backbone by the incorporation of acrylic acid (AA) comonomer units resulted in decreased FRET efficiency, presumably due to the expansion of the polymer coils as a result of electrostatic repulsion. The dependence of FRET efficiency on pH was in agreement with the ionization profile of the AA residues. To determine the effect of HP content on enzymatic drug release kinetics, HPMA copolymer-HP conjugates containing GFLG side-chains terminating with doxorubicin (DOX) were incubated with papain and the release of free DOX monitored. When HP content increased above a particular threshold, the rate of DOX release decreased as a result of self-association of HPMA copolymer-GFLG-DOX-HP conjugates. The FRET data correlated well with hydrodynamic volumes determined by size exclusion chromatography (SEC), with molecular weights determined by light scattering, and with the kinetics of drug release.
Collapse
Affiliation(s)
- Hui Ding
- Department of Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|