1
|
Duetschler A, Prendi J, Safai S, Weber DC, Lomax AJ, Zhang Y. Limitations of phase-sorting based pencil beam scanned 4D proton dose calculations under irregular motion. Phys Med Biol 2022; 68. [PMID: 36571234 DOI: 10.1088/1361-6560/aca9b6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Objective.4D dose calculation (4DDC) for pencil beam scanned (PBS) proton therapy is typically based on phase-sorting of individual pencil beams onto phases of a single breathing cycle 4DCT. Understanding the dosimetric limitations and uncertainties of this approach is essential, especially for the realistic treatment scenario with irregular free breathing motion.Approach.For three liver and three lung cancer patient CTs, the deformable multi-cycle motion from 4DMRIs was used to generate six synthetic 4DCT(MRI)s, providing irregular motion (11/15 cycles for liver/lung; tumor amplitudes ∼4-18 mm). 4DDCs for two-field plans were performed, with the temporal resolution of the pencil beam delivery (4-200 ms) or with 8 phases per breathing cycle (500-1000 ms). For the phase-sorting approach, the tumor center motion was used to determine the phase assignment of each spot. The dose was calculated either using the full free breathing motion or individually repeating each single cycle. Additionally, the use of an irregular surrogate signal prior to 4DDC on a repeated cycle was simulated. The CTV volume with absolute dose differences >5% (Vdosediff>5%) and differences in CTVV95%andD5%-D95%compared to the free breathing scenario were evaluated.Main results.Compared to 4DDC considering the full free breathing motion with finer spot-wise temporal resolution, 4DDC based on a repeated single 4DCT resulted inVdosediff>5%of on average 34%, which resulted in an overestimation ofV95%up to 24%. However, surrogate based phase-sorting prior to 4DDC on a single cycle 4DCT, reduced the averageVdosediff>5%to 16% (overestimationV95%up to 19%). The 4DDC results were greatly influenced by the choice of reference cycle (Vdosediff>5%up to 55%) and differences due to temporal resolution were much smaller (Vdosediff>5%up to 10%).Significance.It is important to properly consider motion irregularity in 4D dosimetric evaluations of PBS proton treatments, as 4DDC based on a single 4DCT can lead to an underestimation of motion effects.
Collapse
Affiliation(s)
- A Duetschler
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - J Prendi
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, University of Basel, 4056 Basel, CH, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, 8091 Zürich, CH, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, CH, Switzerland
| | - A J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland.,Department of Physics, ETH Zürich, 8092 Zürich, CH, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen PSI, CH, Switzerland
| |
Collapse
|
2
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
3
|
Extension of RBE-weighted 4D particle dose calculation for non-periodic motion. Phys Med 2021; 91:62-72. [PMID: 34715550 DOI: 10.1016/j.ejmp.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Highly conformal scanned Carbon Ion Radiotherapy (CIRT) might permit dose escalation and improved local control in advanced stage thoracic tumors, but is challenged by target motion. Dose calculation algorithms typically assume a periodically repeating, regular motion. To assess the effect of realistic, irregular motion, new algorithms of validated accuracy are needed. METHODS We extended an in-house treatment planning system to calculate RBE-weighted dose distributions in CIRT on non-periodic CT image sequences. Dosimetric accuracy was validated experimentally on a moving, time-resolved ionization chamber array. Log-file based dose reconstructions were compared by gamma analysis and correlation to measurements at every intermediate detector frame during delivery. The impact of irregular motion on treatment quality was simulated on a virtual 4DCT thorax phantom. Periodic motion was compared to motion with varying amplitude and period ± baseline drift. Rescanning as a mitigation strategy was assessed on all scenarios. RESULTS In experimental validation, average gamma pass rates were 99.89+-0.30% for 3%/3 mm and 88.2+-2.2% for 2%/2 mm criteria. Average correlation for integral dose distributions was 0.990±0.002. Median correlation for single 200 ms frames was 0.947±0.006. In the simulations, irregular motion deteriorated V95 target coverage to 81.2%, 76.6% and 79.0% for regular, irregular motion and irregular motion with base-line drift, respectively. Rescanning restored V95 to >98% for both scenarios without baseline drift, but not with additional baseline drift at 83.7%. CONCLUSIONS The validated algorithm permits to study the effects of irregular motion and to develop and adapt appropriate motion mitigation techniques.
Collapse
|
4
|
Pfeiler T, Bäumer C, Engwall E, Geismar D, Spaan B, Timmermann B. Experimental validation of a 4D dose calculation routine for pencil beam scanning proton therapy. Z Med Phys 2018; 28:121-133. [DOI: 10.1016/j.zemedi.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
5
|
Krieger M, Klimpki G, Fattori G, Hrbacek J, Oxley D, Safai S, Weber DC, Lomax AJ, Zhang Y. Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy. ACTA ACUST UNITED AC 2018; 63:055005. [DOI: 10.1088/1361-6560/aaad1e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Giordanengo S, Manganaro L, Vignati A. Review of technologies and procedures of clinical dosimetry for scanned ion beam radiotherapy. Phys Med 2017; 43:79-99. [DOI: 10.1016/j.ejmp.2017.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/23/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
|
7
|
Hartmann J, Wölfelschneider J, Stache C, Buslei R, Derer A, Schwarz M, Bäuerle T, Fietkau R, Gaipl US, Bert C, Hölsken A, Frey B. Novel technique for high-precision stereotactic irradiation of mouse brains. Strahlenther Onkol 2016; 192:806-814. [PMID: 27402389 DOI: 10.1007/s00066-016-1014-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Small animal irradiation systems were developed for preclinical evaluation of tumor therapy closely resembling the clinical situation. Mostly only clinical LINACs are available, so protocols for small animal partial body irradiation using a conventional clinical system are essential. This study defines a protocol for conformal brain tumor irradiations in mice. MATERIALS AND METHODS CT and MRI images were used to demarcate the target volume and organs at risk. Three 6 MV photon beams were planned for a total dose of 10 fractions of 1.8 Gy. The mouse position in a dedicated applicator was verified by an X‑ray patient positioning system before each irradiation. Dosimetric verifications (using ionization chambers and films) were performed. Irradiation-induced DNA damage was analyzed to verify the treatment effects on the cellular level. RESULTS The defined treatment protocol and the applied fractionation scheme were feasible. The in-house developed applicator was suitable for individual positioning at submillimeter accuracy of anesthetized mice during irradiation, altogether performed in less than 10 min. All mice tolerated the treatment well. Measured dose values perfectly matched the nominal values from treatment planning. Cellular response was restricted to the target volume. CONCLUSION Clinical LINAC-based irradiations of mice offer the potential to treat orthotopic tumors conformably. Especially with respect to lateral penumbra, dedicated small animal irradiation systems exceed the clinical LINAC solution.
Collapse
Affiliation(s)
- J Hartmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - J Wölfelschneider
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - C Stache
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Buslei
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - A Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - M Schwarz
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - T Bäuerle
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - U S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| | - C Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
| | - A Hölsken
- Institute of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - B Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
8
|
Morel P, Flynn RT, Gelover E, Blin G, Vialette S, Wu X, Wang D. MSPT: an open-source motion simulator for proton therapy. Biomed Phys Eng Express 2015. [DOI: 10.1088/2057-1976/1/3/037001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Lohr F, Georg D, Cozzi L, Eich HT, Weber DC, Koeck J, Knäusl B, Dieckmann K, Abo-Madyan Y, Fiandra C, Mueller RP, Engert A, Ricardi U. Novel radiotherapy techniques for involved-field and involved-node treatment of mediastinal Hodgkin lymphoma: when should they be considered and which questions remain open? Strahlenther Onkol 2014; 190:864-6, 868-71. [PMID: 25209551 DOI: 10.1007/s00066-014-0719-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/01/2014] [Indexed: 01/10/2023]
Abstract
PURPOSE Hodgkin lymphoma (HL) is a highly curable disease. Reducing late complications and second malignancies has become increasingly important. Radiotherapy target paradigms are currently changing and radiotherapy techniques are evolving rapidly. DESIGN This overview reports to what extent target volume reduction in involved-node (IN) and advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT) and proton therapy-compared with involved-field (IF) and 3D radiotherapy (3D-RT)- can reduce high doses to organs at risk (OAR) and examines the issues that still remain open. RESULTS Although no comparison of all available techniques on identical patient datasets exists, clear patterns emerge. Advanced dose-calculation algorithms (e.g., convolution-superposition/Monte Carlo) should be used in mediastinal HL. INRT consistently reduces treated volumes when compared with IFRT with the exact amount depending on the INRT definition. The number of patients that might significantly benefit from highly conformal techniques such as IMRT over 3D-RT regarding high-dose exposure to organs at risk (OAR) is smaller with INRT. The impact of larger volumes treated with low doses in advanced techniques is unclear. The type of IMRT used (static/rotational) is of minor importance. All advanced photon techniques result in similar potential benefits and disadvantages, therefore only the degree-of-modulation should be chosen based on individual treatment goals. Treatment in deep inspiration breath hold is being evaluated. Protons theoretically provide both excellent high-dose conformality and reduced integral dose. CONCLUSION Further reduction of treated volumes most effectively reduces OAR dose, most likely without disadvantages if the excellent control rates achieved currently are maintained. For both IFRT and INRT, the benefits of advanced radiotherapy techniques depend on the individual patient/target geometry. Their use should therefore be decided case by case with comparative treatment planning.
Collapse
Affiliation(s)
- Frank Lohr
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fattori G, Saito N, Seregni M, Kaderka R, Pella A, Constantinescu A, Riboldi M, Steidl P, Cerveri P, Bert C, Durante M, Baroni G. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol Cancer Res Treat 2013; 13:517-28. [PMID: 24354750 PMCID: PMC4527457 DOI: 10.7785/tcrtexpress.2013.600275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The integrated use of optical technologies for patient monitoring is addressed in the framework of time-resolved treatment delivery for scanned ion beam therapy. A software application has been designed to provide the therapy control system (TCS) with a continuous geometrical feedback by processing the external surrogates tridimensional data, detected in real-time via optical tracking. Conventional procedures for phase-based respiratory phase detection were implemented, as well as the interface to patient specific correlation models, in order to estimate internal tumor motion from surface markers. In this paper, particular attention is dedicated to the quantification of time delays resulting from system integration and its compensation by means of polynomial interpolation in the time domain. Dedicated tests to assess the separate delay contributions due to optical signal processing, digital data transfer to the TCS and passive beam energy modulation actuation have been performed. We report the system technological commissioning activities reporting dose distribution errors in a phantom study, where the treatment of a lung lesion was simulated, with both lateral and range beam position compensation. The zero-delay systems integration with a specific active scanning delivery machine was achieved by tuning the amount of time prediction applied to lateral (14.61 ± 0.98 ms) and depth (34.1 ± 6.29 ms) beam position correction signals, featuring sub-millimeter accuracy in forward estimation. Direct optical target observation and motion phase (MPh) based tumor motion discretization strategies were tested, resulting in −0.3(2.3)% and −1.2(9.3)% median (IQR) percentual relative dose difference with respect to static irradiation, respectively. Results confirm the technical feasibility of the implemented strategy towards 4D treatment delivery, with negligible percentual dose deviations with respect to static irradiation.
Collapse
Affiliation(s)
- G Fattori
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Richter D, Schwarzkopf A, Trautmann J, Krämer M, Durante M, Jäkel O, Bert C. Upgrade and benchmarking of a 4D treatment planning system for scanned ion beam therapy. Med Phys 2013; 40:051722. [PMID: 23635270 DOI: 10.1118/1.4800802] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Upgrade and benchmarking of a research 4D treatment planning system (4DTPS) suitable for realistic patient treatment planning and treatment simulations taking into account specific requirements for scanned ion beam therapy, i.e., modeling of dose heterogeneities due to interplay effects and range changes caused by patient motion and dynamic beam delivery. METHODS The 4DTPS integrates data interfaces to 4D computed tomography (4DCT), deformable image registration and clinically used motion monitoring devices. The authors implemented a novel data model for 4D image segmentation using Boolean mask volume datasets and developed an algorithm propagating a manually contoured reference contour dataset to all 4DCT phases. They further included detailed treatment simulation and dose reconstruction functionality, based on the irregular patient motion and the temporal structure of the beam delivery. The treatment simulation functionality was validated against experimental data from irradiation of moving radiographic films in air, 3D moving ionization chambers in a water phantom, and moving cells in a biological phantom with a scanned carbon ion beam. The performance of the program was compared to results obtained with predecessor programs. RESULTS The measured optical density distributions of the radiographic films were reproduced by the simulations to (-2 ± 12)%. Compared to earlier versions of the 4DTPS, the mean agreement improved by 2%, standard deviations were reduced by 7%. The simulated dose to the moving ionization chambers in water showed an agreement with the measured dose of (-1 ± 4)% for the typical beam configuration. The mean deviation of the simulated from the measured biologically effective dose determined via cell survival was (617 ± 538) mGy relative biological effectiveness corresponding to (10 ± 9)%. CONCLUSIONS The authors developed a research 4DTPS suitable for realistic treatment planning on patient data and capable of simulating dose delivery to a moving patient geometry for scanned ion beams. The accuracy and reliability of treatment simulations improved considerably with respect to earlier versions of the 4DTPS.
Collapse
Affiliation(s)
- D Richter
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Abt. Biophysik, Planckstraße 1, 64291 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Knopf A, Tanner C, Boye D, Lomax AJ. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging. Phys Med Biol 2013; 58:8621-45. [DOI: 10.1088/0031-9155/58/24/8621] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|