1
|
Qiao ZB, Gu MZ, Wang YW, Ma BB, Pang SS. Combination treatment with whole body vibration and simvastatin improves the early osseointegration in aged rats. Bone Rep 2024; 22:101790. [PMID: 39540057 PMCID: PMC11558254 DOI: 10.1016/j.bonr.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 11/16/2024] Open
Abstract
Background Current research has demonstrated that Simvastatin (SIM) and Whole Body Vibration (WBV) actively contributes to the repair of osteoporotic bones. However, there is still limited knowledge regarding the impact of this combined therapy on osseointegration in elderly individuals. Objective: The objective of this study was to verify the influence of WBV and SIM combination treatment on Titanium implants' fixation strength in aged rats. Methods Male Sprague-Dawley rats at 24 months old were utilized for this investigation. Titanium rods were surgically inserted into the distal femoral canal on their left side. Subsequently, all animals were randomly assigned to one of four groups: Control group; WBV group; SIM group; and WBV + SIM group. Each group received Saline, Whole Body Vibration, Simvastatin, or a combination of Whole Body Vibration plus Simvastatin treatment until they reached their natural death after 12 weeks. The bilateral femurs and serum samples from these rats were collected for evaluation purposes. Results Both WBV and SIM treatments exhibited an increase in bone mass, osseointegration, and push-out force compared to the Control group (all, P < 0.05). Additionally, levels of oxidative stress and inflammatory factors decreased with both treatments when compared to the Control group alone (all, P < 0.05). Notably, the WBV + SIM group displayed superior effects on new bone formation, biomechanical strength, BMP2 expression in bone tissue as well as SOD2 expression regulation related to bone repair genes when compared to other groups involved in this study (all, P < 0.05). Conclusion These findings suggest that combining physiotherapy (WBV) with drug therapy (SIM) proves beneficial for enhancing implant fixation in aged rats.
Collapse
Affiliation(s)
- Zheng-Bo Qiao
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Ming-Zhong Gu
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Yu-Wu Wang
- Department of Emergency Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Bin-Bin Ma
- Department of Orthopedics, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| | - Shan-Shan Pang
- Department of General Medicine, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng 224000, China
| |
Collapse
|
2
|
Khan M, Faisal M, Ahmad L. Biophysical therapy using the pulsating electromagnetic field as adjunctive therapy for implant osseointegration - A review. Natl J Maxillofac Surg 2022; 13:S11-S18. [PMID: 36393938 PMCID: PMC9651243 DOI: 10.4103/njms.njms_400_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 01/25/2023] Open
Abstract
Development of procedures which accelerate osseointegration of dental implants, reduce the period of healing, and lead to an early rehabilitation of the patient are required for successful oral rehabilitation. Pulsed electromagnetic field (PEMF) is a noninvasive, therapeutic form of low field magnetic stimulation that has been used for healing bone non unions and various fractures. It acts on osteoblasts and bone, affecting their metabolism, therefore, increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings that includes magnetic field intensity, frequency and duration of application, etc. used for PEMFs stimulation is a hurdle to properly define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo and in vitro investigations of biomaterials implanted in bone. This study is expected to serve as a guide for researchers and clinicians to bring into their clinical use these strategies to improve implant osseointegration in deficient and osteoporotic bone.
Collapse
Affiliation(s)
- Munna Khan
- Department of Biomedical Engineering, Faculty of Engineering and Technology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Faisal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India,Address for correspondence: Dr. Mohammad Faisal, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Jamia Millia Islamia, MMA Jauhar Marg, Jamia Nagar, New Delhi, India. E-mail:
| | - Lubna Ahmad
- Intern, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Effects of Magnetic Stimulation on Dental Implant Osseointegration: A Scoping Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This PRISMA-ScR driven scoping review aims to evaluate the influence of magnetic field stimulation on dental implant osseointegration. Seven databases were screened adopting ad-hoc strings. All clinical and preclinical studies analyzing the effects of magnetic fields on dental implant osseointegration were included. From 3124 initial items, on the basis of the eligibility criteria, 33 articles, regarding both Pulsed ElectroMagnetic Fields (PEMF) and Static magnetic Fields from permanent Magnets (SFM) were finally included and critically analyzed. In vitro studies showed a positive effect of PEMF, but contrasting effects of SFM on bone cell proliferation, whereas cell adhesion and osteogenic differentiation were induced by both types of stimulation. In vivo studies showed an increased bone-to-implant contact rate in different animal models and clinical studies revealed positive effects on implant stability, under magnetic stimulation. In conclusion, although positive effects of magnetic exposure on osteogenesis activity and osseointegration emerged, this scoping review highlighted the need for further preclinical and clinical studies. More standardized designs, accurate choice of stimulation parameters, adequate methods of evaluation of the outcomes, greater sample size and longer follow-ups are needed to clearly assess the effect of magnetic fields on dental implant osseointegration.
Collapse
|
4
|
Ye X, Gu Y, Bai Y, Xia S, Zhang Y, Lou Y, Zhu Y, Dai Y, Tsoi JKH, Wang S. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies. Front Bioeng Biotechnol 2021; 9:626892. [PMID: 33987172 PMCID: PMC8111077 DOI: 10.3389/fbioe.2021.626892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Being as a non-pharmacological medical intervention, low-magnitude high-frequency vibration (LMHFV) has shown a positive effect on bone induction and remodeling for various muscle diseases in animal studies, among which dental implants osteointegration were reported to be improved as well. However, whether LMHFV can be clinically used in dental implant is still unknown. In this study, efficacy, parameters and side effects of LMHFV were analyzed via data before 15th July 2020, collecting from MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened 1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included. SYRCLE's tool was performed to assess the possible risk of bias for each study. The GRADE approach was applied to evaluate the quality of evidence. Random effects meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P = 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active role on BIC and BV/TV data according to the GRADE analysis results (medium and low quality of evidence). This might illustrate LMHFV to be a worthy way in improving osseointegration clinically, especially for osteoporosis. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, identifier: NCT02612389
Collapse
Affiliation(s)
- Xinjian Ye
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Gu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yijing Bai
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siqi Xia
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Lou
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuchi Zhu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Dai
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - James Kit-Hon Tsoi
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shuhua Wang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China.,Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Evaluation of pulsed electromagnetic field protocols in implant osseointegration: in vivo and in vitro study. Clin Oral Investig 2020; 25:2925-2937. [PMID: 33033921 DOI: 10.1007/s00784-020-03612-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The present study aims to evaluate two protocols of pulsed electromagnetic field (PEMF) on osseointegration and establish one that addresses ideal parameters for its use in dentistry, especially in the optimization of the implants osseointegration process. MATERIALS AND METHODS Sixty male rats (Wistar) were allocated into three experimental groups: control (GC), test A (GTA, 3 h exposed), and test B (GTB, 1 h exposed). All animals received titanium implants in both tibias, and PEMF application (15 Hz, ± 1 mT, 5 days/week) occurred only in the test groups. They were euthanized at 03, 07, 21, and 45 days after PEMF therapy. Removal torque, histomorphometric measurements, three-dimensional radiographic evaluation, and in vitro biological assay analyses were performed. RESULTS GTB showed better results compared with GTA in removal torque tests, in bone volume and bone mineral density, cell viability, total protein content, and mineralization nodules (p < 0.05). GTA showed better performance in trabecular bone thickness and cell proliferation compared with GTB (p < 0.05), especially at osseointegration early periods. In the histomorphometric analysis and number of trabeculae, there were no differences in the test groups. CONCLUSION PEMF as a biostimulator was effective in optimizing the events in bone tissue that lead to osseointegration, especially when applied for a shorter time and in the initial periods of bone healing. CLINICAL RELEVANCE The PEMF therapy is an effective alternative method for optimizing bone healing.
Collapse
|
6
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
7
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
8
|
Ruppert DS, Harrysson OLA, Marcellin-Little DJ, Dahners LE, Weinhold PS. Improved osseointegration with as-built electron beam melted textured implants and improved peri‑implant bone volume with whole body vibration. Med Eng Phys 2018; 58:S1350-4533(18)30088-2. [PMID: 29903535 DOI: 10.1016/j.medengphy.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
Abstract
Transcutaneous osseointegrated prostheses provide stable connections to the skeleton while eliminating skin lesions experienced with socket prosthetics. Additive manufacturing can create custom textured implants capable of interfacing with amputees' residual bones. Our objective was to compare osseointegration of textured surface implants made by electron beam melting (EBM), an additive manufacturing process, to machine threaded implants. Whole body vibration was investigated to accelerate osseointegration. Two cohorts of Sprague-Dawley rats received bilateral, titanium implants (EBM vs. threaded) in their tibiae. One cohort comprising five groups vibrated at 45 Hz: 0.0 (control), 0.15, 0.3, 0.6 or 1.2 g was followed for six weeks. Osseointegration was evaluated through torsional testing and bone volume fraction (BV/TV). A second cohort, divided into two groups (control and 0.6 g), was followed for 24 days and evaluated for resonant frequency, bone-implant contact (BIC) and fluorochrome labeling. The EBM textured implants exhibited significantly improved mechanical stability independent of vibration, highlighting the benefits of using EBM to produce custom textured surfaces. Bone formation on and around the EBM textured implants increased compared to machined implants, as seen by BIC and fluorescence. No difference in torque, BIC or fluorescence among vibration levels was detected. BV/TV significantly increased at 0.6 g compared to control for both implant types.
Collapse
Affiliation(s)
- David S Ruppert
- Department of Biomedical Engineering, UNC-NCSU, United States.
| | - Ola L A Harrysson
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States
| | - Denis J Marcellin-Little
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, United States; Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Laurence E Dahners
- Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Paul S Weinhold
- Department of Biomedical Engineering, UNC-NCSU, United States; Department of Orthopaedics School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
9
|
Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci 2018. [PMID: 29531334 PMCID: PMC5944597 DOI: 10.1038/s41368-018-0009-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study is to examine the effect of low-magnitude, high-frequency (LMHF) loading, and anti-osteoporosis medications such as parathyroid hormone (PTH) and bisphosphonates on peri-implant bone healing in an osteoporosis model, and to assess their combined effects on these processes. Thirteen-week-old ovariectomized rats (n = 44) were divided into three groups: PTH, alendronate, and saline. After 3 weeks of drug administration, titanium implants were inserted into the tibiae. Each group was subdivided into two groups: with or without LMHF loading via whole-body vibration (50 Hz at 0.5 g, 15 min per day, 5 days per week). Rats were killed 4 weeks following implantation. Removal torque test, micro-CT analyses (relative gray (RG) value, water = 0, and implant = 100), and histomorphometric analyses (bone-to-implant contact (BIC) and peri-implant bone formation (bone volume/tissue volume (BV/TV))) were performed. Removal torque values and BIC were significantly differed by loading and drug administration (ANOVA). Post hoc analysis showed that PTH-treated groups were significantly higher than the other drug-treated groups. BV/TV was significantly enhanced by PTH administration. In cortical bone, RG values were significantly increased by loading. In trabecular bone, however, RG values were significantly increased by PTH administration. These findings suggest that LMHF loading and PTH can act locally and additively on the bone healing process, improving the condition of implant osseointegration. Whole-body vibration and administration of a hormone used to treat osteoporosis can enhance bone healing at the site of a titanium implant. Toru Ogawa of Tohoku University Graduate School of Dentistry in Sendai, Japan, and colleagues gave anti-osteoporosis medications, either parathyroid hormone or the bisphosphonate drug alendronate, to female rat models of osteoporosis. After three weeks of drug administration or a saline control, the researchers inserted titanium implants into the rats’ leg bones. Half the rats were then exposed to whole-body vibration, which applies low-magnitude, high-frequency mechanical forces. A multitude of tests showed that parathyroid hormone improved bone healing at the implant more than alendronate or saline did. The vibrational stimulus further increased the healing. The findings suggest that these treatments could aid in oral bone healing for patients receiving dental implants.
Collapse
Affiliation(s)
- Aya Shibamoto
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | - Joke Duyck
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ignace Naert
- Department of Oral Health Sciences, Prosthetic Dentistry, BIOMAT-Biomaterials, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
10
|
Song ZH, Xie W, Zhu SY, Pan JJ, Zhou LY, He CQ. Effects of PEMFs on Osx, Ocn, TRAP, and CTSK gene expression in postmenopausal osteoporosis model mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1784-1790. [PMID: 31938285 PMCID: PMC6958114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/12/2018] [Indexed: 06/10/2023]
Abstract
Objective: Ovariectomized mice were used to simulate the symptoms of postmenopausal women with osteoporosis, and observe the effects of PEMF treatment on expression of Osx, Ocn, TRAP, and CTSK in ovariectomized mice. Methods: Thirty-week-old wild-type C57BL/6 mice were randomly divided into three groups (n=10, each group): sham operation group, ovariectomy (OVX) group, and PEMF group. Mice in the sham group underwent sham ovariectomy, while mice in the remaining two groups were ovariectomized. On postoperative day two, mice in the PEMF treatment group received PEMF treatment at a frequency of 8 Hz and an intensity of 3.8 mT for one hour daily for four weeks. At the same time, mice in the remaining two groups were placed in the PEMF treatment area under power-down state daily, similar to that in the PEMF group. After four weeks, all relevant indicators were tested. Results: (1) Compared with mice in the sham group, the number of trabecular bones significantly decreased, the thickness of the trabecular bone became thinner, the number of osteoclasts significantly increased, the gene expression of Osx and Ocn significantly decreased, and the gene expression of TRAP and CTSK significantly increased in the OVX group (P<0.01). (2) Compared with the blank controls without operation, the number of osteoblasts increased in the PEMF group. (3) Compared with the OVX group, the number of osteoclasts significantly decreased, the expression of Osx and Ocn significantly increased, and the gene expression of TRAP and CTSK significantly decreased in the PEMF group (P<0.01). Conclusion: PEMF treatment can significantly promote bone formation, which may be realized through inhibition of osteoclast formation, achieving bone morphological protection. PEMFs can significantly upregulate Osx and Ocn osteogenesis-related genes, which affect bone formation, and downregulate TRAP and CTSK osteoclast-related genes, which affect bone resorption. PEMFs may be used to treat postmenopausal osteoporosis by regulating Osx, Ocn, TRAP, and CTSK gene expression.
Collapse
Affiliation(s)
- Zhen-Hua Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital Rehabilitation Medicine DisciplineHaikou, China
| | - Wei Xie
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Si-Yi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Jin-Jing Pan
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital Rehabilitation Medicine DisciplineHaikou, China
| | | | - Cheng-Qi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityChengdu, China
- Rehabilitation Medicine Center, West China Hospital, Sichuan UniversityNo. 37 Guoxue Xiang, Chengdu, China
| |
Collapse
|
11
|
Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017; 38:406-424. [PMID: 28665487 DOI: 10.1002/bem.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chi Zhang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haiming Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengfei Gao
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
12
|
Pham MH, Buser Z, Wang JC, Acosta FL. Low-magnitude mechanical signals and the spine: A review of current and future applications. J Clin Neurosci 2017; 40:18-23. [DOI: 10.1016/j.jocn.2016.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
|
13
|
Oliveira DD, Hassumi JS, Gomes-Ferreira PHDS, Polo TOB, Ferreira GR, Faverani LP, Okamoto R. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals. J Appl Oral Sci 2017; 25:42-52. [PMID: 28198975 PMCID: PMC5289399 DOI: 10.1590/1678-77572016-0165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022] Open
Abstract
Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis.
Collapse
Affiliation(s)
- Danila de Oliveira
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| | - Jaqueline Suemi Hassumi
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| | | | - Tárik Ocon Braga Polo
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, SP, Brasil
| | - Gabriel Ramalho Ferreira
- Universidade de São Paulo, Hospital de Reabilitação de Anomalias Craniofaciais, Bauru, SP, Brasil
| | - Leonardo Perez Faverani
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, SP, Brasil
| | - Roberta Okamoto
- Universidade Estadual Paulista, Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, SP, Brasil
| |
Collapse
|
14
|
Puhar I, Ma L, Suleimenova D, Chronopoulos V, Mattheos N. The effect of local application of low-magnitude high-frequency vibration on the bone healing of rabbit calvarial defects-a pilot study. J Orthop Surg Res 2016; 11:159. [PMID: 27931261 PMCID: PMC5144494 DOI: 10.1186/s13018-016-0494-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this pilot study was to evaluate the effect of local application of low-magnitude high-frequency vibration (LMHFV) on the bone healing of rabbit calvarial defects that were augmented with different grafting materials and membranes. Methods Four calvarial defects were created in each of two New Zealand rabbits and filled with the following materials: biphasic calcium phosphate (BCP), deproteinized bovine bone mineral covered with a non-cross-linked collagen membrane (BO/BG), biphasic calcium phosphate covered with a strontium hydroxyapatite-containing collagen membrane (BCP/SR), and non-cross-linked collagen membrane (BG). Four defects in one rabbit served as a control, while the other was additionally subjected to the local LMHFV protocol of 40 Hz, 16 min per day. The rabbits were sacrificed 1 week after surgery. Histomorphometric analysis was performed to determine the percentages of different tissue compartments. Results Compared to the control defects, the higher percentage of osteoid tissue was found in LMHFV BG defects (35.3 vs. 19.3%), followed by BCP/SR (17.3 vs. 2.0%) and BO/BG (9.3 vs. 1.0%). The fraction occupied by the residual grafting material varied from 40.3% in BO/BG to 22.3% in BCP/SR LMHFV defects. Two-way models revealed that material type was only significant for the osteoid (P= 0.045) and grafting material (P = 0.001) percentages, while the vibration did not provide any statistical significance for all histomorphometric outcomes (P > 0.05). Conclusion Local application of LMHFV did not appear to offer additional benefit in the initial healing phase of rabbit calvarial defects. Histomorphometric measurements after 1 week of healing demonstrated more pronounced signs of early bone formation in both rabbits that were related with material type and independent of LMHFV.
Collapse
Affiliation(s)
- Ivan Puhar
- Department of Periodontology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.,Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Li Ma
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Dina Suleimenova
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | - Nikos Mattheos
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Jing D, Zhai M, Tong S, Xu F, Cai J, Shen G, Wu Y, Li X, Xie K, Liu J, Xu Q, Luo E. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism. Sci Rep 2016; 6:32045. [PMID: 27555216 PMCID: PMC4995433 DOI: 10.1038/srep32045] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
Treatment of osseous defects remains a formidable clinical challenge. Porous titanium alloys (pTi) have been emerging as ideal endosseous implants due to the excellent biocompatibility and structural properties, whereas inadequate osseointegration poses risks for unreliable long-term implant stability. Substantial evidence indicates that pulsed electromagnetic fields (PEMF), as a safe noninvasive method, inhibit osteopenia/osteoporosis experimentally and clinically. We herein investigated the efficiency and potential mechanisms of PEMF on osteogenesis and osseointegration of pTi in vitro and in vivo. We demonstrate that PEMF enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton for in vitro osteoblasts seeded in pTi. PEMF promoted gene expressions in Runx2, OSX, COL-1 and Wnt/β-catenin signaling. PEMF-stimulated group exhibited higher Runx2, Wnt1, Lrp6 and β-catenin protein expressions. In vivo results via μCT and histomorphometry show that 6-week and 12-week PEMF promoted osteogenesis, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defect. PEMF promoted femoral gene expressions of Runx2, BMP2, OCN and Wnt/β-catenin signaling. Together, we demonstrate that PEMF improve osteogenesis and osseointegration of pTi by promoting skeletal anabolic activities through a Wnt/β-catenin signaling-associated mechanism. PEMF might become a promising biophysical modality for enhancing the repair efficiency and quality of pTi in bone defect.
Collapse
Affiliation(s)
- Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shichao Tong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Fei Xu
- Department of Radiation Oncology, PLA 302 Hospital, Beijing, China
| | - Jing Cai
- Department of Endocrinology, Xijing hospital, Fourth Military Medical University, Xi'an, China
| | - Guanghao Shen
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yan Wu
- Institute of Orthopaedics, Xijing hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaokang Li
- Institute of Orthopaedics, Xijing hospital, Fourth Military Medical University, Xi'an, China
| | - Kangning Xie
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Juan Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Qiaoling Xu
- Department of Nursing, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Elsisi HFEM, Mousa GSM, ELdesoky MTM. Electromagnetic field versus circuit weight training on bone mineral density in elderly women. Clin Interv Aging 2015; 10:539-47. [PMID: 25834412 PMCID: PMC4358665 DOI: 10.2147/cia.s78485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD) in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF) or circuit weight training (CWT) on short-run basis (after 12 weeks). PATIENTS AND METHODS Thirty elderly women, aged 60-70 years, were randomly assigned into two groups (magnetic field and CWT) (n=15 each group). The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2-L4) and femoral neck, trochanter, and Ward's triangle were evaluated before and after 12 weeks of treatment. RESULTS Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05). But magnetic field seems to have more beneficially and statistically significant effect than does CWT. CONCLUSION It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women.
Collapse
Affiliation(s)
- Hany Farid Eid Morsy Elsisi
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Cairo University, Cairo, Egypt
| | - Gihan Samir Mohamed Mousa
- Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, Cairo University, Cairo, Egypt
| | | |
Collapse
|
17
|
Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 2015; 71:17-24. [PMID: 25304090 DOI: 10.1016/j.bone.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Tie Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Guoli Yang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China.
| |
Collapse
|
18
|
Chatterjee M, Hatori K, Duyck J, Sasaki K, Naert I, Vandamme K. High-frequency loading positively impacts titanium implant osseointegration in impaired bone. Osteoporos Int 2015; 26:281-90. [PMID: 25164696 DOI: 10.1007/s00198-014-2824-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED High-frequency loading via whole body vibration promotes bone formation and increases bone strength. Whether this translates to positive titanium implant osseointegration in osteoporotic bone was explored in this animal study. An anabolic effect of not only bisphosphonate treatment but also high-frequency loading on implant osseointegration in osteoporotic bone was observed. INTRODUCTION The present study investigated the impact of high-frequency (HF) loading, applied via whole body vibration (WBV), on titanium implant osseointegration in healthy versus ovariectomy-induced compromised versus pharmacologically treated compromised bone. METHODS A custom-made Ti implant was inserted into the metaphyseal tibia of 59 rats and left to heal for either 4 or 14 days. Rats were divided into six groups according to their hormonal and mechanical status. WBV, consisting of 10 consecutive frequency steps at an acceleration of 0.3 g, was applied daily for either 4 or 14 days. Tissue samples were processed for quantitative histology at the tibial cortical and medullar level. Data were analyzed by three-way ANOVA and by post hoc pairwise comparisons. RESULTS The bone healing response at the interface and surrounding titanium implants was negatively influenced by osteoporotic bone conditions, mainly at the trabecular bone level. Furthermore, the administration of bisphosphonates for preventing the ovariectomy-induced impaired peri-implant response was successful. Finally, the effect of HF WBV loading on the peri-implant bone healing was dependent on the bone condition and was anabolic solely in untreated osteoporotic trabecular bone when applied for an extended period of time. CONCLUSIONS The bone healing response to implant installation is compromised in osteoporotic bone conditions, in particular at the trabecular bone compartment. Meanwhile, not only pharmacological treatment but also mechanical loading via HF WBV can exert a positive effect on implant osseointegration in this specific bone micro-environment. The peri-implant cortical bone, however, seems to be less sensitive to HF WBV loading influences.
Collapse
Affiliation(s)
- M Chatterjee
- Department of Oral Health Sciences & Dental Clinic, BIOMAT Research Group, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7 blok a, box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Ogawa T, Vandamme K, Zhang X, Naert I, Possemiers T, Chaudhari A, Sasaki K, Duyck J. Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration. Calcif Tissue Int 2014; 95:467-75. [PMID: 25209971 DOI: 10.1007/s00223-014-9896-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Low-magnitude high-frequency loading, applied by means of whole body vibration (WBV), affects the bone. Deconstructing a WBV loading stimulus into its constituent elements and investigating the effects of frequency and acceleration individually on bone tissue kinetics around titanium implants were aimed for in this study. A titanium implant was inserted in the tibia of 120 rats. The rats were divided into 1 control group (no loading) and 5 test groups with low (L), medium (M) or high (H) frequency ranges and accelerations [12-30 Hz at 0.3×g (F(L)A(H)); 70-90 Hz at 0.075×g (F(M)A(M)); 70-90 Hz at 0.3×g (F(M)A(H)); 130-150 Hz at 0.043×g (F(H)A(L)); 130-150 Hz at 0.3×g (F H A H)]. WBV was applied for 1 or 4 weeks. Implant osseointegration was evaluated by quantitative histology (bone-to-implant contact (BIC) and peri-implant bone formation (BV/TV)). A 2-way ANOVA (duration of experimental period; loading mode) with α = 0.05 was performed. BIC significantly increased over time and under load (p < 0.0001). The highest BICs were found for loading regimes at high acceleration with medium or high frequency (F(M)A(H) and F(H)A(H)), and significantly differing from F(L)A(H) and F(M)A(M) (p < 0.02 and p < 0.005 respectively). BV/TV significantly decreased over time (p < 0.0001). Loading led to a site-specific BV/TV increase (p < 0.001). The highest BV/TV responses were found for F(M)A(H) and F(H)A(H), significantly differing from F(M)A(M) (p < 0.005). The findings reveal the potential of high-frequency vibration loading to accelerate and enhance implant osseointegration, in particular when applied at high acceleration. Such mechanical signals hold great, though untapped, potential to be used as non-pharmacologic treatment for improving implant osseointegration in compromised bone.
Collapse
Affiliation(s)
- Toru Ogawa
- BIOMAT KU Leuven, Department of Oral Health Sciences & Dental Clinic, KU Leuven & University Hospitals Leuven, Kapucijnenvoer 7, P.O. Box 7001, 3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liang Y, Li H, Xu J, Li X, Li X, Yan Y, Qi M, Hu M. Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models. Exp Ther Med 2014; 9:172-176. [PMID: 25452797 PMCID: PMC4247308 DOI: 10.3892/etm.2014.2038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022] Open
Abstract
Osteopenia, a preclinical state of osteoporosis, restricts the application of adult orthodontic implant anchorage and tooth implantation. Strontium (Sr) is able to promote bone formation and inhibit bone absorption. The aim of the present study was to evaluate a new method for improving the success rate of dental implantation. In this study, an electrochemical deposition (ECD) method was used to prepare a Sr coating on a titanium implant. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and the surface morphology of the coating was studied using scanning electron microscopy. A total of 24 Sprague-Dawley rats received bilateral ovariectomy (OVX) and an additional 12 rats underwent a sham surgery. All rats were then implanted in the bilateral tibiae with titanium mini-implants with or without a Sr coating. The results of histological examination and a fluorescence double labeling assay showed strong new bone formation with a wider zone between the double labels, a higher rate of bone mineralization and better osseointegration in the OVX rats that received Sr-coated implants compared with the OVX rats that received uncoated implants. The study indicates that Sr coatings are easily applied by an ECD method, and that Sr coatings have a promoting effect on implant osseointegration in animals with osteopenia.
Collapse
Affiliation(s)
- Yongqiang Liang
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China ; Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Haoyan Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jiang Xu
- Department of Stomatology, People's Hospital of Tongchuan, Shaanxi 727000, P.R. China
| | - Xin Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Xinchang Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Yuting Yan
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Mengchun Qi
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Min Hu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
Liang YQ, Qi MC, Xu J, Xu J, Liu HW, Dong W, Li JY, Hu M. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep 2014; 10:2835-42. [PMID: 25270245 PMCID: PMC4227418 DOI: 10.3892/mmr.2014.2597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/04/2014] [Indexed: 01/12/2023] Open
Abstract
Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats.
Collapse
Affiliation(s)
- Yong-Qiang Liang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Meng-Chun Qi
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jiang Xu
- Department of Stomatology, Tongchuan City People's Hospital, Tongchuan, Shaanxi 727100, P.R. China
| | - Juan Xu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua-Wei Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wei Dong
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jin-Yuan Li
- College of Stomatology, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Min Hu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
22
|
Faverani LP, Assunção WG, de Carvalho PSP, Yuan JCC, Sukotjo C, Mathew MT, Barao VA. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching. PLoS One 2014; 9:e93377. [PMID: 24671257 PMCID: PMC3966875 DOI: 10.1371/journal.pone.0093377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.
Collapse
Affiliation(s)
- Leonardo P. Faverani
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Wirley G. Assunção
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Paulo Sérgio P. de Carvalho
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Judy Chia-Chun Yuan
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Mathew T. Mathew
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Valentim A. Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
23
|
Mathieu V, Vayron R, Richard G, Lambert G, Naili S, Meningaud JP, Haiat G. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties. J Biomech 2013; 47:3-13. [PMID: 24268798 DOI: 10.1016/j.jbiomech.2013.09.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.
Collapse
Affiliation(s)
- Vincent Mathieu
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Romain Vayron
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Gilles Richard
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Grégory Lambert
- Septodont, 58 Rue Pont de Créteil, 94100 Saint-Maur-des-Fossés, France
| | - Salah Naili
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, CHU H. Mondor, 94017 Créteil cedex, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France.
| |
Collapse
|
24
|
Thoma DS, Martin IS, Mühlemann S, Jung RE. Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol 2012; 39 Suppl 12:37-62. [PMID: 22533946 DOI: 10.1111/j.1600-051x.2011.01833.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim was to systematically search the dental literature for pre-clinical models assessing implant integration in locally compromised sites (part 1) and systemically compromised animals (part 2), and to evaluate the quality of reporting of included publications. METHODS A Medline search (1966-2011) was performed, complimented by additional hand searching. The quality of reporting of the included publications was evaluated using the 20 items of the ARRIVE (Animals in Research In Vivo Experiments) guidelines. RESULTS One-hundred and seventy-six (part 1; mean ARRIVE score = 15.6 ± 2.4) and 104 (part 2; 16.2 ± 1.9) studies met the inclusion criteria. The overall mean score for all included studies amounted to 15.8 ± 2.2. Housing (38.3%), allocation of animals (37.9%), numbers analysed (50%) and adverse events (51.4%) of the ARRIVE guidelines were the least reported. Statistically significant differences in mean ARRIVE scores were found depending on the publication date (p < 0.05), with the highest score of 16.7 ± 1.6 for studies published within the last 2 years. CONCLUSIONS A large number of studies met the inclusion criteria. The ARRIVE scores revealed heterogeneity and missing information for selected items in more than 50% of the publications. The quality of reporting shifted towards better-reported pre-clinical trials within recent years.
Collapse
Affiliation(s)
- Daniel S Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
25
|
Zhang X, Torcasio A, Vandamme K, Ogawa T, van Lenthe GH, Naert I, Duyck J. Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS One 2012; 7:e40488. [PMID: 22808172 PMCID: PMC3393711 DOI: 10.1371/journal.pone.0040488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. Methodology Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. Principal Findings After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. Conclusions The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Antonia Torcasio
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Toru Ogawa
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - G. Harry van Lenthe
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ignace Naert
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
26
|
Chen B, Li Y, Xie D, Yang X. Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J Orthop Res 2012; 30:733-9. [PMID: 22058045 DOI: 10.1002/jor.22004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 10/14/2011] [Indexed: 02/04/2023]
Abstract
Osseointegration is vital to avoid long-time implants loosening after implantation surgery. This study investigated the effect of low-magnitude high-frequency (LMHF) loading via whole body vibration on bone-implant osseointegration in osteoporotic rats, and a comparison was made between LMHF vibration and alendronate on their effects. Thirty rats were ovariectomized to induce osteoporosis, and then treated with LMHF vibration (VIB) or alendronate (ALN) or a control treatment (OVX). Another 10 rats underwent sham operation to establish Sham control group. Prior to treatment, hydroxyapatite (HA)-coated titanium implants were inserted into proximal tibiae bilaterally. Both LMHF vibration and alendronate treatment lasted for 8 weeks. Histomorphometrical assess showed that both group VIB, ALN and Sham significantly increased bone-to-implant contact and peri-implant bone fraction (p < 0.05) when compared with group OVX. Nevertheless the bone-to-implant contact and peri-implant bone fraction of group VIB were inferior to group ALN and Sham (p < 0.05). Biomechanical tests also revealed similar results in maximum push out force and interfacial shear strength. Accordingly, it is concluded that LMHF loading via whole body vibration enhances bone-to-implant osseointegration in ovariectomized rats, but its effectiveness is weaker than alendronate.
Collapse
Affiliation(s)
- BaiLing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | |
Collapse
|
27
|
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J R Soc Interface 2012; 9:1697-704. [PMID: 22279157 DOI: 10.1098/rsif.2011.0820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Kim YD. Biophysical therapy and biostimulation in unfavorable bony circumstances: adjunctive therapies for osseointegration. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.4.195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
29
|
Ogawa T, Possemiers T, Zhang X, Naert I, Chaudhari A, Sasaki K, Duyck J. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J Clin Periodontol 2010; 38:180-5. [DOI: 10.1111/j.1600-051x.2010.01637.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ogawa T, Zhang X, Naert I, Vermaelen P, Deroose CM, Sasaki K, Duyck J. The effect of whole-body vibration on peri-implant bone healing in rats. Clin Oral Implants Res 2010; 22:302-7. [DOI: 10.1111/j.1600-0501.2010.02020.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Zhang X, Naert I, Van Schoonhoven D, Duyck J. Direct High-Frequency Stimulation of Peri-Implant Rabbit Bone: A Pilot Study. Clin Implant Dent Relat Res 2010; 14:558-64. [DOI: 10.1111/j.1708-8208.2010.00298.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 2010; 31:277-85. [PMID: 20041434 DOI: 10.1002/bem.20560] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid-1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte-specific mRNA expression of adipsin, AP-2, and PPARgamma2, and also inhibited protein expression of PPARgamma2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF.
Collapse
Affiliation(s)
- Yong Yang
- Department of Orthopedics, Tongji Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
33
|
Reiner T, Gotman I. Biomimetic calcium phosphate coating on Ti wires versus flat substrates: structure and mechanism of formation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:515-523. [PMID: 19851841 DOI: 10.1007/s10856-009-3906-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Biomimetic calcium phosphate (Ca-P) coatings improve the osteoconductivity of orthopedic implants and show promise as slow delivery systems for growth factors. This paper compares the structure and composition of biomimetic coatings on flat titanium coupons and on Ti wires/thin pins that are often used as model implants in small animal in vivo models. Ca-P coatings were grown on alkali-treated Ti substrates using a two-step deposition procedure. The coatings on wires consisted of a surface layer of octacalcium phosphate (OCP) and a layer of Ca-deficient hydroxyapatite (CDHA) underneath. The coating thickness and the proportion of CDHA decreased with increasing wire diameter. The coatings on flat coupons were the thinnest, and were comprised almost entirely of OCP. A mechanism of successive formation of the CDHA and OCP phases based on the interplay between nucleation, growth and hydrolysis of OCP crystals as a function of changing local supersaturation is proposed.
Collapse
Affiliation(s)
- Tal Reiner
- Faculty of Materials Engineering, Technion-IIT, Haifa, 32000, Israel
| | | |
Collapse
|
34
|
Li KC, Ma SR, Ding GR, Guo Y, Guo GZ. Effects of electromagnetic pulse on bone metabolism of mice in vivo. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:518-521. [PMID: 20337226 DOI: 10.1016/s0895-3988(10)60010-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE To study the effects of electromagnetic pulse (EMP) on bone metabolism of mice in vivo. METHODS Twenty-four male BALB/c mice were divided into a control group and 2 experimental groups (n=8). The whole-body of mice in experimental groups were exposed to 50 kV/m and 400kV/m EMP, 400 pulses daily for 7 consecutive days at 2 seconds intervals. Alkaline phosphotase (ALP) activity, serum calcium concentration and osteocalcin level and trabecular bone volume (BV/TV, %) were measured immediately after EMP exposure by biochemical, ELISA and morphological methods. RESULTS The ALP activity, serum calcium concentration and osteocalcin level and BV/TV in experimental groups remained unchanged after EMP exposure. Conclusion Under our experimental conditions, EMP exposure cannot affect bone metabolism of mice in vivo.
Collapse
Affiliation(s)
- Kang-Chu Li
- Department of Radiation Medicine, Fourth Military Medical University, Xi 'an 710032, Shaanxi China.
| | | | | | | | | |
Collapse
|