1
|
Cherubini A, Sánchez SDV, Sanz-Morere C, Herranz-Calero E, De-Eusebio-Rubio E, González-Expósito S, Herrera-Valenzuela D, del-Ama A, Borromeo S, Soto-León V, Oliviero A, Gil-Agudo A, León N, Torricelli D, Tornero J, Moreno J. Multi-Level Characterization of the Recovery Process of a Stroke Survivor After 2 Months of Robotic Therapy with the Walkbot Robot. 2024 10TH IEEE RAS/EMBS INTERNATIONAL CONFERENCE FOR BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB) 2024:913-918. [DOI: 10.1109/biorob60516.2024.10719925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | | | - C.B. Sanz-Morere
- Center for Robotics and Automation of the Spanish National Research Council,Madrid,Spain
| | | | | | - S. González-Expósito
- Center for Robotics and Automation of the Spanish National Research Council,Madrid,Spain
| | | | | | | | | | - A. Oliviero
- National Hospital for Paraplegics,Toledo,Spain
| | | | - N. León
- Hospital Los Madroños,Madrid,Spain
| | - D. Torricelli
- Center for Robotics and Automation of the Spanish National Research Council,Madrid,Spain
| | | | - J.C. Moreno
- Center for Robotics and Automation of the Spanish National Research Council,Madrid,Spain
| |
Collapse
|
2
|
Kawakami K, Miyasaka H, Hioki Y, Furumoto A, Sonoda S. Gait training with a safety suspension device accelerates the achievement of supervision level walking in subacute stroke: a randomized controlled trial. Int J Rehabil Res 2024; 47:75-80. [PMID: 38595089 DOI: 10.1097/mrr.0000000000000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Practicing walking in a safety suspension device allows patients to move freely and without excessive reliance on a therapist, which requires correcting errors and may facilitate motor learning. This opens the possibility that patients with subacute stroke may improve their walking ability more rapidly. Therefore, we tested the hypothesis that overground gait training in a safety suspension device will result in achieving faster supervision-level walking than gait training without the suspension device. Twenty-seven patients with stroke admitted to the rehabilitation ward with functional ambulation categories (FAC) score of 2 at admission were randomly allocated to safety suspension-device group (SS group) or conventional assisted-gait training group (control group). In addition to regular physical therapy, each group underwent additional gait training for 60 min a day, 5 days a week for 4 weeks. We counted the days until reaching a FAC score of 3 and assessed the probability using Cox regression models. The median days required to reach a FAC score of 3 were 7 days for the SS group and 17.5 days for the control group, which was significantly different between the groups ( P < 0.05). The SS group had a higher probability of reaching a FAC score of 3 after adjusting for age and admission motor impairment (hazard ratio = 3.61, 95% confidence interval = 1.40-9.33, P < 0.01). The gait training with a safety suspension device accelerates reaching the supervision-level walking during inpatient rehabilitation. We speculate that a safety suspension device facilitated learning by allowing errors to be experienced and correct in a safe environment.
Collapse
Affiliation(s)
- Kenji Kawakami
- Department of Rehabilitation, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie
| | - Hiroyuki Miyasaka
- Department of Rehabilitation, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie
| | - Yuichi Hioki
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi
| | - Ayako Furumoto
- Department of Rehabilitation, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie
| | - Shigeru Sonoda
- Department of Rehabilitation, Fujita Health University Nanakuri Memorial Hospital, Tsu, Mie
- Department of Rehabilitation Medicine Ⅱ, School of Medicine, Fujita Health University, Tsu, Mie, Japan
| |
Collapse
|
3
|
Diego P, Herrero S, Macho E, Corral J, Diez M, Campa FJ, Pinto C. Devices for Gait and Balance Rehabilitation: General Classification and a Narrative Review of End Effector-Based Manipulators. APPLIED SCIENCES 2024; 14:4147. [DOI: 10.3390/app14104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Gait and balance have a direct impact on patients’ independence and quality of life. Due to a higher life expectancy, the number of patients suffering neurological disorders has increased exponentially, with gait and balance impairments being the main side effects. In this context, the use of rehabilitation robotic devices arises as an effective and complementary tool to recover gait and balance functions. Among rehabilitation devices, end effectors present some advantages and have shown encouraging outcomes. The objective of this study is twofold: to propose a general classification of devices for gait and balance rehabilitation and to provide a review of the existing end effectors for such purposes. We classified the devices into five groups: treadmills, exoskeletons, patient-guided systems, perturbation platforms, and end effectors. Overall, 55 end effectors were identified in the literature, of which 16 were commercialized. We found a disproportionate number of end effectors capable of providing both types of rehabilitation (2/55) and those focused on either balance (21/55) or gait (32/55). The analysis of their features from a mechanical standpoint (degrees of freedom, topology, and training mode) allowed us to identify the potential of parallel manipulators as driving mechanisms of end effector devices and to suggest several future research directions.
Collapse
Affiliation(s)
- Paul Diego
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Saioa Herrero
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Erik Macho
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Javier Corral
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Mikel Diez
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Francisco J. Campa
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| | - Charles Pinto
- Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Cotinat M, Celerier M, Arquillière C, Flipo M, Prieur-Blanc N, Viton JM, Bensoussan L. Robotic gait training and botulinum toxin injection improve gait in the chronic post-stroke phase: A randomized controlled trial. Ann Phys Rehabil Med 2024; 67:101785. [PMID: 38118342 DOI: 10.1016/j.rehab.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Improving walking ability is one of the main goals of rehabilitation after stroke. When lower limb spasticity increases walking difficulty, botulinum toxin type A (BTx-A) injections can be combined with non-pharmacologic interventions such as intensive rehabilitation using a robotic approach. To the best of our knowledge, no comparisons have been made between the efficacy of robotic gait training and conventional physical therapy in combination with BTx-A injections. OBJECTIVE To conduct a randomized controlled trial to compare the efficacy on gait of robotic gait training versus conventional physiotherapy after BTx-A injection into the spastic triceps surae in people after stroke. METHOD Thirty-three participants in the chronic stroke phase with triceps surae spasticity inducing gait impairment were included. After BTx-A injection, participants were randomized into 2 groups. Group A underwent robotic gait training (Lokomat®) for 2 weeks, followed by conventional physiotherapy for 2 weeks (n = 15) and Group B underwent the same treatment in reverse order (n = 18). The efficacy of these methods was tested using the 6-minute walk test (6MWT), comparing post-test 1 and post-test 2 with the pre-test. RESULTS After the first period, the 6MWT increased significantly more in Group A than in Group B: the mean difference between the interventions was 33 m (95%CI 9; 58 p = 0.007; g = 0.95), in favor of Group A; after the second period, the 6MWT increased in both groups, but the 30 m difference between the groups still remained (95%CI 5; 55 p = 0.019; g = 0.73). CONCLUSION Two weeks of robotic gait training performed 2 weeks after BTx-A injections improved walking performance more than conventional physiotherapy. Large-scale studies are now required on the timing of robotic rehabilitation after BTx-A injection.
Collapse
Affiliation(s)
- Maëva Cotinat
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France.
| | - Mathilde Celerier
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Clelia Arquillière
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Margot Flipo
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Nicolas Prieur-Blanc
- Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Jean-Michel Viton
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France
| | - Laurent Bensoussan
- Aix Marseille Université, CNRS, INT UMR 7289, Marseille, France; Department of Physical and Rehabilitation Medicine, Marseille University Hospital, France; UGECAM Institut Universitaire de Réadaptation de Valmante Sud
| |
Collapse
|
5
|
Stramel DM, Winterbottom L, Stein J, Agrawal SK. Overground Robotic Gait Trainer mTPAD Improves Gait Symmetry and Weight Bearing in Stroke Survivors. Bioengineering (Basel) 2023; 10:698. [PMID: 37370629 DOI: 10.3390/bioengineering10060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Stroke is a leading cause of disability, impairing the ability to generate propulsive forces and causing significant lateral gait asymmetry. We aim to improve stroke survivors' gaits by promoting weight-bearing during affected limb stance. External forces can encourage this; e.g., vertical forces can augment the gravitational force requiring higher ground reaction forces, or lateral forces can shift the center of mass over the stance foot, altering the lateral placement of the center of pressure. With our novel design of a mobile Tethered Pelvic Assist Device (mTPAD) paired with the DeepSole system to predict the user's gait cycle percentage, we demonstrate how to apply three-dimensional forces on the pelvis without lower limb constraints. This work is the first result in the literature that shows that with an applied lateral force during affected limb stance, the center of pressure trajectory's lateral symmetry is significantly closer to a 0% symmetry (5.5%) than without external force applied (-9.8%,p<0.05). Furthermore, the affected limb's maximum relative pressure (p) significantly increases from 233.7p to 234.1p (p<0.05) with an applied downward force, increasing affected limb loading. This work highlights how the mTPAD increases weight-bearing and propulsive forces during gait, which is a crucial goal for stroke survivors.
Collapse
Affiliation(s)
| | - Lauren Winterbottom
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
de Miguel-Fernández J, Lobo-Prat J, Prinsen E, Font-Llagunes JM, Marchal-Crespo L. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. J Neuroeng Rehabil 2023; 20:23. [PMID: 36805777 PMCID: PMC9938998 DOI: 10.1186/s12984-023-01144-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
Collapse
Affiliation(s)
- Jesús de Miguel-Fernández
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | | | - Erik Prinsen
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH Enschede, Netherlands
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Laura Marchal-Crespo
- Cognitive Robotics Department, Delft University of Technology, Mekelweg 2, 2628 Delft, Netherlands
- Motor Learning and Neurorehabilitation Lab, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Cherni Y, Tremblay A, Simon M, Bretheau F, Blanchette AK, Mercier C. Corticospinal Responses Following Gait-Specific Training in Stroke Survivors: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15585. [PMID: 36497663 PMCID: PMC9737604 DOI: 10.3390/ijerph192315585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Corticospinal excitability is subject to alterations after stroke. While the reversal of these alterations has been proposed as an underlying mechanism for improved walking capacity after gait-specific training, this has not yet been clearly demonstrated. Therefore, the objective of this review is to evaluate the effect of gait-specific training on corticospinal excitability in stroke survivors. We conducted an electronic database search in four databases (i.e., Medline, Embase, CINAHL and Web of Science) in June 2022. Two authors screened in an independent way all the studies and selected those that investigated the effect of gait-specific training on variables such as motor-evoked potential amplitude, motor threshold, map size, latency, and corticospinal silent period in stroke survivors. Nineteen studies investigating the effect of gait-specific training on corticospinal excitability were included. Some studies showed an increased MEP amplitude (7/16 studies), a decreased latency (5/7studies), a decreased motor threshold (4/8 studies), an increased map size (2/3 studies) and a decreased cortical silent period (1/2 study) after gait-specific training. No change has been reported in terms of short interval intracortical inhibition after training. Five studies did not report any significant effect after gait-specific training on corticospinal excitability. The results of this systematic review suggest that gait-specific training modalities can drive neuroplastic adaptation among stroke survivors. However, given the methodological disparity of the included studies, additional clinical trials of better methodological quality are needed to establish conclusions. The results of this review can therefore be used to develop future studies to better understand the effects of gait-specific training on the central nervous system.
Collapse
Affiliation(s)
- Yosra Cherni
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec City, QC G1M 2S8, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- TOPMED, Centre Collégial de Transfert de Technologie en Orthèses, Prothèses et Équipements Médicaux, Québec City, QC G1S 1C1, Canada
| | - Alexia Tremblay
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Margaux Simon
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec City, QC G1M 2S8, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Floriane Bretheau
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec City, QC G1M 2S8, Canada
| | - Andréanne K. Blanchette
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec City, QC G1M 2S8, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Catherine Mercier
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec City, QC G1M 2S8, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Campagnini S, Liuzzi P, Mannini A, Riener R, Carrozza MC. Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review. J Neuroeng Rehabil 2022; 19:52. [PMID: 35659703 PMCID: PMC9166346 DOI: 10.1186/s12984-022-01031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke related motor function deficits affect patients' likelihood of returning to professional activities, limit their participation in society and functionality in daily living. Hence, robot-aided gait rehabilitation needs to be fruitful and effective from a motor learning perspective. For this reason, optimal human-robot interaction strategies are necessary to foster neuroplastic shaping during therapy. Therefore, we performed a systematic search on the effects of different control algorithms on quantitative objective gait parameters of post-acute stroke patients. METHODS We conducted a systematic search on four electronic databases using the Population Intervention Comparison and Outcome format. The heterogeneity of performance assessment, study designs and patients' numerosity prevented the possibility to conduct a rigorous meta-analysis, thus, the results were presented through narrative synthesis. RESULTS A total of 31 studies (out of 1036) met the inclusion criteria, without applying any temporal constraints. No controller preference with respect to gait parameters improvements was found. However, preferred solutions were encountered in the implementation of force control strategies mostly on rigid devices in therapeutic scenarios. Conversely, soft devices, which were all position-controlled, were found to be more commonly used in assistive scenarios. The effect of different controllers on gait could not be evaluated since conspicuous heterogeneity was found for both performance metrics and study designs. CONCLUSIONS Overall, due to the impossibility of performing a meta-analysis, this systematic review calls for an outcome standardisation in the evaluation of robot-aided gait rehabilitation. This could allow for the comparison of adaptive and human-dependent controllers with conventional ones, identifying the most suitable control strategies for specific pathologic gait patterns. This latter aspect could bolster individualized and personalized choices of control strategies during the therapeutic or assistive path.
Collapse
Affiliation(s)
- Silvia Campagnini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | - Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy.
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy.
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via di Scandicci 269, 50143, Firenze, FI, Italy
| | - Robert Riener
- ETH Zurich, Rämistrasse 101, 8092 CH, Zürich, Switzerland
- Balgrist University Hospital, Forchstrasse 340, 8008 CH, Zürich, Switzerland
| | - Maria Chiara Carrozza
- Istituto di BioRobotica, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| |
Collapse
|
9
|
Singh N, Saini M, Kumar N, Srivastava MVP, Mehndiratta A. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. J Neuroeng Rehabil 2021; 18:76. [PMID: 33957937 PMCID: PMC8101163 DOI: 10.1186/s12984-021-00867-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Background A novel electromechanical robotic-exoskeleton was designed in-house for the rehabilitation of wrist joint and Metacarpophalangeal (MCP) joint. Objective The objective was to compare the rehabilitation effectiveness (clinical-scales and neurophysiological-measures) of robotic-therapy training sessions with dose-matched conventional therapy in patients with stroke. Methods A pilot prospective parallel randomized controlled study at clinical settings was designed for patients with stroke within 2 years of chronicity. Patients were randomly assigned to receive an intervention of 20 sessions of 45 min each, five days a week for four weeks, in Robotic-therapy Group (RG) (n = 12) and conventional upper-limb rehabilitation in Control-Group (CG) (n = 11). We intended to evaluate the effects of a novel exoskeleton based therapy on the functional rehabilitation outcomes of upper-limb and cortical-excitability in patients with stroke as compared to the conventional-rehabilitation. Clinical-scales– Modified Ashworth Scale, Active Range of Motion, Barthel-Index, Brunnstrom-stage and Fugl-Meyer (FM) scale and neurophysiological measures of cortical-excitability (using Transcranial Magnetic Stimulation) –Motor Evoked Potential and Resting Motor threshold, were acquired pre- and post-therapy. Results No side effects were noticed in any of the patients. Both RG and CG showed significant (p < 0.05) improvement in all clinical motor-outcomes except Modified Ashworth Scale in CG. RG showed significantly (p < 0.05) higher improvement over CG in Modified Ashworth Scale, Active Range of Motion and Fugl-Meyer scale and FM Wrist-/Hand component. An increase in cortical-excitability in ipsilesional-hemisphere was found to be statistically significant (p < 0.05) in RG over CG, as indexed by a decrease in Resting Motor Threshold and increase in the amplitude of Motor Evoked Potential. No significant changes were shown by the contralesional-hemisphere. Interhemispheric RMT-asymmetry evidenced significant (p < 0.05) changes in RG over CG indicating increased cortical-excitability in ipsilesional-hemisphere along with interhemispheric changes. Conclusion Robotic-exoskeleton training showed improvement in motor outcomes and cortical-excitability in patients with stroke. Neurophysiological changes in RG could most likely be a consequence of plastic reorganization and use-dependent plasticity. Trial registry number: ISRCTN95291802 Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00867-7.
Collapse
Affiliation(s)
- Neha Singh
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), New Delhi, India
| | - Megha Saini
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All Indian Institute of Medical Sciences (AIIMS), New Delhi, India
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amit Mehndiratta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), New Delhi, India. .,Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
10
|
Pila O, Koeppel T, Grosmaire AG, Duret C. Comparison of active-assisted and active-unassisted robot-mediated upper limb therapy in subacute stroke. Restor Neurol Neurosci 2021; 39:1-7. [PMID: 33285649 DOI: 10.3233/rnn-201010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Upper-limb robot-mediated therapy is usually carried out in active-assisted mode because it enables performance of many movements. However, assistance may reduce the patient's own efforts which could limit motor recovery. OBJECTIVE The aim of this study was to compare the effects of active-assisted and active-unassisted robotic interactions on motor recovery in subacute stroke patients with moderate hemiparesis. METHODS Fourteen patients underwent a 6-week combined upper limb program of usual therapy and robotic therapy using either the active-unassisted (n = 8) or active-assisted (n = 6) modes. In the active-assisted group, assistance was only provided for the first 3 weeks (1st period) and was then switched off for the remaining 3 weeks (2nd period). The Fugl-Meyer Assessment (FMA) was carried out pre- and post-treatment. The mean number of movements performed and the mean working distance during the 1st and 2nd periods were compared between groups. RESULTS FMA score improved post-treatment in both groups with no between-group differences: active-assisted group: +8±6 pts vs active-unassisted group: +10±6 pts (ns). Between the 1st and 2nd periods, there was a statistical trend towards an improvement in the number of movements performed (p = 0.06) in the active-unassisted group (526±253 to 783±434, p = 0.06) but not in the active-assisted group (882±211 to 880±297, ns). Another trend of improvement was found for the working distance in the active-unassisted group (8.7±4.5 to 9.9±4.7, p = 0.09) but not in the active-assisted group (14.0±0 to 13.5±1.1, ns). CONCLUSIONS The superiority of the non-assistive over assistive robotic modes has not been demonstrated. However, the non-assistive mode did not appear to reduce motor recovery in this population, despite the performance of fewer movements on shorter working distance compared with the group who had assistance. It seems that the requirement of effort could be a determinant factor for recovery in neurorehabilitation however further well-design studies are needed to fully understand this phenomenon.
Collapse
Affiliation(s)
- Ophélie Pila
- Microentreprise Recherche Clinique, Pila, Saint-Jean-d'Illac, France
| | - Typhaine Koeppel
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Unité de Neurorééducation, Boissise-Le-Roi, France
| | - Anne-Gaëlle Grosmaire
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Unité de Neurorééducation, Boissise-Le-Roi, France
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Unité de Neurorééducation, Boissise-Le-Roi, France.,Centre Hospitalier Sud Francilien, Neurologie, Corbeil-Essonnes, France
| |
Collapse
|
11
|
Brown SR, Washabaugh EP, Dutt-Mazumder A, Wojtys EM, Palmieri-Smith RM, Krishnan C. Functional Resistance Training to Improve Knee Strength and Function After Acute Anterior Cruciate Ligament Reconstruction: A Case Study. Sports Health 2020; 13:136-144. [PMID: 33337984 DOI: 10.1177/1941738120955184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Thigh muscle weakness after anterior cruciate ligament reconstruction (ACLR) can persist after returning to activity. While resistance training can improve muscle function, "nonfunctional" training methods are not optimal for inducing transfer of benefits to activities such as walking. Here, we tested the feasibility of a novel functional resistance training (FRT) approach to restore strength and function in an individual with ACLR. HYPOTHESIS FRT would improve knee strength and function after ACLR. STUDY DESIGN Case report. LEVEL OF EVIDENCE Level 5. METHODS A 15-year-old male patient volunteered for an 8-week intervention where he performed 30 minutes of treadmill walking, 3 times per week, while wearing a custom-designed knee brace that provided resistance to the thigh muscles of his ACLR leg. Thigh strength, gait mechanics, and corticospinal and spinal excitability were assessed before and immediately after the 8-week intervention. Voluntary muscle activation was evaluated immediately after the intervention. RESULTS Knee extensor and flexor strength increased in the ACLR leg from pre- to posttraining (130 to 225 N·m [+74%] and 44 to 88 N·m [+99%], respectively) and increases in between-limb extensor and flexor strength symmetry (45% to 92% [+74%] and 47% to 72% [+65%], respectively) were also noted. After the intervention, voluntary muscle activation in the ACLR leg was 72%, compared with the non-ACLR leg at 75%. Knee angle and moment during late stance phase decreased (ie, improved) in the ACLR leg and appeared more similar to the non-ACLR leg after FRT training (18° to 14° [-23.4] and 0.07 to -0.02 N·m·kg-1·m-1 [-122.8%], respectively). Corticospinal and spinal excitability in the ACLR leg decreased (3511 to 2511 [-28.5%] and 0.42 to 0.24 [-43.7%], respectively) from pre- to posttraining. CONCLUSION A full 8 weeks of FRT that targeted both quadriceps and hamstring muscles lead to improvements in strength and gait, suggesting that FRT may constitute a promising and practical alternative to traditional methods of resistance training. CLINICAL RELEVANCE FRT may serve as a viable approach to improve knee strength and function after ACL reconstruction.
Collapse
Affiliation(s)
- Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aviroop Dutt-Mazumder
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Michigan Robotics Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Wang Y, Mukaino M, Hirano S, Tanikawa H, Yamada J, Ohtsuka K, Ii T, Saitoh E, Otaka Y. Persistent Effect of Gait Exercise Assist Robot Training on Gait Ability and Lower Limb Function of Patients With Subacute Stroke: A Matched Case-Control Study With Three-Dimensional Gait Analysis. Front Neurorobot 2020; 14:42. [PMID: 32848691 PMCID: PMC7396555 DOI: 10.3389/fnbot.2020.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Gait exercise assist robot (GEAR), a gait rehabilitation robot developed for poststroke gait disorder, has been shown to improve walking speed and to improve the poststroke gait pattern. However, the persistence of its beneficial effect has not been clarified. In this matched case–control study, we assessed the durability of the effectiveness of GEAR training in patients with subacute stroke on the basis of clinical evaluation and three-dimensional (3D) gait analysis. Methods Gait data of 10 patients who underwent GEAR intervention program and 10 patients matched for age, height, sex, affected side, type of stroke, and initial gait ability who underwent conventional therapy were extracted from database. The outcome measures were walk score of Functional Independence Measure (FIM-walk), Stroke Impairment Assessment Set total lower limb motor function score (SIAS-L/E), and 3D gait analysis data (spatiotemporal factors and abnormal gait patter indices) at three time points: baseline, at the end of intervention, and within 1 week before discharge. Results In the GEAR group, the FIM-walk score, SIAS-L/E score, cadence, and single stance time of paretic side at discharge were significantly higher than those at post-training (p < 0.05), whereas the stance time and double support time of the unaffected side, knee extensor thrust, insufficient knee flexion, and external rotated hip of the affected side were significantly lower (p < 005). However, no significant differences in these respects were observed in the control group between the corresponding evaluation time points. Conclusion The results indicated significant improvement in the GEAR group after the training period, with respect to both clinical parameters and the gait pattern indices. This improvement was not evident in the control group after the training period. The results possibly support the effectiveness of GEAR training in conferring persistently efficient gait patterns in patients with poststroke gait disorder. Further studies should investigate the long-term effects of GEAR training in a larger sample.
Collapse
Affiliation(s)
- Yiji Wang
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan.,Department of Spinal Cord Injury Rehabilitation, China Rehabilitation Research Center, Capital Medical University, Beijing, China.,School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Masahiko Mukaino
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Satoshi Hirano
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Junya Yamada
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Kei Ohtsuka
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takuma Ii
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
13
|
Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot 2020; 14:19. [PMID: 32351377 PMCID: PMC7174593 DOI: 10.3389/fnbot.2020.00019] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023] Open
Abstract
Stroke affects one out of every six people on Earth. Approximately 90% of stroke survivors have some functional disability with mobility being a major impairment, which not only affects important daily activities but also increases the likelihood of falling. Originally intended to supplement traditional post-stroke gait rehabilitation, robotic systems have gained remarkable attention in recent years as a tool to decrease the strain on physical therapists while increasing the precision and repeatability of the therapy. While some of the current methods for robot-assisted rehabilitation have had many positive and promising outcomes, there is moderate evidence of improvement in walking and motor recovery using robotic devices compared to traditional practice. In order to better understand how and where robot-assisted rehabilitation has been effective, it is imperative to identify the main schools of thought that have prevailed. This review intends to observe those perspectives through three different lenses: the goal and type of interaction, the physical implementation, and the sensorimotor pathways targeted by robotic devices. The ways that researchers approach the problem of restoring gait function are grouped together in an intuitive way. Seeing robot-assisted rehabilitation in this unique light can naturally provoke the development of new directions to potentially fill the current research gaps and eventually discover more effective ways to provide therapy. In particular, the idea of utilizing the human inter-limb coordination mechanisms is brought up as an especially promising area for rehabilitation and is extensively discussed.
Collapse
Affiliation(s)
| | - Panagiotis Artemiadis
- Human-Oriented Robotics and Control Laboratory, Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
14
|
Iyer SS, Joseph JV, Vashista V. Evolving Toward Subject-Specific Gait Rehabilitation Through Single-Joint Resistive Force Interventions. Front Neurorobot 2020; 14:15. [PMID: 32226372 PMCID: PMC7080984 DOI: 10.3389/fnbot.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 11/25/2022] Open
Abstract
Walking is one of the most relevant tasks that a person performs in their daily routine. Despite its mechanical complexities, any change in the external conditions that applies some external perturbation, or in the human musculoskeletal system that limits an individual's movement, entails a motor response that can either be compensatory or adaptive in nature. Incidentally, with aging or due to the occurrence of a neuro-musculoskeletal disorder, a combination of such changes including reduced sensory perception, muscle weakness, spasticity, etc. has been reported, and this can significantly degrade the human walking performance. Various studies in gait rehabilitation literature have identified a need for the development of better rehabilitation paradigms and have implied that an efficient human robot interaction is critical. Understanding how humans respond to a particular gait alteration can be beneficial in designing an effective rehabilitation paradigm. In this context, the current work investigates human locomotor adaptation to resistive alteration to the hip and ankle strategies of walking. A cable-driven robotic system, which does not add mobility constraints, was used to implement resistive force interventions within the hip and ankle joints separately through two experiments with eight healthy adult participants in each. In both cases, the intervention was applied during the push-off phase of walking, i.e., from pre-swing to terminal swing. The results showed that subjects in both groups adopted a compensatory response to the applied intervention and demonstrated intralimb and interlimb adaptation. Overall, the participants demonstrated a deviant gait implying lower limb musculoskeletal adjustments as if to compensate for a hip or ankle abnormality.
Collapse
Affiliation(s)
- S Srikesh Iyer
- Human Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Joel V Joseph
- Human Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Vineet Vashista
- Human Centered Robotics Lab, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
15
|
Day KA, Cherry-Allen KM, Bastian AJ. Individualized feedback to change multiple gait deficits in chronic stroke. J Neuroeng Rehabil 2019; 16:158. [PMID: 31870390 PMCID: PMC6929463 DOI: 10.1186/s12984-019-0635-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background Walking deficits in people post-stroke are often multiple and idiosyncratic in nature. Limited patient and therapist resources necessitate prioritization of deficits such that some may be left unaddressed. More efficient delivery of therapy may alleviate this challenge. Here, we look to determine the utility of a novel principal component-based visual feedback system that targets multiple, patient-specific features of gait in people post-stroke. Methods Ten individuals with stroke received two sessions of visual feedback to attain a walking goal. This goal consisted of bilateral knee and hip joint angles of a typical ‘healthy’ walking pattern. The feedback system uses principal component analysis (PCA) to algorithmically weight each of the input features so that participants received one stream of performance feedback. In the first session, participants had to explore different patterns to achieve the goal, and in the second session they were informed of the goal walking pattern. Ten healthy, age-matched individuals received the same paradigm, but with a hemiparetic goal (i.e. to produce the pattern of an exemplar stroke participant). This was to distinguish the extent to which performance limitations in stroke were due neurological injury or the PCA based visual feedback itself. Results Principal component-based visual feedback can differentially bias multiple features of walking toward a prescribed goal. On average, individuals with stroke typically improved performance via increased paretic knee and hip flexion, and did not perform better with explicit instruction. In contrast, healthy people performed better (i.e. could produce the desired exemplar stroke pattern) in both sessions, and were best with explicit instruction. Importantly, the feedback for stroke participants accommodated a heterogeneous set of walking deficits by individually weighting each feature based on baseline walking. Conclusions People with and without stroke are able to use this novel visual feedback to train multiple, specific features of gait. Important for stroke, the PCA feedback allowed for targeting of patient-specific deficits. This feedback is flexible to any feature of walking in any plane of movement, thus providing a potential tool for therapists to simultaneously target multiple aberrant features of gait.
Collapse
Affiliation(s)
- Kevin A Day
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, USA. .,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kendra M Cherry-Allen
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy J Bastian
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Am J Phys Med Rehabil 2019; 98:58-64. [PMID: 30142092 DOI: 10.1097/phm.0000000000001027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to compare the effects of progressive reducing assistance force versus full assistance force controlled robot-assisted gait training combined with conventional physiotherapy on locomotor functions in patients with subacute stroke. DESIGN Inpatients with subacute stroke (N = 29; 16 men; Functional Ambulation Category score = 1 ± 0.9) were randomly assigned to one of two groups: a progressive reducing assistance force group (n = 15) or a full assistance force group (n = 14). The progressive reducing assistance force group performed robot-assisted gait training sessions from 100% assistance force at the outset to 60% assistance force at the end of the robot-assisted gait training, whereas the full assistance force group received 100% assistance force throughout the robot-assisted gait training sessions. Both groups performed robot-assisted gait training combined with conventional physiotherapy 5 days a week for 4 wks. After intervention, all patients then underwent only conventional physiotherapy 5 days a week for 4 wks of follow-up. RESULTS The Mann-Whitney U test between-group comparisons showed that improvements were significantly greater in the progressive reducing assistance force group for the Functional Ambulation Category, knee extensors torque, and Berg Balance Scale relative to the full assistance force group, both at postintervention and at follow-up. CONCLUSIONS Progressive reducing assistance force control during robot-assisted gait training combined with conventional physiotherapy may be more beneficial for improving locomotor functions in patients with subacute stroke.
Collapse
|
17
|
Hordacre B, Ghosh R, Goldsworthy MR, Ridding MC. Transcranial Magnetic Stimulation-EEG Biomarkers of Poststroke Upper-Limb Motor Function. J Stroke Cerebrovasc Dis 2019; 28:104452. [PMID: 31635964 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Motor evoked potentials obtained with transcranial magnetic stimulation (TMS) can provide valuable information to inform stroke neurophysiology and recovery but are difficult to obtain in all stroke survivors due to high stimulation thresholds. OBJECTIVE To determine whether transcranial magnetic stimulation evoked potentials (TEPs) evoked using a lower stimulus intensity, below that necessary for recording motor evoked potentials, could serve as a marker of poststroke upper-limb motor function and were different compared to healthy adults. METHODS Eight chronic stroke survivors (66 ± 21 years) and 15 healthy adults (53 ± 10 years) performed a motor function task using a customized grip-lift manipulandum. TMS was applied to the lesioned motor cortex, with TEPs recorded using simultaneous high-definition electroencephalography (EEG). RESULTS Stroke participants demonstrated greater hold ratio with the manipulandum. Cluster-based statistics revealed larger P30 amplitude in stroke participants, with significant clusters over frontal (P = .016) and parietal-occipital electrodes (P = .023). There was a negative correlation between the N45 peak amplitude and hold ratio in stroke participants (r = -.83, P = .02), but not controls. CONCLUSIONS TEPs can be recorded using lower stimulus intensities in chronic stroke. The global P30 TEP response differed between stroke participants and healthy controls, with results suggesting that the TEP can be used as a biomarker of upper-limb behavior.
Collapse
Affiliation(s)
- Brenton Hordacre
- Innovation, Implementation and Clinical Translation in Health (IIMPACT), Division of Health Sciences, University of South Australia, Adelaide, Australia.
| | - Rukmini Ghosh
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Mitchell R Goldsworthy
- The Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Michael C Ridding
- Innovation, Implementation and Clinical Translation in Health (IIMPACT), Division of Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
18
|
Boehm WL, Gruben KG. Development of KIINCE: A kinetic feedback-based robotic environment for study of neuromuscular coordination and rehabilitation of human standing and walking. J Rehabil Assist Technol Eng 2019; 5:2055668318793585. [PMID: 31191950 PMCID: PMC6453043 DOI: 10.1177/2055668318793585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction The objective of this article is to introduce the robotic platform KIINCE and
its emphasis on the potential of kinetic objectives for studying and
training human walking and standing. The device is motivated by the need to
characterize and train lower limb muscle coordination to address balance
deficits in impaired walking and standing. Methods The device measures the forces between the user and his or her environment,
particularly the force of the ground on the feet (F) that
reflects lower limb joint torque coordination. In an environment that allows
for exploration of the user’s capabilities, various forms of real-time
feedback guide neural training to produce F appropriate for
remaining upright. Control of the foot plate motion is configurable and may
be user driven or prescribed. Design choices are motivated from theory of
motor control and learning as well as empirical observations of
F during walking and standing. Results Preliminary studies of impaired individuals demonstrate the feasibility and
potential utility of patient interaction with kinetic immersive interface
for neuromuscular coordination enhancement. Conclusion Applications include study and rehabilitation of standing and walking after
injury, amputation, and neurological insult, with an initial focus on stroke
discussed here.
Collapse
Affiliation(s)
- Wendy L Boehm
- Department of Biomedical Engineering, Northwestern University, Chicago, USA
| | - Kreg G Gruben
- Department of Kinesiology, University of Wisconsin, Madison, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| |
Collapse
|
19
|
Rouse CA, Downey RJ, Gregory CM, Cousin CA, Duenas VH, Dixon WE. FES Cycling in Stroke: Novel Closed-Loop Algorithm Accommodates Differences in Functional Impairments. IEEE Trans Biomed Eng 2019; 67:738-749. [PMID: 31170062 DOI: 10.1109/tbme.2019.2920346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The objective of this paper was to develop and test a novel control algorithm that enables stroke survivors to pedal a cycle in a desired cadence range despite varying levels of functional abilities after stroke. METHODS A novel algorithm was developed which automatically adjusts 1) the intensity of functional electrical stimulation (FES) delivered to the leg muscles, and 2) the current delivered to an electric motor. The algorithm automatically switches between assistive, uncontrolled, and resistive modes to accommodate for differences in functional impairment, based on the mismatch between the desired and actual cadence. Lyapunov-based methods were used to theoretically prove that the rider's cadence converges to the desired cadence range. To demonstrate the controller's real-world performance, nine chronic stroke survivors performed two cycling trials: 1) volitional effort only and 2) volitional effort accompanied by the control algorithm assisting and resisting pedaling as needed. RESULTS With a desired cadence range of 50-55 r/min, the developed controller resulted in an average rms cadence error of 1.90 r/min, compared to 6.16 r/min during volitional-only trials. CONCLUSION Using FES and an electric motor with a two-sided cadence control objective to assist and resist volitional efforts enabled stroke patients with varying strength and abilities to pedal within a desired cadence range. SIGNIFICANCE A protocol design that constrains volitional movements with assistance and resistance from FES and a motor shows potential for FES cycles and other rehabilitation robots during stroke rehabilitation.
Collapse
|
20
|
McCain EM, Dick TJM, Giest TN, Nuckols RW, Lewek MD, Saul KR, Sawicki GS. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. J Neuroeng Rehabil 2019; 16:57. [PMID: 31092269 PMCID: PMC6521500 DOI: 10.1186/s12984-019-0523-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ankle exoskeletons offer a promising opportunity to offset mechanical deficits after stroke by applying the needed torque at the paretic ankle. Because joint torque is related to gait speed, it is important to consider the user's gait speed when determining the magnitude of assistive joint torque. We developed and tested a novel exoskeleton controller for delivering propulsive assistance which modulates exoskeleton torque magnitude based on both soleus muscle activity and walking speed. The purpose of this research is to assess the impact of the resulting exoskeleton assistance on post-stroke walking performance across a range of walking speeds. METHODS Six participants with stroke walked with and without assistance applied to a powered ankle exoskeleton on the paretic limb. Walking speed started at 60% of their comfortable overground speed and was increased each minute (n00, n01, n02, etc.). We measured lower limb joint and limb powers, metabolic cost of transport, paretic and non-paretic limb propulsion, and trailing limb angle. RESULTS Exoskeleton assistance increased with walking speed, verifying the speed-adaptive nature of the controller. Both paretic ankle joint power and total limb power increased significantly with exoskeleton assistance at six walking speeds (n00, n01, n02, n03, n04, n05). Despite these joint- and limb-level benefits associated with exoskeleton assistance, no subject averaged metabolic benefits were evident when compared to the unassisted condition. Both paretic trailing limb angle and integrated anterior paretic ground reaction forces were reduced with assistance applied as compared to no assistance at four speeds (n00, n01, n02, n03). CONCLUSIONS Our results suggest that despite appropriate scaling of ankle assistance by the exoskeleton controller, suboptimal limb posture limited the conversion of exoskeleton assistance into forward propulsion. Future studies could include biofeedback or verbal cues to guide users into limb configurations that encourage the conversion of mechanical power at the ankle to forward propulsion. TRIAL REGISTRATION N/A.
Collapse
Affiliation(s)
- Emily M McCain
- North Carolina State University, 911 Oval Drive, Raleigh, NC, 27606, USA.
| | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Tracy N Giest
- North Carolina State University, 911 Oval Drive, Raleigh, NC, 27606, USA
| | | | - Michael D Lewek
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine R Saul
- North Carolina State University, 911 Oval Drive, Raleigh, NC, 27606, USA
| | | |
Collapse
|
21
|
Krishnan C. Learning and interlimb transfer of new gait patterns are facilitated by distributed practice across days. Gait Posture 2019; 70:84-89. [PMID: 30831544 PMCID: PMC6474794 DOI: 10.1016/j.gaitpost.2019.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous studies have shown that the extent to which learning with one limb transfers to the opposite, untrained limb (i.e., interlimb transfer) is proportional to the amount of prior learning (or skill acquisition) that has occurred in the training limb. Thus, it is likely that distributed practice-a training strategy that is known to facilitate learning-will result in greater interlimb transfer than massed practice. RESEARCH QUESTION To evaluate the effects of massed and distributed practice on acquisition and interlimb transfer of leg motor skills during walking. METHODS Forty-five subjects learned a new gait pattern that required greater hip and knee flexion during the swing phase of gait. The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. Subjects in the massed practice group (n = 20) learned the task on a single day, whereas subjects in the distributed practice group (n = 25) learned the task that was spaced over two consecutive days (training phase). Following completion of training, subjects in both groups practiced the task with their untrained, opposite leg to evaluate interlimb transfer (transfer phase). RESULTS Results indicated that the amount of skill acquisition (i.e., reductions in tracking error) on the training leg was significantly higher (P < 0.05) in the distributed practice group when compared with the massed practice group. Similarly, the amount of interlimb transfer was also significantly higher (P < 0.05) in the distributed practice group both at the beginning and end of the transfer phase. SIGNIFICANCE The findings indicate that acquisition and interlimb transfer of leg motor skills are significantly greater when the task was learned using distributed practice, which may have implications for gait rehabilitation in individuals with unilateral deficits, such as stroke.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA,Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA,School of Kinesiology, University of Michigan, Ann Arbor, MI, USA,Address for Correspondence: Chandramouli Krishnan, PT, PhD, Director, Neuromuscular & Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, 325 E Eisenhower Parkway (Suite 3013), Ann Arbor, MI – 48108, Phone: (319) 321-0117, Fax: (734-615-1770),
| |
Collapse
|
22
|
Washabaugh EP, Treadway E, Gillespie RB, Remy CD, Krishnan C. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Restor Neurol Neurosci 2019; 36:693-708. [PMID: 30400120 DOI: 10.3233/rnn-180830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robotic rehabilitation is a highly promising approach to recover lost functions after stroke or other neurological disorders. Unfortunately, robotic rehabilitation currently suffers from "motor slacking", a phenomenon in which the human motor system reduces muscle activation levels and movement excursions, ostensibly to minimize metabolic- and movement-related costs. Consequently, the patient remains passive and is not fully engaged during therapy. To overcome this limitation, we envision a new class of body-powered robots and hypothesize that motor slacking could be reduced if individuals must provide the power to move their impaired limbs via their own body (i.e., through the motion of a healthy limb). OBJECTIVE To test whether a body-powered exoskeleton (i.e. robot) could reduce motor slacking during robotic training. METHODS We developed a body-powered robot that mechanically coupled the motions of the user's elbow joints. We tested this passive robot in two groups of subjects (stroke and able-bodied) during four exercise conditions in which we controlled whether the robotic device was powered by the subject or by the experimenter, and whether the subject's driven arm was engaged or at rest. Motor slacking was quantified by computing the muscle activation changes of the elbow flexor and extensor muscles using surface electromyography. RESULTS Subjects had higher levels of muscle activation in their driven arm during self-powered conditions compared to externally-powered conditions. Most notably, subjects unintentionally activated their driven arm even when explicitly told to relax when the device was self-powered. This behavior was persistent throughout the trial and did not wane after the initiation of the trial. CONCLUSIONS Our findings provide novel evidence indicating that motor slacking can be reduced by self-powered robots; thus demonstrating promise for rehabilitation of impaired subjects using this new class of wearable system. The results also serve as a foundation to develop more sophisticated body-powered robots (e.g., with controllable transmissions) for rehabilitation purposes.
Collapse
Affiliation(s)
- Edward P Washabaugh
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Emma Treadway
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - R Brent Gillespie
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - C David Remy
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- NeuRRo Lab, Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Michigan Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Marchal-Crespo L, Tsangaridis P, Obwegeser D, Maggioni S, Riener R. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern. Front Neurosci 2019; 13:61. [PMID: 30837824 PMCID: PMC6390202 DOI: 10.3389/fnins.2019.00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/21/2019] [Indexed: 11/22/2022] Open
Abstract
Robotic algorithms that augment movement errors have been proposed as promising training strategies to enhance motor learning and neurorehabilitation. However, most research effort has focused on rehabilitation of upper limbs, probably because large movement errors are especially dangerous during gait training, as they might result in stumbling and falling. Furthermore, systematic large movement errors might limit the participants' motivation during training. In this study, we investigated the effect of training with novel error modulating strategies, which guarantee a safe training environment, on motivation and learning of a modified asymmetric gait pattern. Thirty healthy young participants walked in the exoskeletal robotic system Lokomat while performing a foot target-tracking task, which required an increased hip and knee flexion in the dominant leg. Learning the asymmetric gait pattern with three different strategies was evaluated: (i) No disturbance: no robot disturbance/guidance was applied, (ii) haptic error amplification: unsafe and discouraging large errors were limited with haptic guidance, while haptic error amplification enhanced awareness of small errors relevant for learning, and (iii) visual error amplification: visually observed errors were amplified in a virtual reality environment. We also evaluated whether increasing the movement variability during training by adding randomly varying haptic disturbances on top of the other training strategies further enhances learning. We analyzed participants' motor performance and self-reported intrinsic motivation before, during and after training. We found that training with the novel haptic error amplification strategy did not hamper motor adaptation and enhanced transfer of the practiced asymmetric gait pattern to free walking. Training with visual error amplification, on the other hand, increased errors during training and hampered motor learning. Participants who trained with visual error amplification also reported a reduced perceived competence. Adding haptic disturbance increased the movement variability during training, but did not have a significant effect on motor adaptation, probably because training with haptic disturbance on top of visual and haptic error amplification decreased the participants' feelings of competence. The proposed novel haptic error modulating controller that amplifies small task-relevant errors while limiting large errors outperformed visual error augmentation and might provide a promising framework to improve robotic gait training outcomes in neurological patients.
Collapse
Affiliation(s)
- Laura Marchal-Crespo
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Panagiotis Tsangaridis
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - David Obwegeser
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Serena Maggioni
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
- Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, Medical Faculty, University of Zurich, Zurich, Switzerland
- Hocoma AG, Volketswil, Switzerland
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
- Reharobotics Group, Spinal Cord Injury Center, Balgrist University Hospital, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Washabaugh EP, Krishnan C. A wearable resistive robot facilitates locomotor adaptations during gait. Restor Neurol Neurosci 2018. [PMID: 29526856 DOI: 10.3233/rnn-170782] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robotic-resisted treadmill walking is a form of task-specific training that has been used to improve gait function in individuals with neurological injury, such as stroke, spinal cord injury, or cerebral palsy. Traditionally, these devices use active elements (e.g., motors or actuators) to provide resistance during walking, making them bulky, expensive, and less suitable for overground or in-home rehabilitation. We recently developed a low-cost, wearable robotic brace that generates resistive torques across the knee joint using a simple magnetic brake. However, the possible effects of training with this device on gait function in a clinical population are currently unknown. OBJECTIVE The purpose of this study was to test the acute effects of resisted walking with this device on kinematics, muscle activation patterns, and gait velocity in chronic stroke survivors. METHODS Six stroke survivors wore the resistive brace and walked on a treadmill for 20 minutes (4×5 minutes) at their self-selected walking speed while simultaneously performing a foot trajectory-tracking task to minimize stiff-knee gait. Electromyography, sagittal plane gait kinematics, and overground gait velocity were collected to evaluate the acute effects of the device on gait function. RESULTS Robotic-resisted treadmill training resulted in a significant increase in quadriceps and hamstring EMG activity during walking. Significant aftereffects (i.e., improved joint excursions) were also observed on the hip and knee kinematics, which persisted for several steps after training. More importantly, training resulted in significant improvements in overground gait velocity. These results were consistent in all the subjects tested. CONCLUSION This study provides preliminary evidence indicating that robotic-resisted treadmill walking using our knee brace can result in meaningful biomechanical aftereffects that translate to overground walking.
Collapse
Affiliation(s)
- Edward P Washabaugh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Cherry-Allen KM, Statton MA, Celnik PA, Bastian AJ. A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke. Neurorehabil Neural Repair 2018; 32:810-820. [PMID: 30086670 DOI: 10.1177/1545968318792623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gait impairments after stroke arise from dysfunction of one or several features of the walking pattern. Traditional rehabilitation practice focuses on improving one component at a time, which may leave certain features unaddressed or prolong rehabilitation time. Recent work shows that neurologically intact adults can learn multiple movement components simultaneously. OBJECTIVE To determine whether a dual-learning paradigm, incorporating 2 distinct motor tasks, can simultaneously improve 2 impaired components of the gait pattern in people posttroke. METHODS Twelve individuals with stroke participated. Participants completed 2 sessions during which they received visual feedback reflecting paretic knee flexion during walking. During the learning phase of the experiment, an unseen offset was applied to this feedback, promoting increased paretic knee flexion. During the first session, this task was performed while walking on a split-belt treadmill intended to improve step length asymmetry. During the second session, it was performed during tied-belt walking. RESULTS The dual-learning task simultaneously increased paretic knee flexion and decreased step length asymmetry in the majority of people post-stroke. Split-belt treadmill walking did not significantly interfere with joint-angle learning: participants had similar rates and magnitudes of joint-angle learning during both single and dual-learning conditions. Participants also had significant changes in the amount of paretic hip flexion in both single and dual-learning conditions. CONCLUSIONS People with stroke can perform a dual-learning paradigm and change 2 clinically relevant gait impairments in a single session. Long-term studies are needed to determine if this strategy can be used to efficiently and permanently alter multiple gait impairments.
Collapse
Affiliation(s)
| | | | - Pablo A Celnik
- 1 The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amy J Bastian
- 1 The Johns Hopkins School of Medicine, Baltimore, MD, USA.,2 Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
26
|
Itoh N, Imoto D, Kubo S, Takahashi K, Hishikawa N, Mikami Y, Kubo T. Gait training using a stationary, one-leg gait exercise assist robot for chronic stroke hemiplegia: a case report. J Phys Ther Sci 2018; 30:1046-1051. [PMID: 30154598 PMCID: PMC6110205 DOI: 10.1589/jpts.30.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/07/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The Gait Exercise Assist Robot (GEAR) is a stationary, one-leg robot for gait training. The purpose of this case study was to evaluate the efficacy of rehabilitation using GEAR training for chronic stroke hemiplegia. [Participant and Methods] The participant was a 66-year-old male stroke survivor with left hemiparesis due to a right putaminal hemorrhage. He could walk slowly under supervision, although his gait had a constant forward trunk lean, with flexed knee, and a lack of hip extension movement on the affected side. Gait training using GEAR and physical therapy were performed for 14 days. Under both training conditions, the physical therapist made the participant conscious of extension movement of the hip joint in the affected-side stance phase. The robotic assistance was adjusted to maximize voluntary movement while observing gait. Physical function and gait ability parameters were evaluated before and after training. [Results] After training, extension motion of the hip joint increased in the affected-side stance phase, and body weight was transferred smoothly onto the affected-side limb, leading to an improvement in gait speed. [Conclusion] Gait training using GEAR and physical therapy may improve gait pattern and speed in patients with chronic stroke hemiplegia.
Collapse
Affiliation(s)
- Norihide Itoh
- Department of Advanced Rehabilitation, Kyoto Prefectural University of Medicine: 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Daisuke Imoto
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Shuichi Kubo
- Department of Rehabilitation, University Hospital, Kyoto Prefectural University of Medicine, Japan
| | - Kota Takahashi
- Department of Rehabilitation, University Hospital, Kyoto Prefectural University of Medicine, Japan
| | - Norikazu Hishikawa
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Yasuo Mikami
- Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan.,Department of Rehabilitation, University Hospital, Kyoto Prefectural University of Medicine, Japan
| | - Toshikazu Kubo
- Department of Advanced Rehabilitation, Kyoto Prefectural University of Medicine: 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan.,Department of Rehabilitation, University Hospital, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
27
|
Krishnan C, Washabaugh EP, Reid CE, Althoen MM, Ranganathan R. Learning new gait patterns: Age-related differences in skill acquisition and interlimb transfer. Exp Gerontol 2018; 111:45-52. [PMID: 29981399 DOI: 10.1016/j.exger.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/11/2023]
Abstract
Evidence from upper-extremity literature suggests that the normal ageing process affects an individual's ability to learn and retain a motor skill, but spares their ability to transfer the skill to the untrained, opposite limb. While this phenomenon has been well-studied in the upper-extremity, evidence in the lower-extremity is limited. Further, it is unclear to what extent age-related differences in motor learning and transfer are dependent on visual feedback of the motor task. Therefore, the purpose of this study was to examine the effects of ageing on motor learning, retention, and interlimb transfer during walking with and without visual feedback. Forty-four subjects (24 young; 20 older adults) were tested on a treadmill over two consecutive days. On day 1, subjects learned a new gait pattern by performing a foot-trajectory tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. On day 2, subjects repeated the task with their training leg to test retention, then with their untrained leg to test interlimb transfer. Trials without visual feedback were also collected on both days. Results indicated that older adults had reduced ability to learn the task, and also exhibited lower retention and inter-limb transfer. However, these differences were dependent on visual feedback as the groups performed similarly when feedback was removed. The findings provide novel evidence indicating that ageing impairs learning, retention, and transfer of motor skills in the lower-extremity during walking, which may have implications for gait therapy after stroke and other geriatric conditions.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Edward P Washabaugh
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Courtney E Reid
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Matteo M Althoen
- Department of Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Leon D, Cortes M, Elder J, Kumru H, Laxe S, Edwards DJ, Tormos JM, Bernabeu M, Pascual-Leone A. tDCS does not enhance the effects of robot-assisted gait training in patients with subacute stroke. Restor Neurol Neurosci 2018; 35:377-384. [PMID: 28697574 DOI: 10.3233/rnn-170734] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique, which can modulate cortical excitability and combined with rehabilitation therapies may improve motor recovery after stroke. OBJECTIVE Our aim was to study the feasibility of a 4-week robotic gait training protocol combined with tDCS, and to study tDCS to the leg versus hand motor cortex or sham to improve walking ability in patients after a subacute stroke. METHODS Forty-nine subacute stroke patients underwent 20 daily sessions (5 days a week for 4 weeks) of robotic gait training combined with tDCS. Patients were assigned either to the tDCSleg group (n = 9), receiving 2 mA anodal tDCS over the motor cortex leg representation (vertex), or an active control group (n = 17) receiving anodal tDCS over the hand motor cortex area (tDCShand). In addition, we studied 23 matched patients in a control group receiving gait training without tDCS (notDCS). Study outcomes included gait speed (10-meter walking test), and quality of gait, using the Functional Ambulatory Category (FAC) before and after the 4-week training period. RESULTS Only one patient did not complete the treatment because he presented a minor side-effect. Patients in all three groups showed a significantly improvement in gait speed and FAC. The tDCSleg group did not perform better than the tDCShand or notDCS group. CONCLUSION Combined tDCS and robotic training is a safe and feasible procedure in subacute stroke patients. However, adding tDCS to robot-assisted gait training shows no benefit over robotic gait training alone.
Collapse
Affiliation(s)
- Daniel Leon
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Mar Cortes
- Human Spinal Cord Injury Laboratory, Burke Medical Research Institute, White Plains, NY, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA.,Universitat de Barcelona, Gran Via de les Corts Catalanes, Barcelona, Spain
| | - Jessica Elder
- Department of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Sara Laxe
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Dylan James Edwards
- Brain Stimulation and Robotics Laboratory, Burke Medical Research Institute, White Plains, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Josep Maria Tormos
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Montserrat Bernabeu
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Univ Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Alvaro Pascual-Leone
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona -Barcelona, Spain.,Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Jin X, Prado A, Agrawal SK. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective? IEEE Trans Neural Syst Rehabil Eng 2018; 26:847-855. [DOI: 10.1109/tnsre.2018.2815656] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Hirano S, Saitoh E, Tanabe S, Tanikawa H, Sasaki S, Kato D, Kagaya H, Itoh N, Konosu H. The features of Gait Exercise Assist Robot: Precise assist control and enriched feedback. NeuroRehabilitation 2018; 41:77-84. [PMID: 28505990 DOI: 10.3233/nre-171459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In a patient with severe hemiplegia, the risk of the knee giving way is high during the early stage of gait exercise with an ankle-foot orthosis. However, use of a knee-ankle-foot orthosis has many problems such as large amount of assistance and compensatory motions. To resolve these problems, we have engaged in the development of the Gait Exercise Assist Robot (GEAR). OBJECTIVE To evaluate the improvement efficiency of walk with GEAR in a stroke patient. METHODS The subject was a 70-year-old man presented with left thalamus hemorrhage and right hemiplegia. The patient underwent exercise with the GEAR 5 days a week, for 40 minutes per day. We evaluated the Functional Independence Measure score for walk (FIM-walk score) every week. The control group consisted of 15 patients aged 20-75 years with hemiplegia after primary stroke, who had equivalent walking ability with the subject at start. As the primary outcome, we defined improvement efficiency of FIM-walk, which was gain of FIM-walk divided the number of required weeks. RESULTS Improvement efficiency of FIM-walk of the subject was 1.5, while that of control group was 0.48±3.2 (mean±SD). CONCLUSIONS GEAR is potentially useful for gait exercise in hemiplegic patients.
Collapse
Affiliation(s)
- Satoshi Hirano
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Shinya Sasaki
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Daisuke Kato
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Japan
| | - Hitoshi Kagaya
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Norihide Itoh
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan.,Department of Advanced Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Konosu
- Partner Robot Division, Toyota Motor Corporation, Toyota, Japan
| |
Collapse
|
31
|
Abstract
SUMMARYIn this work, we propose a method able to find user-oriented gait trajectories that can be used in powered lower limb orthosis applications. Most research related to active orthotic devices focuses on solving hardware issues. However, the problem of generating a set of joint trajectories that are user-oriented still persists. The proposed method uses principal component analysis to extract shared features from a gait dataset, taking into consideration gait-related variables such as joint angle information and the user's anthropometric features, used directly in an orthosis application. The trajectories of joint angles used by the model are represented by a given number of harmonics according to their respective Fourier series analyses. This representation allows better performance of the model, whose capability to generate gait information is validated through experiments using a real active orthotic device, analysing both joint motor energy consumption and user metabolic effort.
Collapse
|
32
|
Carvalho I, Pinto SM, Chagas DDV, Praxedes dos Santos JL, de Sousa Oliveira T, Batista LA. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2017; 98:2332-2344. [DOI: 10.1016/j.apmr.2017.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
33
|
Krishnan C, Ranganathan R, Tetarbe M. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer. Gait Posture 2017; 56:24-30. [PMID: 28482202 PMCID: PMC5499689 DOI: 10.1016/j.gaitpost.2017.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023]
Abstract
Several studies have shown that learning a motor skill in one limb can transfer to the opposite limb-a phenomenon called as interlimb transfer. The transfer of motor skills between limbs, however, has shown to be asymmetric, where one side benefits to a greater extent than the other. While this phenomenon has been well-documented in the upper-extremity, evidence for interlimb transfer in the lower-extremity is limited and mixed. This study investigated the extent of interlimb transfer during walking, and tested whether this transfer was asymmetric using a foot trajectory-tracking paradigm that has been specifically used for gait rehabilitation. The paradigm involved learning a new gait pattern which required greater hip and knee flexion during the swing phase of the gait while walking on a treadmill. Twenty young adults were randomized into two equal groups, where one group (right-to-left: RL) practiced the task initially with the dominant right leg and the other group (left-to-right: LR) practiced the task initially with their non-dominant left leg. After training, both groups practiced the task with their opposite leg to test the transfer effects. The changes in tracking error on each leg were computed to quantify learning and transfer effects. The results indicated that practice with one leg improved the motor performance of the other leg; however, the amount of transfer was similar across groups, indicating that there was no asymmetry in transfer. This finding is contradictory to most upper-extremity studies (where asymmetric transfer has been reported) and points out that both differences in neural processes and types of tasks may mediate interlimb transfer.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
| | - Manik Tetarbe
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Stegall P, Zanotto D, Agrawal SK. Variable Damping Force Tunnel for Gait Training Using ALEX III. IEEE Robot Autom Lett 2017; 2:1495-1501. [PMID: 29109981 PMCID: PMC5668690 DOI: 10.1109/lra.2017.2671374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Haptic feedback affects not only the quality of training but can also influence the physical design of robotic gait trainers by determining how much force needs to be applied to the user and the nature of the force. This paper presents the design of a variable damping force tunnel and explores the effect of the shape and strength of the damping field using ALEX III, a treadmill-based exoskeleton developed at Columbia University. The study consists of 32 healthy subjects who were trained for 40 minutes in the device. The subjects were trained to follow a footpath with a 50% increase in step height, so the foot would have 1.5 times the ground clearance. Subjects were assigned to one of four groups: linear high, linear low, parabolic high, and parabolic low. Linear or parabolic denotes the shape of the damping field, and high or low denotes the rate of change (strength) of the field based on error. It is shown that the new controller is capable of inducing gait adaptations in healthy individuals while walking in the device. All groups showed adaptations in step height, while only the high strength groups showed changes in normalized error area, a measure of how closely the desired path was followed.
Collapse
Affiliation(s)
- Paul Stegall
- Robotics and Rehabilitation Laboratory, Columbia University, New York, NY 10027
| | - Damiano Zanotto
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
| | - Sunil K Agrawal
- Robotics and Rehabilitation Laboratory, Columbia University, New York, NY 10027
| |
Collapse
|
35
|
Bae YH, Lee SM, Ko M. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial. Top Stroke Rehabil 2017; 24:309-313. [PMID: 28102113 DOI: 10.1080/10749357.2016.1275304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Robot-assisted gait training (RAGT) is effective for improving dynamic balance and aerobic capacity, but previous RAGT method does not set suitable training intensity. Recently, high-intensity treadmill gait training at 70% of heart rate reserve (HRR) was used for improving aerobic capacity and dynamic balance. PURPOSE This study was designed to compare the effectiveness between objective and subjective methods of high-intensity RAGT for improving dynamic balance and aerobic capacity in chronic stroke. METHODS Subjects were randomly allocated into experimental (n = 17) and control (n = 17) groups. The experimental group underwent high-intensity RAGT at 70% of HRR, whereas the control group underwent high-intensity RAGT at an RPE of 15. Both groups received their assigned training for 30 min per session, 3 days per week for 6 weeks. All subjects also received an additional 30 min of conventional physical therapy. Before and after each of the 18 sessions, the dynamic balance and aerobic capacity of all subjects were evaluated by a blinded examiner. RESULTS After training, Berg Balance Scale (BBS) and Timed Up and Go Test scores, VO2max, and VO2max/kg were significantly increased in both groups (p < 0.05). These variables in experimental group were significantly greater than control group. However, the BBS score was not significantly different between both groups. All subjects completed high-intensity RAGT. No adverse effect of training was observed in both groups. CONCLUSION High-intensity RAGT at 70% of HRR significantly improved dynamic balance and aerobic capacity more than RAGT at RPE of 15. These results suggest that high-intensity RAGT at 70% of HRR is safe and effective for improving dynamic balance and aerobic capacity in chronic stroke.
Collapse
Affiliation(s)
- Young-Hyeon Bae
- a Department of Physical Therapy , Samsung Medical Center , Seoul , Republic of Korea.,b Department of Physical Therapy , Angelo State University , San Angelo , TX , USA
| | - Suk Min Lee
- c Department of Physical Therapy , Sahmyook University , Seoul , Republic of Korea
| | - Mansoo Ko
- b Department of Physical Therapy , Angelo State University , San Angelo , TX , USA
| |
Collapse
|
36
|
Srivastava S, Kao PC, Reisman DS, Scholz JP, Agrawal SK, Higginson JS. Robotic Assist-As-Needed as an Alternative to Therapist-Assisted Gait Rehabilitation. ACTA ACUST UNITED AC 2016; 4. [PMID: 28580370 DOI: 10.4172/2329-9096.1000370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Body Weight Supported Treadmill Training (BWSTT) with therapists' assistance is often used for gait rehabilitation post-stroke. However, this training method is labor-intensive, requiring at least one or as many as three therapists at once for manual assistance. Previously, we demonstrated that providing movement guidance using a performance-based robot-aided gait training (RAGT) that applies a compliant, assist-as-needed force-field improves gait pattern and functional walking ability in people post-stroke. In the current study, we compared the effects of assist-as-needed RAGT combined with functional electrical stimulation and visual feedback with BWSTT to determine if RAGT could serve as an alternative for locomotor training. METHODS Twelve stroke survivors were randomly assigned to one of the two groups, either receiving BWSTT with manual assistance or RAGT with functional electrical stimulation and visual feedback. All subjects received fifteen 40-minutes training sessions. RESULTS Clinical measures, kinematic data, and EMG data were collected before and immediately after the training for fifteen sessions. Subjects receiving RAGT demonstrated significant improvements in their self-selected over-ground walking speed, Functional Gait Assessment, Timed Up and Go scores, swing-phase peak knee flexion angle, and muscle coordination pattern. Subjects receiving BWSTT demonstrated significant improvements in the Six-minute walk test. However, there was an overall trend toward improvement in most measures with both interventions, thus there were no significant between-group differences in the improvements following training. CONCLUSION The current findings suggest that RAGT worked at least as well as BWSTT and thus may be used as an alternative rehabilitation method to improve gait pattern post-stroke as it requires less physical effort from the therapists compared to BWSTT.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pei Chun Kao
- Department of Physical Therapy, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
| | - John P Scholz
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
| | - Sunil K Agrawal
- Department of Mechanical Engineering, Columbia University, USA
| | - Jill S Higginson
- Department of Mechanical Engineering, University of Delaware, USA
| |
Collapse
|
37
|
Comparison of Heart Rate Reserve-Guided and Ratings of Perceived Exertion-Guided Methods for High-Intensity Robot-Assisted Gait Training in Patients With Chronic Stroke. TOPICS IN GERIATRIC REHABILITATION 2016. [DOI: 10.1097/tgr.0000000000000098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Coordination of muscles to control the footpath during over-ground walking in neurologically intact individuals and stroke survivors. Exp Brain Res 2016; 234:1903-1914. [PMID: 26898314 DOI: 10.1007/s00221-016-4593-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The central nervous system (CNS) is believed to use the abundant degrees of freedom of muscles and joints to stabilize a particular task variable important for task success, such as footpath during walking. Stroke survivors often demonstrate impaired balance and high incidences of falls due to increased footpath variability during walking. In the current study, we use the uncontrolled manifold (UCM) approach to investigate the role of motor abundance in stabilizing footpath during swing phase in healthy individuals and stroke survivors. Twelve stroke survivors and their age- and gender-matched controls walked over-ground at self-selected speed, while electromyographic and kinematic data were collected. UCM analysis partitioned the variance of muscle groups (modes) across gait cycles into "good variance" (i.e., muscle mode variance leading to a consistent or stable footpath) or "bad variance" (i.e., muscle mode variance resulting in an inconsistent footpath). Both groups had a significantly greater "good" than "bad" variance, suggesting that footpath is an important task variable stabilized by the CNS during walking. The relative variance difference that reflects normalized difference between "good" and "bad" variance was not significantly different between groups. However, significant differences in muscle mode structure and muscle mode activation timing were observed between the two groups. Our results suggest that though the mode structure and activation timing are altered, stroke survivors may retain their ability to explore the redundancy within the neuromotor system and utilize it to stabilize the footpath.
Collapse
|
39
|
Ranganathan R, Krishnan C, Dhaher YY, Rymer WZ. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules. J Biomech 2016; 49:718-725. [PMID: 26916510 DOI: 10.1016/j.jbiomech.2016.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/15/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022]
Abstract
The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy.
Collapse
Affiliation(s)
- Rajiv Ranganathan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA; Department of Kinesiology, Michigan State University, East Lansing, MI, USA.
| | - Chandramouli Krishnan
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Yasin Y Dhaher
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - William Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
40
|
Kao PC, Srivastava S, Higginson JS, Agrawal SK, Scholz JP. Short-term Performance-based Error-augmentation versus Error-reduction Robotic Gait Training for Individuals with Chronic Stroke: A Pilot Study. PHYSICAL MEDICINE AND REHABILITATION INTERNATIONAL 2015; 2:1066. [PMID: 27336075 PMCID: PMC4914051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The success of locomotion training with robotic exoskeletons requires identifying control algorithms that effectively retrain gait patterns in neurologically impaired individuals. Here we report how the two training paradigms, performance-based error-augmentation versus error-reduction, modified walking patterns in four chronic post-stroke individuals as a proof-of-concept for future locomotion training following stroke. Stroke subjects were instructed to match a prescribed walking pattern template derived from neurologically intact individuals. Target templates based on the spatial paths of lateral ankle malleolus positions during walking were created for each subject. Robotic forces were applied that either decreased (error-reduction) or increased (error-augmentation) the deviation between subjects' instantaneous malleolus positions and their target template. Subjects' performance was quantified by the amount of deviation between their actual and target malleolus paths. After the error-reduction training, S1 showed a malleolus path with reduced deviation from the target template by 16%. In contrast, S4 had a malleolus path further away from the template with increased deviation by 12%. After the error-augmentation training, S2 had a malleolus path greatly approximating the template with reduced deviation by 58% whereas S3 walked with higher steps than his baseline with increased deviation by 37%. These findings suggest that an error-reduction force field has minimal effects on modifying subject's gait patterns whereas an error-augmentation force field may promote a malleolus path either approximating or exceeding the target walking template. Future investigation will need to evaluate the long-term training effects on over-ground walking and functional capacity.
Collapse
Affiliation(s)
- P C Kao
- Department of Physical Therapy, University of Massachusetts Lowell, USA
| | - S Srivastava
- Department of Health Sciences and Research, Medical University of South Carolina, USA
| | - J S Higginson
- Department of Mechanical Engineering, University of Delaware, USA
| | - S K Agrawal
- Department of Mechanical Engineering, Columbia University, USA
| | - J P Scholz
- Biomechanics and Movement Science Program, University of Delaware, USA
| |
Collapse
|
41
|
Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil 2015; 12:23. [PMID: 25889283 PMCID: PMC4367918 DOI: 10.1186/s12984-015-0015-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
Background In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user’s paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Methods Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. Results The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). Conclusions This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12984-015-0015-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kota Z Takahashi
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Campus Box 7115, Raleigh, NC, 27695, USA.
| | - Michael D Lewek
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Bondurant Hall, 321 South Columbia St, Campus Box 7135, Chapel Hill, NC, 27599, USA.
| | - Gregory S Sawicki
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Campus Box 7115, Raleigh, NC, 27695, USA.
| |
Collapse
|
42
|
Krishnan C, Washabaugh EP, Seetharaman Y. A low cost real-time motion tracking approach using webcam technology. J Biomech 2014; 48:544-8. [PMID: 25555306 DOI: 10.1016/j.jbiomech.2014.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 11/28/2014] [Indexed: 11/29/2022]
Abstract
Physical therapy is an important component of gait recovery for individuals with locomotor dysfunction. There is a growing body of evidence that suggests that incorporating a motor learning task through visual feedback of movement trajectory is a useful approach to facilitate therapeutic outcomes. Visual feedback is typically provided by recording the subject's limb movement patterns using a three-dimensional motion capture system and displaying it in real-time using customized software. However, this approach can seldom be used in the clinic because of the technical expertise required to operate this device and the cost involved in procuring a three-dimensional motion capture system. In this paper, we describe a low cost two-dimensional real-time motion tracking approach using a simple webcam and an image processing algorithm in LabVIEW Vision Assistant. We also evaluated the accuracy of this approach using a high precision robotic device (Lokomat) across various walking speeds. Further, the reliability and feasibility of real-time motion-tracking were evaluated in healthy human participants. The results indicated that the measurements from the webcam tracking approach were reliable and accurate. Experiments on human subjects also showed that participants could utilize the real-time kinematic feedback generated from this device to successfully perform a motor learning task while walking on a treadmill. These findings suggest that the webcam motion tracking approach is a feasible low cost solution to perform real-time movement analysis and training.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Edward P Washabaugh
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yogesh Seetharaman
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Knaepen K, Beyl P, Duerinck S, Hagman F, Lefeber D, Meeusen R. Human–Robot Interaction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2014; 22:1128-37. [DOI: 10.1109/tnsre.2014.2324153] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul 2014; 8:76-87. [PMID: 25499471 DOI: 10.1016/j.brs.2014.10.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/03/2014] [Accepted: 10/21/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (tCS) have the potential to mitigate a variety of symptoms associated with neurological and psychiatric conditions, including stroke, cerebral palsy, autism, depression, and Tourette syndrome. While the safety of these modalities has been established in adults, there is a paucity of research assessing the safety of NIBS among children. OBJECTIVE To examine the existing literature regarding the safety of NIBS techniques in children and adolescents with neurologic and neuropsychiatric disorders. METHODS An electronic search was performed on online databases for studies using NIBS in individuals less than 18 years of age. Non-English publications, diagnostic studies, electroconvulsive therapy, single/dual pulse TMS studies, and reviews were excluded. Adverse events reported in the studies were carefully examined and synthesized to understand the safety and tolerability of NIBS among children and adolescents. RESULTS The data from 48 studies involving more than 513 children/adolescents (2.5-17.8 years of age) indicate that the side effects of NIBS were, in general, mild and transient [TMS: headache (11.5%), scalp discomfort (2.5%), twitching (1.2%), mood changes (1.2%), fatigue (0.9%), tinnitus (0.6%); tCS: tingling (11.5%), itching (5.8%), redness (4.7%), scalp discomfort (3.1%)] with relatively few serious adverse events. CONCLUSION Our findings indicate that both repetitive TMS and tCS are safe modalities in children and adolescents with various neurological conditions, especially when safety guidelines are followed. The incidence of adverse events appears to be similar to that observed in adults; however, further studies with longer treatment and follow-up periods are needed to better understand the benefits and tolerance of long-term use of NIBS in children.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Luciana Santos
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark D Peterson
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret Ehinger
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Srivastava S, Kao PC, Kim SH, Stegall P, Zanotto D, Higginson JS, Agrawal SK, Scholz JP. Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke. IEEE Trans Neural Syst Rehabil Eng 2014; 23:956-63. [PMID: 25314703 DOI: 10.1109/tnsre.2014.2360822] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel robot-aided assist-as-needed gait training paradigm has been developed recently. This paradigm encourages subjects' active participation during training. Previous pilot studies demonstrated that assist-as-needed robot-aided gait training (RAGT) improves treadmill walking performance post-stroke. However, it is not known if there is an over-ground transfer of the training effects from RAGT on treadmill or long-term retention of the effects. The purpose of the current study was to examine the effects of assist-as-needed RAGT on over-ground walking pattern post-stroke. Nine stroke subjects received RAGT with visual feedback of each subject's instantaneous ankle malleolus position relative to a target template for 15 40-minute sessions. Clinical evaluations and gait analyses were performed before, immediately after, and 6 months post-training. Stroke subjects demonstrated significant improvements and some long-term retention of the improvements in their self-selected over-ground walking speed, Dynamic Gait Index, Timed Up and Go, peak knee flexion angle during swing phase and total hip joint excursion over the whole gait cycle for their affected leg . These preliminary results demonstrate that subjects improved their over-ground walking pattern and some clinical gait measures post-training suggesting that assist-as-needed RAGT including visual feedback may be an effective approach to improve over-ground walking pattern post-stroke.
Collapse
|
46
|
Patel P, Bhatt T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors. Top Stroke Rehabil 2014; 21:347-57. [PMID: 25150667 DOI: 10.1310/tsr2104-347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The impact of unilateral brain damage, such as that caused by stroke, on the interaction between higher cognitive functions and walking remains uncertain. We compared cognitive-motor interference (CMI) during dual-task (DT) walking between chronic stroke survivors and young adults performing explicitly different cognitive tasks. METHODS Ten community-dwelling chronic stroke survivors and 10 young adults performed 3 cognitive tasks - visuomotor reaction time (VMRT), serial subtraction (SS), and Stroop test (STR) - while sitting and walking. Gait velocity was recorded using an electronic walkway. Cognitive variables included reaction time and number of correct responses. Motor and cognitive costs were computed. RESULTS DT walking led to significant declines in motor and cognitive performance. Significant main effect of task (P < .01) and group (P < .01) was observed for motor cost. The stroke group showed highest motor cost for SS task, whereas the young group showed highest motor cost for STR task (Group × Task interaction, P < .05). Although cognitive costs for both groups was highest for VMRT and lowest for STR tasks, cognitive cost for SS task was significantly greater for the stroke group compared with the young group (Group × Task interaction, P < .05). CONCLUSIONS CMI pattern in chronic stroke survivors differs significantly with type of cognitive task. Gradual cognitive decline with chronicity of condition might have a role in altering the CMI pattern in this population. Future studies of DT interventions for stroke survivors might benefit from incorporating working memory tasks in their protocols.
Collapse
Affiliation(s)
- Prakruti Patel
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
47
|
Furnari A, Calabrò RS, Gervasi G, La Fauci-Belponer F, Marzo A, Berbiglia F, Paladina G, De Cola MC, Bramanti P. Is hydrokinesitherapy effective on gait and balance in patients with stroke? A clinical and baropodometric investigation. Brain Inj 2014; 28:1109-14. [DOI: 10.3109/02699052.2014.910700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Nilsson A, Vreede KS, Häglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil 2014; 11:92. [PMID: 24890413 PMCID: PMC4065313 DOI: 10.1186/1743-0003-11-92] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 01/19/2023] Open
Abstract
Background Intensive task specific training early after stroke may enhance beneficial neuroplasticity and functional recovery. Impaired gait after hemiparetic stroke remains a challenge that may be approached early after stroke by use of novel technology. The aim of the study was to investigate the safety and feasibility of the exoskeleton Hybrid Assistive Limb (HAL) for intensive gait training as part of a regular inpatient rehabilitation program for hemiparetic patients with severely impaired gait early after stroke. Methods Eligible were patients until 7 weeks after hemiparetic stroke. Training with HAL was performed 5 days per week by the autonomous and/or the voluntary control mode offered by the system. The study protocol covered safety and feasibility issues and aspects on motor function, gait performance according to the 10 Meter Walking Test (10MWT) and Functional Ambulation Categories (FAC), and activity performance. Results Eight patients completed the study. Median time from stroke to inclusion was 35 days (range 6 to 46). Training started by use of the autonomous HAL mode in all and later switched to the voluntary mode in all but one and required one or two physiotherapists. Number of training sessions ranged from 6 to 31 (median 17) and walking time per session was around 25 minutes. The training was well tolerated and no serious adverse events occurred. All patients improved their walking ability during the training period, as reflected by the 10MWT (from 111.5 to 40 seconds in median) and the FAC (from 0 to 1.5 score in median). Conclusions The HAL system enables intensive training of gait in hemiparetic patients with severely impaired gait function early after stroke. The system is safe when used as part of an inpatient rehabilitation program for these patients by experienced physiotherapists.
Collapse
Affiliation(s)
- Anneli Nilsson
- Department of Rehabilitation Medicine, Danderyd University Hospital, Building 39, floor 3, SE- 182 88 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
49
|
Krishnan C, Ranganathan R, Dhaher YY, Rymer WZ. A pilot study on the feasibility of robot-aided leg motor training to facilitate active participation. PLoS One 2013; 8:e77370. [PMID: 24146986 PMCID: PMC3795642 DOI: 10.1371/journal.pone.0077370] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/03/2013] [Indexed: 01/14/2023] Open
Abstract
Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept demonstration that combining robotic gait training with a motor learning task enhances active participation.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Illinois, United States of America
- * E-mail:
| | - Rajiv Ranganathan
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Illinois, United States of America
| | - Yasin Y. Dhaher
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Illinois, United States of America
| | - William Z. Rymer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Illinois, United States of America
| |
Collapse
|
50
|
Krishnan C, Kotsapouikis D, Dhaher YY, Rymer WZ. Reducing robotic guidance during robot-assisted gait training improves gait function: a case report on a stroke survivor. Arch Phys Med Rehabil 2012; 94:1202-6. [PMID: 23168401 DOI: 10.1016/j.apmr.2012.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/04/2012] [Accepted: 11/10/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To test the feasibility of patient-cooperative robotic gait training for improving locomotor function of a chronic stroke survivor with severe lower-extremity motor impairments. DESIGN Single-subject crossover design. SETTING Performed in a controlled laboratory setting. PARTICIPANT A 62-year-old man with right temporal lobe ischemic stroke was recruited for this study. The baseline lower-extremity Fugl-Meyer score of the subject was 10 on a scale of 34, which represented severe impairment in the paretic leg. However, the subject had a good ambulation level (community walker with the aid of a stick cane and ankle-foot orthosis) and showed no signs of sensory or cognitive impairments. INTERVENTIONS The subject underwent 12 sessions (3 times per week for 4wk) of conventional robotic training with the Lokomat, where the robot provided full assistance to leg movements while walking, followed by 12 sessions (3 times per week for 4wk) of patient-cooperative robotic control training, where the robot provided minimal guidance to leg movements during walking. MAIN OUTCOME MEASURES Clinical outcomes were evaluated before the start of the intervention, immediately after 4 weeks of conventional robotic training, and immediately after 4 weeks of cooperative control robotic training. These included: (1) self-selected and fast walking speed, (2) 6-minute walk test, (3) Timed Up & Go test, and (4) lower-extremity Fugl-Meyer score. RESULTS Results showed that clinical outcomes changed minimally after full guidance robotic training, but improved considerably after 4 weeks of reduced guidance robotic training. CONCLUSIONS The findings from this case study suggest that cooperative control robotic training is superior to conventional robotic training and is a feasible option to restoring locomotor function in ambulatory stroke survivors with severe motor impairments. A larger trial is needed to verify the efficacy of this advanced robotic control strategy in facilitating gait recovery after stroke.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI 48107, USA.
| | | | | | | |
Collapse
|