1
|
Britigan EMC, Wan J, Sam DK, Copeland SE, Lasek AL, Hrycyniak LCF, Wang L, Audhya A, Burkard ME, Roopra A, Weaver BA. Increased Aurora B expression reduces substrate phosphorylation and induces chromosomal instability. Front Cell Dev Biol 2022; 10:1018161. [PMID: 36313574 PMCID: PMC9606593 DOI: 10.3389/fcell.2022.1018161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Increased Aurora B protein expression, which is common in cancers, is expected to increase Aurora B kinase activity, yielding elevated phosphorylation of Aurora B substrates. In contrast, here we show that elevated expression of Aurora B reduces phosphorylation of six different Aurora B substrates across three species and causes defects consistent with Aurora B inhibition. Complexes of Aurora B and its binding partner INCENP autophosphorylate in trans to achieve full Aurora B activation. Increased expression of Aurora B mislocalizes INCENP, reducing the local concentration of Aurora B:INCENP complexes at the inner centromere/kinetochore. Co-expression of INCENP rescues Aurora B kinase activity and mitotic defects caused by elevated Aurora B. However, INCENP expression is not elevated in concert with Aurora B in breast cancer, and increased expression of Aurora B causes resistance rather than hypersensitivity to Aurora B inhibitors. Thus, increased Aurora B expression reduces, rather than increases, Aurora B kinase activity.
Collapse
Affiliation(s)
- Eric M. C. Britigan
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel K. Sam
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Amber L. Lasek
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
CCAR2 controls mitotic progression through spatiotemporal regulation of Aurora B. Cell Death Dis 2022; 13:534. [PMID: 35672287 PMCID: PMC9174277 DOI: 10.1038/s41419-022-04990-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
CCAR2 (cell cycle and apoptosis regulator 2) is a multifaceted protein involved in cell survival and death following cytotoxic stress. However, little is known about the physiological functions of CCAR2 in regulating cell proliferation in the absence of external stimuli. The present study shows that CCAR2-deficient cells possess multilobulated nuclei, suggesting a defect in cell division. In particular, the duration of mitotic phase was perturbed. This disturbance of mitotic progression resulted from premature loss of cohesion with the centromere, and inactivation of the spindle assembly checkpoint during prometaphase and metaphase. It resulted in the formation of lagging chromosomes during anaphase, leading ultimately to the activation of the abscission checkpoint to halt cytokinesis. The CCAR2-dependent mitotic progression was related to spatiotemporal regulation of active Aurora B. In conclusion, the results suggest that CCAR2 governs mitotic events, including proper chromosome segregation and cytokinetic division, to maintain chromosomal stability.
Collapse
|
3
|
Balajee AS. Human RecQL4 as a Novel Molecular Target for Cancer Therapy. Cytogenet Genome Res 2021; 161:305-327. [PMID: 34474412 DOI: 10.1159/000516568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Human RecQ helicases play diverse roles in the maintenance of genomic stability. Inactivating mutations in 3 of the 5 human RecQ helicases are responsible for the pathogenesis of Werner syndrome (WS), Bloom syndrome (BS), Rothmund-Thomson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). WS, BS, and RTS patients are at increased risk for developing many age-associated diseases including cancer. Mutations in RecQL1 and RecQL5 have not yet been associated with any human diseases so far. In terms of disease outcome, RecQL4 deserves special attention because mutations in RecQL4 result in 3 autosomal recessive syndromes (RTS type II, RAPADILINO, and BGS). RecQL4, like other human RecQ helicases, has been demonstrated to play a crucial role in the maintenance of genomic stability through participation in diverse DNA metabolic activities. Increased incidence of osteosarcoma in RecQL4-mutated RTS patients and elevated expression of RecQL4 in sporadic cancers including osteosarcoma suggest that loss or gain of RecQL4 expression is linked with cancer susceptibility. In this review, current and future perspectives are discussed on the potential use of RecQL4 as a novel cancer therapeutic target.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
4
|
Miura A, Sootome H, Fujita N, Suzuki T, Fukushima H, Mizuarai S, Masuko N, Ito K, Hashimoto A, Uto Y, Sugimoto T, Takahashi H, Mitsuya M, Hirai H. TAS-119, a novel selective Aurora A and TRK inhibitor, exhibits antitumor efficacy in preclinical models with deregulated activation of the Myc, β-Catenin, and TRK pathways. Invest New Drugs 2021; 39:724-735. [PMID: 33409897 DOI: 10.1007/s10637-020-01019-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Aurora kinase A, a mitotic kinase that is overexpressed in various cancers, is a promising cancer drug target. Here, we performed preclinical characterization of TAS-119, a novel, orally active, and highly selective inhibitor of Aurora A. TAS-119 showed strong inhibitory effect against Aurora A, with an IC50 value of 1.04 nmol/L. The compound was highly selective for Aurora A compared with 301 other protein kinases, including Aurora kinase B. TAS-119 induced the inhibition of Aurora A and accumulation of mitotic cells in vitro and in vivo. It suppressed the growth of various cancer cell lines harboring MYC family amplification and CTNNB1 mutation in vitro. In a xenograft model of human lung cancer cells harboring MYC amplification and CTNNB1 mutation, TAS-119 showed a strong antitumor activity at well-tolerated doses. TAS-119 induced N-Myc degradation and inhibited downstream transcriptional targets in MYCN-amplified neuroblastoma cell lines. It also demonstrated inhibitory effect against tropomyosin receptor kinase (TRK)A, TRKB, and TRKC, with an IC50 value of 1.46, 1.53, and 1.47 nmol/L, respectively. TAS-119 inhibited TRK-fusion protein activity and exhibited robust growth inhibition of tumor cells via a deregulated TRK pathway in vitro and in vivo. Our study indicates the potential of TAS-119 as an anticancer drug, especially for patients harboring MYC amplification, CTNNB1 mutation, and NTRK fusion.
Collapse
Affiliation(s)
- Akihiro Miura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 770-8506, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Hiroshi Sootome
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Naoya Fujita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Takamasa Suzuki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Hiroto Fukushima
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Shinji Mizuarai
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Norio Masuko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Kimihiro Ito
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Akihiro Hashimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 770-8506, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Tetsuya Sugimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Hidekazu Takahashi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Morihiro Mitsuya
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Hiroshi Hirai
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, 3 Okubo, Tsukuba, Ibaraki, 300-2611, Japan.
| |
Collapse
|
5
|
A PKD-MFF signaling axis couples mitochondrial fission to mitotic progression. Cell Rep 2021; 35:109129. [PMID: 34010649 DOI: 10.1016/j.celrep.2021.109129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.
Collapse
|
6
|
Bai S, Hu X, Zhao Y, Li W, Wan Y, Jin R, Wang Y, Guo T, Tong X, Xu B. Compound heterozygosity for novel AURKC mutations in an infertile man with macrozoospermia. Andrologia 2020; 52:e13663. [PMID: 32478938 DOI: 10.1111/and.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/23/2023] Open
Abstract
Among causes of infertility, teratozoospermia is characterised by a percentage of morphologically abnormal spermatozoa >4%. Macrozoospermia, one form of monomorphic teratozoospermia, is observed in <1% of cases of male infertility and is described as approximately 100% large-headed and/or multitailed spermatozoa. This study reports that an infertile man with large-head spermatozoa presenting compound heterozygosity aurora kinase C (AURKC) mutations (c.382C>T, c.572C>T) by whole-exome sequencing. Consequently, both two novel AURKC mutations had high probability of damage-causing and conserved across species and extremely low allele frequency in the population. Flow cytometry analysis revealed a high ratio of sperm DNA fragmentation. Two intracytoplasmic sperm injection (ICSI) procedures were attempted for the patient, but all were unsuccessful. These results indicate that sequence analysis should be performed for the variants of AURKC in Chinese patients with macrozoospermia.
Collapse
Affiliation(s)
- Shun Bai
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yun Zhao
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Li
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyang Wan
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rentao Jin
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanshi Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tonghang Guo
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianhong Tong
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Xu
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Chen L, Yin T, Nie ZW, Wang T, Gao YY, Yin SY, Huo LJ, Zhang X, Yang J, Miao YL. Survivin regulates chromosome segregation by modulating the phosphorylation of Aurora B during porcine oocyte meiosis. Cell Cycle 2018; 17:2436-2446. [PMID: 30382773 DOI: 10.1080/15384101.2018.1542894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SURVIVIN is an essential chromosomal passenger complex (CPC) subunit and participates in cell division. In this study, we used porcine oocyte as a model to investigate the roles of Survivin during porcine oocyte maturation. Survivin was highly expressed in germinal vesicle (GV) and germinal vesicle breakdown (GVBD) stages oocytes, mainly localized in the GV at GV stage and on the chromosomes after GVBD. We have used RNA interference to specifically deplete Survivin in oocytes during in vitro maturation (IVM). Immunofluorescence assay showed that Survivin-depleted oocytes failed to produce polar body in meiosisⅠ (failed to complete cytokinesis), and they were arrested in metaphaseⅠwith misaligned chromosomes. The homologous chromosomes in Survivin-depleted oocytes could not be separated normally. Moreover, both the phosphorylation levels of Aurora B and the mRNA level of Mad2L1 related to spindle assembly checkpoint (SAC) was decreased in Survivin-depleted oocytes, which thus inhibited the degradation of Cyclin B1 (CCNB1) to complete meiosis. Taken together, we conclude that Survivin is an important mediator of centromere and midbody docking of Aurora-B as well as its activity and regulates SAC and MPF activity during meiosis in porcine oocytes.
Collapse
Affiliation(s)
- Li Chen
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Tailang Yin
- c Reproductive Medicine Center , Renmin Hospital of Wuhan University , Wuhan , China
| | - Zheng-Wen Nie
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Tao Wang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Ying-Ying Gao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Shu-Yuan Yin
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Li-Jun Huo
- b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China
| | - Xia Zhang
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,d The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Jing Yang
- c Reproductive Medicine Center , Renmin Hospital of Wuhan University , Wuhan , China
| | - Yi-Liang Miao
- a Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Agricultural Animal Genetics , Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education , Wuhan , China.,d The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| |
Collapse
|
8
|
Nair JS, Schwartz GK. MLN-8237: A dual inhibitor of aurora A and B in soft tissue sarcomas. Oncotarget 2017; 7:12893-903. [PMID: 26887042 PMCID: PMC4914329 DOI: 10.18632/oncotarget.7335] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aurora kinases have become an attractive target in cancer therapy due to their deregulated expression in human tumors. Liposarcoma, a type of soft tissue sarcoma in adults, account for approximately 20% of all adult soft tissue sarcomas. There are no effective chemotherapies for majority of these tumors. Efforts made to define the molecular basis of liposarcomas lead to the finding that besides the amplifications of CDK4 and MDM2, Aurora Kinase A, also was shown to be overexpressed. Based on these as well as mathematic modeling, we have carried out a successful preclinical study using CDK4 and IGF1R inhibitors in liposarcoma. MLN8237 has been shown to be a potent and selective inhibitor of Aurora A. MLN-8237, as per our results, induces a differential inhibition of Aurora A and B in a dose dependent manner. At a low nanomolar dose, cellular effects such as induction of phospho-Histone H3 (Ser10) mimicked as that of the inhibition of Aurora kinase A followed by apoptosis. However, micromolar dose of MLN-8237 induced polyploidy, a hallmark effect of Aurora B inhibition. The dose dependent selectivity of inhibition was further confirmed by using siRNA specific inhibition of Aurora A and B. This was further tested by time lapse microscopy of GFP-H2B labelled cells treated with MLN-8237. LS141 xenograft model at a dose of 30 mg/kg also showed efficient growth suppression by selective inhibition of Aurora Kinase A. Based on our data, a dose that can target only Aurora A will be more beneficial in tumor suppression.
Collapse
Affiliation(s)
- Jayasree S Nair
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Gary K Schwartz
- Jennifer Goodman Linn Laboratory of New Drug Development, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Thaiparambil J, Mansour O, El-Zein R. Effect of Benzo[a]Pyrene on Spindle Misorientation and Fidelity of Chromosome Segregation in Lung Epithelial BEAS-2B Cells. Toxicol Sci 2017; 162:167-176. [DOI: 10.1093/toxsci/kfx229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jose Thaiparambil
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Oula Mansour
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| | - Randa El-Zein
- Department of Radiology, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
10
|
Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet 2017; 33:349-363. [PMID: 28359584 DOI: 10.1016/j.tig.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/18/2022]
Abstract
The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 2016; 91:217-232. [PMID: 27779748 DOI: 10.1111/cge.12905] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Infertility, defined by the inability of conceiving a child after 1 year is estimated to concern approximately 50 million couples worldwide. As the male gamete is readily accessible and can be studied by a simple spermogram it is easier to subcategorize male than female infertility. Subjects with a specific sperm phenotype are more likely to have a common origin thus facilitating the search for causal factors. Male infertility is believed to be often multifactorial and caused by both genetic and extrinsic factors, but severe cases of male infertility are likely to have a predominant genetic etiology. Patients presenting with a monomorphic teratozoospermia such as globozoospermia or macrospermia with more than 85% of the spermatozoa presenting this specific abnormality have been analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm anomalies such as severe alteration of sperm motility, in particular multiple morphological anomalies of the sperm flagella (MMAF) or sperm unability to fertilize the oocyte (oocyte activation failure syndrome) has also enable the identification of new infertility genes. Here we review the recent works describing the identification and characterization of gene defects having a direct qualitative effect on sperm morphology or function.
Collapse
Affiliation(s)
- P F Ray
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Biochimie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - A Toure
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | - C Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - C Coutton
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
12
|
Hasanpourghadi M, Karthikeyan C, Pandurangan AK, Looi CY, Trivedi P, Kobayashi K, Tanaka K, Wong WF, Mustafa MR. Targeting of tubulin polymerization and induction of mitotic blockage by Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) in human cervical cancer HeLa cell. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:58. [PMID: 27030360 PMCID: PMC4815073 DOI: 10.1186/s13046-016-0332-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Background Microtubule Targeting Agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are widely used in the treatment of various cancers. As with most chemotherapeutic agents, adverse effects and drug resistance are commonly associated with the clinical use of these agents. Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC), a benzimidazole derivative displays greater toxicity against various cancer compared to normal human cell lines. The present study, focused on the cytotoxic effects of MBIC against HeLa cervical cancer cells and possible actions on the microtubule assembly. Methods Apoptosis detection and cell-cycle assays were performed to determine the type of cell death and the phase of cell cycle arrest in HeLa cells. Tubulin polymerization assay and live-cell imaging were performed to visualize effects on the microtubule assembly in the presence of MBIC. Mitotic kinases and mitochondrial-dependent apoptotic proteins were evaluated by Western blot analysis. In addition, the synergistic effect of MBIC with low doses of selected chemotherapeutic actions were examined against the cancer cells. Results Results from the present study showed that following treatment with MBIC, the HeLa cells went into mitotic arrest comprising of multi-nucleation and unsegregated chromosomes with a prolonged G2-M phase. In addition, the HeLa cells showed signs of mitochondrial-dependant apoptotic features such as the release of cytochrome c and activation of caspases. MBIC markedly interferes with tubulin polymerization. Western blotting results indicated that MBIC affects mitotic regulatory machinery by up-regulating BubR1, Cyclin B1, CDK1 and down-regulation of Aurora B. In addition, MBIC displayed synergistic effect when given in combination with colchicine, nocodazole, paclitaxel and doxorubicin. Conclusion Taken together, our study demonstrated the distinctive microtubule destabilizing effects of MBIC against cervical cancer cells in vitro. Besides that, MBIC exhibited synergistic effects with low doses of selected anticancer drugs and thus, may potentially reduce the toxicity and drug resistance to these agents. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0332-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, 462033, India
| | - Kinue Kobayashi
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 980-8575, Sendai, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 980-8575, Sendai, Japan
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
13
|
Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 2015; 21:455-85. [PMID: 25888788 DOI: 10.1093/humupd/dmv020] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF). METHODS A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014. RESULTS Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella. CONCLUSIONS The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.
Collapse
Affiliation(s)
- Charles Coutton
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Génétique Chromosomique, Grenoble, F-38000, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France Departments of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France Equipe 'Genetics Epigenetics and Therapies of Infertility' Institut Albert Bonniot, INSERM U823, La Tronche, F-38706, France CHU de Grenoble, UF de Biochimie et Génétique Moléculaire, Grenoble, F-38000, France
| |
Collapse
|
14
|
Humme D, Haider A, Möbs M, Mitsui H, Suárez-Fariñas M, Ohmatsu H, Isabell Geilen C, Eberle J, Krueger JG, Beyer M, Hummel M, Anagnostopoulos I, Sterry W, Assaf C. Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target. J Invest Dermatol 2015; 135:2292-2300. [PMID: 25848977 DOI: 10.1038/jid.2015.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) form a heterogeneous group of non-Hodgkin's lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that Aurora kinase A is one of the highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by quantitative reverse transcriptase-PCR, western blotting, and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific Aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase, as well as apoptosis in CTCL cell lines. These data provide a promising rationale for using Aurora kinase A inhibition as a therapeutic modality of CTCL.
Collapse
Affiliation(s)
- Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ahmed Haider
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; These authors contributed equally to this work
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Cyprienne Isabell Geilen
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Beyer
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; HELIOS Klinikum Krefeld, Krefeld, Germany.
| |
Collapse
|
15
|
Sijare F, Geißler AL, Fichter CD, Hergeth SP, Bogatyreva L, Hauschke D, Schneider R, Werner M, Lassmann S. Aurora B expression and histone variant H1.4S27 phosphorylation are no longer coordinated during metaphase in aneuploid colorectal carcinomas. Virchows Arch 2015; 466:503-15. [PMID: 25680570 DOI: 10.1007/s00428-015-1727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 11/24/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022]
Abstract
Experimental model systems identified phosphorylation of linker histone variant H1.4 at Ser 27 (H1.4S27p) as a novel mitotic mark set by Aurora B kinase. Here, we examined expression of Aurora B and H1.4S27p in colorectal carcinoma (CRC) cell lines (HCT116, DLD1, Caco-2, HT29) and tissue specimens (n = 36), in relation to microsatellite instability (MSI) status and ploidy. In vitro, Aurora B (pro-/meta-/anaphase) and H1.4S27p (pro-/metaphase) were localized in mitotic figures. The proportion of labeled mitoses was significantly different between cell lines for Aurora B (p = 0.019) but not for H1.4S27p (p = 0.879). For Aurora B, these differences were not associated with an altered Aurora B gene copy number (FISH) or messenger RNA (mRNA) expression level (qRT-PCR). Moreover, Aurora B expression and H1.4S27 phosphorylation were no longer coordinated during metaphase in aneuploid HT29 cells (p = 0.039). In CRCs, immunoreactivity for Aurora B or H1.4S27p did not correlate with T- or N-stage, grade, or MSI status. However, metaphase labeling of H1.4S27p was significantly higher in diploid than in aneuploid CRCs (p = 0.011). Aurora B was significantly correlated with H1.4S27p-positive metaphases in MSI (p = 0.010) or diploid (p = 0.003) CRCs. Finally, combined classification of MSI status and ploidy revealed a significant positive correlation of Aurora B with H1.4S27p in metaphases of diploid/MSI (p = 0.010) and diploid/microsatellite-stable (MSS; p = 0.031) but not of aneuploid/MSS (p = 0.458) CRCs. The present study underlines the functional link of Aurora B expression and H1.4S27p during specific phases of mitosis in diploid and/or MSI-positive CRCs in vitro and in situ. Importantly, the study shows that the coordination between Aurora B expression and phosphorylation of H1.4 at Ser 27 is lost in cycling aneuploid CRC cells.
Collapse
Affiliation(s)
- Fahima Sijare
- Department of Pathology, University Medical Center, Breisacherstrasse 115A, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
London N, Biggins S. Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 2014; 15:736-47. [PMID: 25303117 DOI: 10.1038/nrm3888] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint ensures proper chromosome segregation during cell division. Unravelling checkpoint signalling has been a long-standing challenge owing to the complexity of the structures and forces that regulate chromosome segregation. New reports have now substantially advanced our understanding of checkpoint signalling mechanisms at the kinetochore, the structure that connects microtubules and chromatin. In contrast to the traditional view of a binary checkpoint response - either completely on or off - new findings indicate that the checkpoint response strength is variable. This revised perspective provides insight into how checkpoint bypass can lead to aneuploidy and informs strategies to exploit these errors for cancer treatments.
Collapse
Affiliation(s)
- Nitobe London
- 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA. [2] Molecular and Cellular Biology Program, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA
| |
Collapse
|
17
|
Eliezer Y, Argaman L, Kornowski M, Roniger M, Goldberg M. Interplay between the DNA damage proteins MDC1 and ATM in the regulation of the spindle assembly checkpoint. J Biol Chem 2014; 289:8182-93. [PMID: 24509855 DOI: 10.1074/jbc.m113.532739] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes.
Collapse
Affiliation(s)
- Yifat Eliezer
- From the Department of Genetics, The Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
18
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
19
|
Cormier A, Drubin DG, Barnes G. Phosphorylation regulates kinase and microtubule binding activities of the budding yeast chromosomal passenger complex in vitro. J Biol Chem 2013; 288:23203-11. [PMID: 23814063 DOI: 10.1074/jbc.m113.491480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromosomal passenger complex (CPC) is a key regulator of mitosis in eukaryotes. It comprises four essential and conserved proteins known in mammals/yeasts as Aurora B/Ipl1, INCENP/Sli15, Survivin/Bir1, and Borealin/Nbl1. These subunits act together in a highly controlled fashion. Regulation of Aurora B/Ipl1 kinase activity and localization is critical for CPC function. Although regulation of CPC localization and kinase activity in vivo has been investigated elsewhere, studies on the complete, four-subunit CPC and its basic biochemical properties are only beginning. Here we describe the biochemical characterization of purified and complete Saccharomyces cerevisiae four-subunit CPC. We determined the affinity of the CPC for microtubules and demonstrated that the binding of CPC to microtubules is primarily electrostatic in nature and depends on the acidic C-terminal tail (E-hook) of tubulin. Moreover, phosphorylation of INCENP/Sli15 on its microtubule binding region also negatively regulates CPC affinity for microtubules. Furthermore, we show that phosphorylation of INCENP/Sli15 is required for activation of the kinase Aurora B/Ipl1 and can occur in trans. Although phosphorylation of INCENP/Sli15 is essential for activation, we determined that a version of the CPC lacking the INCENP/Sli15 microtubule binding region (residues Glu-91 to Ile-631) is able to form an intact complex that retains microtubule binding activity. Thus, we conclude that this INCENP/Sli15 linker domain plays a largely regulatory function and is not essential for complex formation or microtubule binding.
Collapse
Affiliation(s)
- Anthony Cormier
- Department of Molecular and Cell Biology University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Kumari G, Ulrich T, Gaubatz S. A role for p38 in transcriptional elongation of p21 (CIP1) in response to Aurora B inhibition. Cell Cycle 2013; 12:2051-60. [PMID: 23759594 DOI: 10.4161/cc.25100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aurora kinases play important functions in mitosis. They are overexpressed in many cancers and are targets for anticancer therapy. Inhibition of Aurora B results in cytokinesis failure and polyploidization, leading to activation of the p53 tumor suppressor and its target genes, including p21. The pathways that mediate p21 activation after Aurora B inhibition are not well understood. In this study, we identified a role for the p38 MAP kinase in activation of p21 when Aurora B is inhibited. We show that p38 is required for the acute cell cycle arrest in G 1 and to prevent endoreduplication when Aurora B is inhibited. Stabilization of p53 occurs independently of p38, and recruitment of p53 to the p21 promoter also does not require p38. Instead, enrichment of the elongating form of RNA PolII at the distal region of the p21 gene is strongly reduced when p38 is blocked, indicating that p38 acts in transcriptional elongation of p21. Thus, our results identify an unexpected role of p38 in cell cycle regulation in response to Aurora B inhibition, by promoting the transcriptional elongation of the cell cycle inhibitor p21.
Collapse
Affiliation(s)
- Geeta Kumari
- Theodor Boveri Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | | |
Collapse
|
21
|
AEG-1 overexpression is essential for maintenance of malignant state in human AML cells via up-regulation of Akt1 mediated by AURKA activation. Cell Signal 2013; 25:1438-46. [PMID: 23499911 DOI: 10.1016/j.cellsig.2013.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/04/2013] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) remains highly fatal, highlighting the need for improved understanding of signal pathways that can lead to the development of new therapeutic regimens targeting common molecular pathways shared across different AML subtypes. Here we demonstrate that astrocyte elevated gene-1 (AEG-1) is one of such pathways, involving in cell cycle and apoptosis regulation and contributing to enhanced proliferation and chemoresistance in HL-60 and U937 AML cells. The pleiotropic effects of AEG-1 on AML were found to correlate with two novel target genes, Aurora kinase A (AURKA) and Akt1. Down-regulation of AEG-1 by short-hairpin RNA (shRNA) could not only decrease AURKA expression both on mRNA and protein levels but also decrease the levels of pAkt473 and pAkt308 (the active forms of phosphorylated Akt), similar effect as using AURKA inhibitor Tozasertib (VX680). Furthermore, the AEG-1 shRNA-induced malignant phenotype changes could be mitigated by forced overexpression of AURKA through increased Akt1 activation and phosphorylation in AML cells. On the other hand, although exogenous expression of AEG-1 could increase both AURKA and Akt expression levels the simultaneous use of AURKA inhibitor Tozasertib blocked AEG-1's role of up-regulation of Akt expression in ECV304 cells, suggesting that AURKA might be a key mediator of AEG-1 in regulating Akt activation, and a key effector of AEG-1 in maintaining the malignant state of AML. Moreover, knockdown AEG-1 expression also changed the expression levels of PTEN, survivin and stathmin, the genes that have been reported to be involved in the development of several other malignant tumors. Our results provide evidence for AEG-1's carcinogenesis role in AML and reveal a novel functional link between AEG-1 and AURKA on Akt1 activation. AEG-1 can be an important candidate as a drug design target within AURKA signal pathway for more specific killing of AML cells while sparing normal cells.
Collapse
|
22
|
Silió V, Redondo-Muñoz J, Carrera AC. Phosphoinositide 3-kinase β regulates chromosome segregation in mitosis. Mol Biol Cell 2012; 23:4526-42. [PMID: 23051731 PMCID: PMC3510015 DOI: 10.1091/mbc.e12-05-0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is mutated in approximately half of tumors; it is therefore important to define its functions. This study shows that PI3Kα activity regulates mitotic entry and spindle orientation; in contrast, PI3Kβ controls dynein/dynactin and Aurora B activation at kinetochores and, in turn, chromosome segregation. Class IA phosphoinositide 3-kinases (PI3K) are enzymes composed of a p85 regulatory and a p110 catalytic subunit that control formation of 3-poly-phosphoinositides (PIP3). The PI3K pathway regulates cell survival, migration, and division, and is mutated in approximately half of human tumors. For this reason, it is important to define the function of the ubiquitous PI3K subunits, p110α and p110β. Whereas p110α is activated at G1-phase entry and promotes protein synthesis and gene expression, p110β activity peaks in S phase and regulates DNA synthesis. PI3K activity also increases at the onset of mitosis, but the isoform activated is unknown; we have examined p110α and p110β function in mitosis. p110α was activated at mitosis entry and regulated early mitotic events, such as PIP3 generation, prometaphase progression, and spindle orientation. In contrast, p110β was activated near metaphase and controlled dynein/dynactin and Aurora B activities in kinetochores, chromosome segregation, and optimal function of the spindle checkpoint. These results reveal a p110β function in preserving genomic stability during mitosis.
Collapse
Affiliation(s)
- Virginia Silió
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | | | | |
Collapse
|
23
|
Hsieh YJ, Yang MY, Leu YL, Chen C, Wan CF, Chang MY, Chang CJ. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:149. [PMID: 22963191 PMCID: PMC3557174 DOI: 10.1186/1472-6882-12-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/31/2012] [Indexed: 01/15/2023]
Abstract
Background Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.
Collapse
|
24
|
van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318:1407-20. [PMID: 22472345 DOI: 10.1016/j.yexcr.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.
Collapse
Affiliation(s)
- Maike S van der Waal
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
The spindle assembly checkpoint controls cell cycle progression during mitosis, synchronizing it with the attachment of chromosomes to spindle microtubules. After the discovery of the mitotic arrest deficient (MAD) and budding uninhibited by benzymidazole (BUB) genes as crucial checkpoint components in 1991, the second decade of checkpoint studies (2001–2010) witnessed crucial advances in the elucidation of the mechanism through which the checkpoint effector, the mitotic checkpoint complex, targets the anaphase-promoting complex (APC/C) to prevent progression into anaphase. Concomitantly, the discovery that the Ndc80 complex and other components of the microtubule-binding interface of kinetochores are essential for the checkpoint response finally asserted that kinetochores are crucial for the checkpoint response. Nevertheless, the relationship between kinetochores and checkpoint control remains poorly understood. Crucial advances in this area in the third decade of checkpoint studies (2011–2020) are likely to be brought about by the characterization of the mechanism of kinetochore recruitment, activation and inactivation of checkpoint proteins, which remains elusive for the majority of checkpoint components. Here, we take a molecular view on the main challenges hampering this task.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
26
|
The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis. Exp Cell Res 2011; 318:578-92. [PMID: 22227008 DOI: 10.1016/j.yexcr.2011.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/10/2011] [Accepted: 12/14/2011] [Indexed: 12/18/2022]
Abstract
The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3',5-dihydroxy-4',6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.
Collapse
|
27
|
Jeyaprakash AA, Basquin C, Jayachandran U, Conti E. Structural basis for the recognition of phosphorylated histone h3 by the survivin subunit of the chromosomal passenger complex. Structure 2011; 19:1625-34. [PMID: 22032967 DOI: 10.1016/j.str.2011.09.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 01/16/2023]
Abstract
Localization of the chromosomal passenger complex (CPC) at centromeres during early mitosis is essential for accurate chromosome segregation and is dependent on the phosphorylation of histone H3. We report the 2.7 Å resolution structure of the CPC subunit Survivin bound to the N-terminal tail of histone H3 carrying the Thr3 phosphorylation mark (Thr3ph). The BIR domain of Survivin recognizes the Ala1-Arg2-Thr3ph-Lys4 sequence, decoding the modification state and the free N terminus of histone H3 by a strategy similar to that used by PHD fingers. The structural analysis permitted the identification of putative Survivin-binding epitopes in other mitotic proteins, including human Shugoshin 1. Using biophysical and structural data, we show that a phospho-mimic N-terminal sequence such as that of hSgo1 (Ala1-Lys2-Glu3-Arg4) contains the specificity determinants to bind Survivin. Our findings suggest that the CPC engages in mutually exclusive interactions with other constituents of the mitotic machinery and a histone mark in chromatin.
Collapse
Affiliation(s)
- A Arockia Jeyaprakash
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
28
|
Abstract
Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers.
Collapse
Affiliation(s)
- Sherif S Farag
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, 840 Westr Walnut St., Indianapolis, IN 46202, USA.
| |
Collapse
|
29
|
[Structure, localizations and functions of chromosomal passenger complex]. YI CHUAN = HEREDITAS 2011; 33:576-84. [PMID: 21684862 DOI: 10.3724/sp.j.1005.2011.00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosomal passenger complex (CPC) is mainly composed of a protein kinase Aurora B, inner centromere protein, Survivin, and Borealin. As in different periods of cell division, CPC can localise correctly to relavent destinations in time and interact on its different substrates in the mitotic cell. CPC modulats phosphorylation of histone H3 in chromatin aggregation and controlls cohesion or segregation of sister chromatids. It is involved in assembly of a mitotic spindle and its chromosomes catched. Moreover, CPC corrects attachment errors between kinetochore and microtuble and gives faithfuly chromosomal segregation and promoting cytokinesis. Here, the structure compenants, localization on chromosomal arms, inner centromere and central spindle, and functions in defferent posisions of CPC were briefly descriped.
Collapse
|
30
|
The 'anaphase problem': how to disable the mitotic checkpoint when sisters split. Biochem Soc Trans 2011; 38:1660-6. [PMID: 21118144 DOI: 10.1042/bst0381660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Two closely connected mechanisms safeguard the fidelity of chromosome segregation in eukaryotic cells. The mitotic checkpoint monitors the attachment of kinetochores to microtubules and delays anaphase onset until all sister kinetochores have become attached to opposite poles. In addition, an error correction mechanism destabilizes erroneous attachments that do not lead to tension at sister kinetochores. Aurora B kinase, the catalytic subunit of the CPC (chromosomal passenger complex), acts as a sensor and effector in both pathways. In this review we focus on a poorly understood but important aspect of mitotic control: what prevents the mitotic checkpoint from springing into action when sister centromeres are split and tension is suddenly lost at anaphase onset? Recent work has shown that disjunction of sister chromatids, in principle, engages the mitotic checkpoint, and probably also the error correction mechanism, with potentially catastrophic consequences for cell division. Eukaryotic cells have solved this 'anaphase problem' by disabling the mitotic checkpoint at the metaphase-to-anaphase transition. Checkpoint inactivation is in part due to the reversal of Cdk1 (cyclin-dependent kinase 1) phosphorylation of the CPC component INCENP (inner centromere protein; Sli15 in budding yeast), which causes the relocation of the CPC from centromeres to the spindle midzone. These findings highlight principles of mitotic checkpoint control: when bipolar chromosome attachment is reached in mitosis, the checkpoint is satisfied, but still active and responsive to loss of tension. Mitotic checkpoint inactivation at anaphase onset is required to prevent checkpoint re-engagement when sister chromatids split.
Collapse
|
31
|
DeLuca KF, Lens SMA, DeLuca JG. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 2011; 124:622-34. [PMID: 21266467 DOI: 10.1242/jcs.072629] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulating the stability of kinetochore-microtubule attachments but its relevant kinetochore targets in cells remain unclear. Here, we identify multiple serine residues within the N-terminus of the kinetochore protein Hec1 that are phosphorylated in an Aurora-B-kinase-dependent manner during mitosis. On all identified target sites, Hec1 phosphorylation at kinetochores is high in early mitosis and decreases significantly as chromosomes bi-orient. Furthermore, once dephosphorylated, Hec1 is not highly rephosphorylated in response to loss of kinetochore-microtubule attachment or tension. We find that a subpopulation of Aurora B kinase remains localized at the outer kinetochore even upon Hec1 dephosphorylation, suggesting that Hec1 phosphorylation by Aurora B might not be regulated wholly by spatial positioning of the kinase. Our results define a role for Hec1 phosphorylation in kinetochore-microtubule destabilization and error correction in early mitosis and for Hec1 dephosphorylation in maintaining stable attachments in late mitosis.
Collapse
Affiliation(s)
- Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
32
|
Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles. PLoS One 2010; 5:e15020. [PMID: 21124853 PMCID: PMC2990766 DOI: 10.1371/journal.pone.0015020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/13/2010] [Indexed: 12/02/2022] Open
Abstract
Background Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. Methodology/Principal Findings The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. Conclusions/Significance These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Morilla I, Lees JG, Reid AJ, Orengo C, Ranea JAG. Assessment of protein domain fusions in human protein interaction networks prediction: application to the human kinetochore model. N Biotechnol 2010; 27:755-65. [PMID: 20851221 DOI: 10.1016/j.nbt.2010.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/29/2010] [Accepted: 09/11/2010] [Indexed: 01/13/2023]
Abstract
In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Some proteins, involved in a common biological process and encoded by separate genes in one organism, can be found fused within a single protein chain in other organisms. By detecting these triplets, a functional relationship can be established between the unfused proteins. Here we use a domain fusion prediction method to predict these protein interactions for the human interactome. We observed that gene fusion events are more related to physical interaction between proteins than to other weaker functional relationships such as participation in a common biological pathway. These results suggest that domain fusion is an appropriate method for predicting protein complexes. The most reliable fused domain predictions were used to build protein-protein interaction (PPI) networks. These predicted PPI network models showed the same topological features as real biological networks and different features from random behaviour. We built the PPI domain fusion sub-network model of the human kinetochore and observed that the majority of the predicted interactions have not yet been experimentally characterised in the publicly available PPI repositories. The study of the human kinetochore domain fusion sub-network reveals undiscovered kinetochore proteins with presumably relevant functions, such as hubs with many connections in the kinetochore sub-network. These results suggest that experimentally hidden regions in the predicted PPI networks contain key functional elements, associated with important functional areas, still undiscovered in the human interactome. Until novel experiments shed light on these hidden regions; domain fusion predictions provide a valuable approach for exploring them.
Collapse
Affiliation(s)
- Ian Morilla
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.
| | | | | | | | | |
Collapse
|
34
|
Maia AF, Feijão T, Vromans MJM, Sunkel CE, Lens SMA. Aurora B kinase cooperates with CENP-E to promote timely anaphase onset. Chromosoma 2010; 119:405-13. [PMID: 20354862 DOI: 10.1007/s00412-010-0265-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/04/2010] [Accepted: 02/14/2010] [Indexed: 01/06/2023]
Abstract
Error-free chromosome segregation requires that all chromosomes biorient on the mitotic spindle. The motor protein Centromere-associated protein E (CENP-E) facilitates chromosome congression by mediating the lateral sliding of sister chromatids along existing K-fibers, while the mitotic kinase Aurora B detaches kinetochore-microtubule interactions that are not bioriented. Whether these activities cooperate to promote efficient chromosome biorientation and timely anaphase onset is not known. We here show that the chromosomes that fail to congress after CENP-E depletion displayed high centromeric Aurora B kinase activity. This activity destabilized spindle pole proximal kinetochore-microtubule interactions resulting in a checkpoint-dependent mitotic delay that allowed CENP-E-independent chromosome congression, thus reducing chromosome segregation errors. This shows that Aurora B keeps the mitotic checkpoint active by destabilizing kinetochore fibers of polar chromosomes to permit chromosome congression in CENP-E-compromised cells and implies that this kinase normally prevents pole proximal syntelic attachments to allow CENP-E-mediated congression of mono-oriented chromosomes.
Collapse
Affiliation(s)
- André F Maia
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
35
|
Wilmeth LJ, Shrestha S, Montaño G, Rashe J, Shuster CB. Mutual dependence of Mob1 and the chromosomal passenger complex for localization during mitosis. Mol Biol Cell 2010; 21:380-92. [PMID: 19955215 PMCID: PMC2814784 DOI: 10.1091/mbc.e09-06-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/11/2023] Open
Abstract
The spatial and temporal coordination of chromosome segregation with cytokinesis is essential to ensure that each daughter cell receives the correct complement of chromosomal and cytoplasmic material. In yeast, mitotic exit and cytokinesis are coordinated by signaling cascades whose terminal components include a nuclear Dbf2-related family kinase and a noncatalytic subunit, Mps one binding (Mob) 1. There are five human Mob1 isoforms, all of which display redundant localization patterns at the spindle poles and kinetochores in early mitosis, and the spindle midzone during cytokinesis. Mob1 shares similar localization patterns to Polo-like kinase (Plk1) and the chromosomal passenger complex (CPC), and although depletion of Plk1 resulted in a loss of Mob1 from the spindle poles, Mob1 recruitment to kinetochores was unaffected. Conversely, disruption of CPC signaling resulted in a loss of Mob1 from kinetochores without disrupting recruitment to the spindle poles. In Mob1-depleted cells, the relocalization of the CPC and mitotic kinesin-like protein (MKLP) 2 to the spindle midzone was delayed during early anaphase, and as a consequence, the midzone recruitment of MKLP1 also was affected. Together, these results suggest that Mob1 and the other mammalian orthologues of the mitotic exit network regulate mitotic progression by facilitating the timely mobilization of the CPC to the spindle midzone.
Collapse
Affiliation(s)
- Lori Jo Wilmeth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,
| | | | | | | | | |
Collapse
|
36
|
Nezi L, Musacchio A. Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol 2009; 21:785-95. [PMID: 19846287 DOI: 10.1016/j.ceb.2009.09.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/12/2009] [Accepted: 09/18/2009] [Indexed: 01/07/2023]
Abstract
The spindle assembly checkpoint (SAC) is a feedback control system that monitors the state of kinetochore/microtubule attachment during mitosis and halts cell cycle progression until all chromosomes are properly aligned at the metaphase plate. The state of chromosome-microtubule attachment is implicated as a crucial factor in the checkpoint response. On the contrary, lack of tension in the centromere-kinetochore region of sister chromatids has been shown to regulate a pathway of correction of undesired chromosome-microtubule connections, while the presence of tension is believed to promote the stabilization of attachments. We discuss how tension-sensitive phenomena, such as attachment correction and stabilization, relate to the SAC and we speculate on the existence of a single pathway linking error correction and SAC activation.
Collapse
Affiliation(s)
- Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
37
|
Aurora A is differentially expressed and regulated in chromosomal and microsatellite instable sporadic colorectal cancers. Mod Pathol 2009; 22:1385-97. [PMID: 19648887 DOI: 10.1038/modpathol.2009.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The centrosome-associated kinase aurora A has been shown to be involved in genetic instability and to be (over)expressed in several human carcinomas. This study investigated aurora A gene copy numbers, mRNA and protein expression as well as tumour cell proliferation and aneuploidy in chromosomal and microsatellite instable sporadic colorectal cancers. Case-matched tissues of normal (n=71) and dysplastic (n=49) colorectal epithelium and invasive carcinomas (n=71) were included in this study. PCR-based microsatellite analysis classified 14/71 (20%) of carcinomas as microsatellite instable. A stepwise increase of aurora A mRNA expression (P<0.0001; quantitative RT-PCR) and aurora A protein expressing tumour cells (P=0.0141; immunohistochemistry) occurred in the adenoma-carcinoma sequence. Within invasive carcinomas, aurora A mRNA levels (P=0.0259) and aurora A positive tumour cells (P<0.0001) were closely associated with tumour cell proliferation (Ki-67 specific immunohistochemistry). Compared with chromosomal instable carcinomas, microsatellite instable carcinomas had significantly more aurora A positive tumour cells (P=0.0043) and a higher tumour cell proliferation (P=0.0335). In contrast, only chromosomal instable carcinomas exhibited marked tumour cell aneuploidy (P=0.0004, fluorescence in situ hybridization) and significantly higher aurora A gene copy numbers (P=0.0206) as compared with microsatellite instable carcinomas. This study further supports a role of aurora A in the carcinogenesis of sporadic colorectal cancers. Moreover, it demonstrates that in a minority of predominantly microsatellite instable carcinomas the presence of aurora A positive tumour cells is merely reflecting tumour cell proliferation. In contrast, the large majority of chromosomal instable carcinomas shows additional (de)regulation of aurora A by gene amplification and concomitant tumour cell aneuploidy. Thus, sporadic colorectal cancers exhibit different mechanisms of aurora A regulation and this may impact the efficacy of aurora-targeted therapies.
Collapse
|
38
|
|
39
|
Kaestner P, Stolz A, Bastians H. Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther 2009; 8:2046-56. [PMID: 19584233 DOI: 10.1158/1535-7163.mct-09-0323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitotic Aurora kinases, including Aurora-A and Aurora- B, are attractive novel targets for anticancer therapy, and inhibitory drugs have been developed that are currently undergoing clinical trials. However, the molecular mechanisms how these drugs induce tumor cell death are poorly understood. We have addressed this question by comparing the requirements for an efficient induction of apoptosis in response to MLN8054, a selective inhibitor of Aurora-A, and the selective Aurora-B inhibitor ZM447439 in human colon carcinoma cells. By using various isogenic knockout as well as inducible colon carcinoma cell lines, we found that treatment with MLN8054 induces defects in mitotic spindle assembly, which causes a transient spindle checkpoint-dependent mitotic arrest. This cell cycle arrest is not maintained due to the activity of MLN8054 to override the spindle checkpoint. Subsequently, MLN8054-treated cells exit from mitosis and activate a p53-dependent postmitotic G(1) checkpoint, which subsequently induces p21 and Bax, leading to G(1) arrest followed by the induction of apoptosis. In contrast, inhibition of Aurora-B by ZM447439 also interferes with normal chromosome alignment during mitosis and overrides the mitotic spindle checkpoint but allows a subsequent endoreduplication, although ZM447439 potently activates the p53-dependent postmitotic G(1) checkpoint. Moreover, the ZM447439-induced endoreduplication is a prerequisite for the efficiency of the drug. Thus, our results obtained in human colon carcinoma cells indicate that although both Aurora kinase inhibitors are potent inducers of tumor cell death, the pathways leading to the induction of apoptosis in response to these drugs are distinct.
Collapse
Affiliation(s)
- Phillip Kaestner
- Institute for Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | | | | |
Collapse
|
40
|
Efficient chromosome biorientation and the tension checkpoint in Saccharomyces cerevisiae both require Bir1. Mol Cell Biol 2009; 29:4552-62. [PMID: 19528231 DOI: 10.1128/mcb.01911-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate chromosome segregation requires the capture of sister kinetochores by microtubules from opposite spindle poles prior to the initiation of anaphase, a state termed chromosome biorientation. In the budding yeast Saccharomyces cerevisiae, the conserved protein kinase Ipl1 (Aurora B in metazoans) is critical for ensuring correct chromosomal alignment. Ipl1 associates with its activators Sli15 (INCENP), Nbl1 (Borealin), and Bir1 (Survivin), but while Sli15 clearly functions with Ipl1 to promote chromosome biorientation, the role of Bir1 has been uncertain. Using a temperature-sensitive bir1 mutant (bir1-17), we show that Bir1 is needed to permit efficient chromosome biorientation. However, once established, chromosome biorientation is maintained in bir1-17 cells at the restrictive temperature. Ipl1 is partially delocalized in bir1-17 cells, and its protein kinase activity is markedly reduced under nonpermissive conditions. bir1-17 cells arrest normally in response to microtubule depolymerization but fail to delay anaphase when sister kinetochore tension is reduced. Thus, Bir1 is required for the tension checkpoint. Despite their robust mitotic arrest in response to nocodazole, bir1-17 cells are hypersensitive to microtubule-depolymerizing drugs and show a more severe biorientation defect on recovery from nocodazole treatment. The role of Bir1 therefore may become more critical when spindle formation is delayed.
Collapse
|
41
|
Stolz A, Vogel C, Schneider V, Ertych N, Kienitz A, Yu H, Bastians H. Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells. Cancer Res 2009; 69:3874-83. [PMID: 19366805 DOI: 10.1158/0008-5472.can-08-3597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mitotic spindle checkpoint represents a signal transduction pathway that prevents the onset of anaphase until all chromosomes are properly aligned on a metaphase plate. Partial inactivation of this checkpoint allows premature separation of sister chromatids and results in aneuploidy, which might contribute to tumorigenesis. Unlike other cell cycle checkpoints, the spindle checkpoint is essential for cell viability, giving rise to the idea that the spindle checkpoint itself might represent a valuable target for anticancer therapy. We used a cell-based screen and identified the indolocarbazole compound Gö6976 as a pharmacologic inhibitor of the spindle checkpoint. Gö6976 potently overrides a spindle checkpoint-mediated mitotic arrest by abrogating the phosphorylation and kinetochore localization of several spindle checkpoint proteins. We identified the Aurora-A and Aurora-B kinases, which have been previously implicated in proper mitotic progression and spindle checkpoint function, as targets for Gö6976. Accordingly, Gö6976 treatment causes severe mitotic abnormalities and chromosome alignment defects, which are not properly detected by the drug-inactivated spindle checkpoint. This results in an aberrant progression of mitosis, leading to apoptosis in various human cancer cell lines, including spindle checkpoint-compromised cancer cells. Thus, our work describes a novel and promising strategy for anticancer treatment that targets the mitotic spindle checkpoint.
Collapse
Affiliation(s)
- Ailine Stolz
- Institute for Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhou L, Li J, George R, Ruchaud S, Zhou HG, Ladbury JE, Earnshaw WC, Yuan X. Effects of full-length borealin on the composition and protein-protein interaction activity of a binary chromosomal passenger complex. Biochemistry 2009; 48:1156-61. [PMID: 19146389 PMCID: PMC2746994 DOI: 10.1021/bi801298j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chromosomal passenger complex (CPC) comprises at least four protein components and functions at various cellular localizations during different mitotic stages to ensure correct chromosome segregation and completion of cytokinesis. Borealin, the most recently identified member of the CPC, is an intrinsically unstructured protein of low solubility and stability. Recent reports have demonstrated the formation of binary or ternary CPC subcomplexes incorporating short Borealin fragments in vitro. Using isothermal titration calorimetry, we show that full-length Borealin, instead of a Borealin fragment possessing the complete Survivin and INCENP recognition sequence, is required for the composition of a Borealin-Survivin complex competent to interact with INCENP. In addition, we show evidence that full-length Borealin, which forms high-order oligomers in its isolated form, is a monomer in the Borealin-Survivin CPC subcomplex.
Collapse
Affiliation(s)
- Lihong Zhou
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Jiejin Li
- Division Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Roger George
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Sandrine Ruchaud
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hong-Gang Zhou
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - John E. Ladbury
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Xuemei Yuan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|