1
|
Wang Y, Ji H, Yang T, Liu Y, He X, Jiang X, Lu Z, Han L, Liu X, Ma S. HSP90 regulates dCK stability and inhibits ionizing radiation-induced ferroptosis in cervical cancer cells. Cell Death Discov 2025; 11:191. [PMID: 40263268 PMCID: PMC12015294 DOI: 10.1038/s41420-025-02388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/23/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Cervical squamous cell carcinoma (CESC) is one of the most common cancers in women, and radiotherapy has been used as a primary treatment. However, its efficacy is limited by intrinsic and acquired radiation resistance. Our previous study demonstrated that Deoxycytidine kinase (dCK) inhibits ionizing radiation (IR)-induced cell death, including apoptosis and mitotic catastrophe, and dCK is a HSP90-interacting protein by mass spectrometry and co-immunoprecipitation assay. In the present study, we found that dCK inhibited IR-induced ferroptosis by increasing the activity and stability of SLC7A11. Using the E3 ubiquitin ligase database (UbiBrowser), we predicted NEDD4L as a potential ubiquitin ligase of dCK, and WWP1/2 as potential ubiquitin ligases of NEDD4L, respectively. These predictions were subsequently verified through a ubiquitination IP assay. Our findings indicate that HSP90 regulates dCK stability by inhibiting NEDD4L through the recruitment of ubiquitin ligases WWP1/2. In summary, our study reveals the HSP90-WWP1/WWP2-NEDD4L-dCK-SLC7A11 axis as a critical regulator of IR-induced ferroptosis in HeLa cells. These findings provide valuable insights into potential strategies for the radiosensitization of cervical cancer.
Collapse
Affiliation(s)
- Yue Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Huilin Ji
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Tianpeng Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Yi Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang He
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Jiang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Zipeng Lu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Liu Han
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China.
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China.
| |
Collapse
|
2
|
Nesbitt C, Van Der Walt A, Butzkueven H, Devitt B, Jokubaitis VG. Multiple sclerosis and cancer: Navigating a dual diagnosis. Mult Scler 2024; 30:1714-1736. [PMID: 39347791 DOI: 10.1177/13524585241274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthcare breakthroughs are extending the lives of multiple sclerosis (MS) patients and cancer survivors, creating a growing cohort of individuals navigating a dual diagnosis. Determining the relationship between MS and cancer risk remains challenging, with inconclusive findings confounded by age, risk exposures, comorbidities, genetics and the ongoing introduction of new MS disease-modifying therapies (DMTs) across study periods.This research places significant emphasis on cancer survival, with less attention given to the impact on MS outcomes. Our review explores the existing literature on MS, cancer risk and the intersection of DMTs and cancer treatments. We aim to navigate the complexities of managing MS in cancer survivors to optimise outcomes for both conditions. Continuous research and the formulation of treatment guidelines are essential for guiding future care. Collaboration between neuro-immunology and oncology is crucial, with a need to establish databases for retrospective and ultimately prospective analysis of outcomes in these rapidly evolving fields.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Bianca Devitt
- Department of Oncology, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
- Oncology Clinical Trials Unit, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Ameixa J, Bald I. Unraveling the Complexity of DNA Radiation Damage Using DNA Nanotechnology. Acc Chem Res 2024; 57:1608-1619. [PMID: 38780304 PMCID: PMC11154965 DOI: 10.1021/acs.accounts.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Radiation cancer therapies use different ionizing radiation qualities that damage DNA molecules in tumor cells by a yet not completely understood plethora of mechanisms and processes. While the direct action of the radiation is significant, the byproducts of the water radiolysis, mainly secondary low-energy electrons (LEEs, <20 eV) and reactive oxygen species (ROS), can also efficiently cause DNA damage, in terms of DNA strand breakage or DNA interstrand cross-linking. As a result, these types of DNA damage evolve into mutations hindering DNA replication, leading to cancer cell death. Concomitant chemo-radiotherapy explores the addition of radiosensitizing therapeutics commonly targeting DNA, such as platinum derivatives and halogenated nucleosides, to enhance the harmful effects of ionizing radiation on the DNA molecule. Further complicating the landscape of DNA damage are secondary structures such as G-quadruplexes occurring in telomeric DNA. These structures protect DNA from radiation damage, rendering them as promising targets for new and more selective cancer radiation treatments, rather than targeting linear DNA. However, despite extensive research, there is no single paradigm approach to understanding the mysterious way in which ionizing radiation causes DNA damage. This is due to the multidisciplinary nature of the field of research, which deals with multiple levels of biological organization, from the molecular building blocks of life toward cells and organisms, as well as with complex multiscale radiation-induced effects. Also, intrinsic DNA features, such as DNA topology and specific oligonucleotide sequences, strongly influence its response to damage from ionizing radiation. In this Account, we present our studies focused on the absolute quantification of photon- and low-energy electron-induced DNA damage in strategically selected target DNA sequences. Our methodology involves using DNA origami nanostructures, specifically the Rothemund triangle, as a platform to expose DNA sequences to either low-energy electrons or vacuum-ultraviolet (VUV, <15 eV) photons and subsequent atomic force microscopy (AFM) analysis. Through this approach, the effects of the DNA sequence, incorporation of halogenated radiosensitizers, DNA topology, and the radiation quality on radiation-induced DNA strand breakage have been systematically assessed and correlated with fundamental photon- and electron-driven mechanisms underlying DNA radiation damage. At lower energies, these mechanisms include dissociative electron attachment (DEA), where electrons attach to DNA molecules causing strand breaks, and dissociative photoexcitation of DNA. Additionally, further dissociative processes such as photoionization and electron impact contribute to the complex cascade of DNA damage events induced by ionizing radiation. We expect that emerging DNA origami-based approaches will lead to a paradigm shift in research fields associated with DNA damage and suggest future directions, which can foster the development of technological applications in nanomedicine, e.g., optimized cancer treatments or the molecular design of optimized radiosensitizing therapeutics.
Collapse
Affiliation(s)
- João Ameixa
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Centre
of Physics and Technological Research (CEFITEC), Department of Physics,
NOVA School of Science and Technology, University
NOVA of Lisbon, Campus de Caparica 2829-516, Portugal
| | - Ilko Bald
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Grytten N, Myhr KM, Celius EG, Benjaminsen E, Kampman MT, Midgard R, Vatne A, Aarseth JH, Riise T, Torkildsen Ø. Incidence of cancer in multiple sclerosis before and after the treatment era- a registry- based cohort study. Mult Scler Relat Disord 2021; 55:103209. [PMID: 34419754 DOI: 10.1016/j.msard.2021.103209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Whether disease-modifying therapies (DMTs) influence cancer in multiple sclerosis (MS) is uncertain. OBJECTIVES Assess incidence of cancer diagnosis among Norwegian MS patients compared to the general population in 1953 to 1995 and 1996 to 2017-reflecting era before and after introduction of DMTs. METHODS We performed a nationwide cohort study comprising 6949 MS patients and 37,922 controls, matched on age, sex and county. The cohort was linked to Norwegian Cancer Registry, Cause of Death Registry and National Educational database. We used Poisson regression to calculate incidence rate ratio (IRR) of cancer. RESULTS During 1953-1995 MS patients had similar cancer frequency compared to controls (IRR: 1.11 (95% Confidence Intervals (CI): 0.90-1.37)), although MS patients had increased frequency of cancer in endocrine glands (IRR: 2.51 (1.27-4.93). During 1996-2017 we identified significant increased frequency of cancer among MS patients compared to controls (IRR: 1.38 (95% CI: 1.28-1.52): in brain (IRR: 1.97 (1.41-2.78)), meninges (IRR: 2.44 (1.54-3.77)), respiratory organs (IRR: 1.96 (1.49-2.63)). The excess cancer diagnosis was most frequent among MS patients ≥ 60 years of age (HR 1.30 (1.15-1.47)). CONCLUSION Incidence of cancer among MS patients compared to controls was higher in 1996 to 2017, corresponding in time to the introduction of DMT for MS. This was observed more frequently among MS patients older than 60 years of age.
Collapse
Affiliation(s)
- Nina Grytten
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth G Celius
- Department of Neurology, Oslo University Hospital Ullevål, Oslo, Norway; Institute of clinical medicine, University of Oslo, Oslo, Norway
| | | | - Margitta T Kampman
- Department of Neurology, University Hospital of Northern Norway, Tromsø, Norway
| | - Rune Midgard
- Department of Neurology, Molde Hospital, Molde, Norway; Norwegian University of Science and Technology, Norway
| | - Anita Vatne
- Department of Rehabilitation, Southern Norway Hospital, Norway
| | - Jan H Aarseth
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Norwegian MS Registry and Biobank, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trond Riise
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Øivind Torkildsen
- Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Muftakhov M, Shchukin P, Khatymov R. Thymidine and stavudine molecules in reactions with low-energy electrons. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Radujkovic A, Hegenbart U, Müller-Tidow C, Herfarth K, Dreger P, Luft T. High leukemia-free survival after TBI-based conditioning and mycophenolate mofetil-containing immunosuppression in patients allografted for chronic myelomonocytic leukemia: a single-center experience. Ann Hematol 2020; 99:855-866. [PMID: 32036420 DOI: 10.1007/s00277-020-03952-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
This retrospective single-center analysis studied the impact of the conditioning and the graft-versus-host disease (GVHD) prophylaxis on outcome in unselected patients allografted for chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) secondary to documented prior CMML. A total of 44 patients (median age 61 years) allografted between 2002 and 2019 in our institution were analyzed. Fifteen patients had secondary AML. The conditioning regimen was fractionated 6-8 Gy total body irradiation (TBI) in combination with fludarabine in 33 (75%) patients. Eleven patients (25%) received alkylator-based conditioning therapy without TBI. For GVHD prophylaxis, a calcineurin inhibitor (CNI) backbone in combination with methotrexate (MTX) or mycophenolate mofetil (MMF) was applied in 21 and 23 patients, respectively. All patients allografted from an unrelated donor (UD) received antithymocyte globuline. In univariate analysis of the entire cohort, TBI-based conditioning and MMF-containing immunosuppression were associated with improved leukemia-free survival (LFS, HR 0.16, P < 0.001 and HR 0.41, P = 0.030, respectively). After stratification according to conditioning and GVHD prophylaxis into four groups (TBI-MMF [n = 17], TBI-MTX [n = 16], alkylator-MMF [n = 6], alkylator-MTX [n = 5]), TBI-MMF was associated with improved overall survival (OS) and LFS (P = 0.001 and P < 0.001, respectively). Patient and disease characteristics did not differ between the groups. The associations of TBI-based conditioning and MMF with prolonged LFS were observed across the CMML (n = 29), secondary AML (n = 15), and UD allograft (n = 34) subgroups. In summary, our study suggests that allografting based on intermediate-dose TBI conditioning and MMF-containing GVHD prophylaxis is associated with increased disease control in CMML. Larger (registry-based) studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Aleksandar Radujkovic
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Ute Hegenbart
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Luft
- Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Melamed E, Lee MW. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front Immunol 2020; 10:2954. [PMID: 31998289 PMCID: PMC6965059 DOI: 10.3389/fimmu.2019.02954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades, the field of multiple sclerosis (MS) has been transformed by the rapidly expanding arsenal of new disease modifying therapies (DMTs). Current DMTs for MS aim to modulate innate and adaptive immune responses toward a less inflammatory phenotype. Since the immune system is also critical for identifying and eliminating malignant cells, immunosuppression from DMTs may predictably increase the risk of cancer development in MS patients. Compared with healthy controls, patients with autoimmune conditions, such as MS, may already have a higher risk of developing certain malignancies and this risk may further be magnified by DMT treatments. For those patients who develop both MS and cancer, these comorbid presentations create a challenge for clinicians on how to therapeutically address management of cancer in the context of MS autoimmunity. As there are currently no accepted guidelines for managing MS patients with prior history of or newly developed malignancy, we undertook this review to evaluate the molecular mechanisms of current DMTs and their potential for instigating and treating cancer in patients living with MS.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, Austin, TX, United States
| | - Michael William Lee
- Department of Oncology, Department of Medical Education, Dell Medical School, Austin, TX, United States
| |
Collapse
|
8
|
Differential Regulation of Methylation-Regulating Enzymes by Senescent Stromal Cells Drives Colorectal Cancer Cell Response to DNA-Demethylating Epi-Drugs. Stem Cells Int 2018; 2018:6013728. [PMID: 30158986 PMCID: PMC6109465 DOI: 10.1155/2018/6013728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/12/2018] [Indexed: 01/26/2023] Open
Abstract
The advanced-stage colon cancer spreads from primary tumor site to distant organs where the colon-unassociated stromal population provides a favorable niche for the growth of tumor cells. The heterocellular interactions between colon cancer cells and colon-unassociated fibroblasts at distant metastatic sites are important, yet these cell-cell interactions for therapeutic strategies for metastatic colon cancer remain underestimated. Recent studies have shown the therapeutic potential of DNA-demethylating epi-drugs 5-azacytidine (AZA) and 5-aza-2'-deoxycytidine (DAC) for the treatment of solid tumors. While the effects of these epi-drugs alone or in combination with other anticancer therapies are well described, the influence of stromal cells and their secretome on cancer cell response to these agents remain elusive. In this study, we determined the effect of normal and senescent colon-unassociated fibroblasts and their conditioned medium on colorectal cancer (CRC) cell response to AZA and DAC using a cell-based DNA demethylation reporter system. Our data show that fibroblasts accelerate cell proliferation and differentially regulate the expression of DNA methylation-regulating enzymes, enhancing DAC-induced demethylation in CRC cells. In contrast, the conditioned medium from senescent fibroblasts that upregulated NF-κB activity altered deoxycytidine kinase levels in drug-untreated CRC cells and abrogated DAC effect on degradation of DNA methyltransferase 1. Similar to 2D cultures, senescent fibroblasts increased DNA demethylation of CRC cells in coculture spheroids, in addition to increasing the stemness of CRC cells. This study presents the first evidence of the effect of normal and senescent stromal cells and their conditioned medium on DNA demethylation by DAC. The data show an increased activity of DAC in high stromal cell cocultures and suggest the potential of the tumor-stroma ratio in predicting the outcome of DNA-demethylating epigenetic cancer therapy.
Collapse
|
9
|
Kopyra J, Kopyra KK, Abdoul-Carime H, Branowska D. Insights into the dehydrogenation of 2-thiouracil induced by slow electrons: Comparison of 2-thiouracil and 1-methyl-2-thiouracil. J Chem Phys 2018; 148:234301. [PMID: 29935521 DOI: 10.1063/1.5032162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present contribution, we study dissociative electron attachment to 1-methyl-2-thiouracil that has been synthesized and purified prior to the measurements. We compare the results with those previously obtained from 2-thiouracil. The comparison of the yield of the dehydrogenated parent anion from both the compounds allows us to assign the site from which the H atom is expulsed and to predict the mechanism that is involved in the formation of the peaks within the ion yield curve. It appears that the dehydrogenation observed for 2-thiouracil arising from the vibrational Feshbach resonances (at 0.7 and 1.0 eV) and a π*/σ* transition (at 0.1 eV) involves the bond cleavage at the N1 site, while that at the N3 site operates via the π*/σ* transition and occurs in the energy range of 1.1-3.3 eV. Besides the loss of the H atom from 1-methyl-2-thiouracil, we observe a relatively strong signal due to the loss of an entire methyl group (not observed from methyl-substituted thymine and uracil) that is formed from the N1-CH3 bond cleavage and can mimic the N-glycosidic bond cleavage within the DNA macromolecule.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Sciences, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland
| | - Konstancja K Kopyra
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Hassan Abdoul-Carime
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
| | - Danuta Branowska
- Faculty of Sciences, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
10
|
Zhong R, Liang B, Xin R, Zhu X, Liu Z, Chen Q, Hou Y, Jin Z, Qi M, Ma S, Liu X. Deoxycytidine kinase participates in the regulation of radiation-induced autophagy and apoptosis in breast cancer cells. Int J Oncol 2018; 52:1000-1010. [PMID: 29393406 DOI: 10.3892/ijo.2018.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for the phosphorylation of endogenous deoxynucleosides and for the anti‑tumor activity of many nucleoside analogs. dCK is activated in response to ionizing radiation (IR) and it is required for the G2/M checkpoint induced by IR. However, whether dCK plays a role in radiation-induced autophagy and apoptosis is less clear. In this study, we reported that dCK decreased IR-induced total cell death and apoptosis, and increased IR-induced autophagy in SKBR3 and MDA‑MB‑231 breast cancer cell lines. A molecular switch exists between apoptosis and autophagy. We further demonstrated that serine 74 phosphorylation was required for the regulation of autophagy. In dCK wild‑type (WT) or dCK S74E (mutant) MDA‑MB‑231 cell models, the expression levels of phospho-Akt, phospho-mammalian target of rapamycin (mTOR) and phospho-P70S6K significantly decreased following exposure to IR. Moreover, the ratio of Bcl‑2/Beclin1 (BECN1) significantly decreased in the S74E mutant cells; however, no change was observed in the ratio of Bcl‑2/BAX. Taken together, our findings indicate that phosphorylated and activated dCK inhibits IR-induced total cell death and apoptosis, and promotes IR-induced autophagy through the mTOR pathway and by inhibiting the binding of Bcl‑2 protein to BECN1.
Collapse
Affiliation(s)
- Rui Zhong
- Cancer Translational Medicine Laboratory, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Bing Liang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Xin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuanji Zhu
- Medical Records Room, The First Hospital Affiliated to Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiao Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yufei Hou
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhao Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mu Qi
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
11
|
Martínez-Casares RM, Pérez Méndez HI, Manjarrez Alvarez N, Solís Oba A, Hernández Vázquez L, López-Luna A. Comparison of the diastereoisomeric excess of uridine, inosine and adenosine cyanohydrins determined by HPLC-DAD and 1H NMR. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:652-665. [PMID: 29185863 DOI: 10.1080/15257770.2017.1375516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The separation of the diastereoisomers of the nucleoside derivatives of uridine, inosine and adenosine was performed by HPLC using chiral and no chiral columns, it was observed with the no chiral columns the resolution was good enough to determine diastereoisomeric excess. These methods were compared with 1H NMR, and no significant differences were observed between the three techniques. Diastereoisomeric uridine (3a), inosine (3b) and adenosine (4c) cyanohydrins were resolved by 1H nuclear magnetic resonance (1H NMR), chiral normal phase-high-performance liquid chromatography-diode array detector (NP-HPLC-DAD) and reversed phase (RP-HPLC-DAD); these methods allowed the assesment of the percent diastereoisomeric excess (% de) of the nucleosidic cyanohydrins of 3a (4, 6 and 4), 3b (10, 8 and 6) and 4c (4, 4 and 4). To the best of our knowledge, there are no reports using analytical techniques for the separation of the epimers of 3a, 3b and 4c.
Collapse
Affiliation(s)
- Rubria Marlen Martínez-Casares
- a Doctorado en Ciencias Biológicas y de la Salud , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| | - Herminia Inés Pérez Méndez
- b Departamento de Sistemas Biológicos , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| | - Norberto Manjarrez Alvarez
- b Departamento de Sistemas Biológicos , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| | - Aida Solís Oba
- b Departamento de Sistemas Biológicos , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| | - Liliana Hernández Vázquez
- b Departamento de Sistemas Biológicos , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| | - Alberto López-Luna
- b Departamento de Sistemas Biológicos , Universidad Autónoma Metropolitana-Unidad Xochimilco , Coyoacán , CDMX , México
| |
Collapse
|
12
|
The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death. Int J Mol Sci 2016; 17:ijms17111939. [PMID: 27879648 PMCID: PMC5133934 DOI: 10.3390/ijms17111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 12/26/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway.
Collapse
|
13
|
Im MM, Flanagan SA, Ackroyd JJ, Knapp B, Kramer A, Shewach DS. Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine. Radiat Res 2016; 186:466-477. [PMID: 27740890 DOI: 10.1667/rr14443.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage. Using γ-H2AX as a measurement of DNA damage in MCF-7 breast cancer cells, we demonstrate that 10 or 80 nM dFdCyd alone produced significantly more late DNA damage compared to that observed within 4 h after treatment. The combination of dFdCyd treatment followed by irradiation did not produce a consistent increase in DNA damage in the first 4 h after treatment, however, there was a synergistic increase 24-48 h later relative to treatment with dFdCyd or radiation alone. RNAi suppression of the essential HRR protein, XRCC3, significantly decreased both radiosensitization and late DNA damage. Furthermore, inhibition of HRR with the Rad51 inhibitor B02 prevented radiosensitization when added after, but not during, treatment with dFdCyd and radiation. To our knowledge, this is the first published study to show that radiosensitization with dFdCyd results from a synergistic increase in DNA damage at 24-48 h after drug and radiation treatment, and that this damage and radiosensitization require HRR. These results suggest that tumors that overexpress HRR will be more vulnerable to chemoradiotherapy, and treatments that increase HRR and/or mismatches in DNA will enhance dFdCyd radiosensitization.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Sheryl A Flanagan
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Jeffrey J Ackroyd
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Brendan Knapp
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Aaron Kramer
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| |
Collapse
|
14
|
Perlíková P, Rylová G, Nauš P, Elbert T, Tloušťová E, Bourderioux A, Slavětínská LP, Motyka K, Doležal D, Znojek P, Nová A, Harvanová M, Džubák P, Šiller M, Hlaváč J, Hajdúch M, Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol Cancer Ther 2016; 15:922-37. [DOI: 10.1158/1535-7163.mct-14-0933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|
15
|
Potent Sensitisation of Cancer Cells to Anticancer Drugs by a Quadruple Mutant of the Human Deoxycytidine Kinase. PLoS One 2015; 10:e0140741. [PMID: 26485161 PMCID: PMC4618062 DOI: 10.1371/journal.pone.0140741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Identifying enzymes that, once introduced in cancer cells, lead to an increased efficiency of treatment constitutes an important goal for biomedical applications. Using an original procedure whereby mutant genes are generated based on the use of conditional lentivector genome mobilisation, we recently described, for the first time, the identification of a human deoxycytidine kinase (dCK) mutant (G12) that sensitises a panel of cancer cell lines to treatment with the dCK analogue gemcitabine. Here, starting from the G12 variant itself, we generated a new library and identified a mutant (M36) that triggers even greater sensitisation to gemcitabine than G12. With respect to G12, M36 presents an additional mutation located in the region that constitutes the interface of the dCK dimer. The simple presence of this mutation halves both the IC50 and the proportion of residual cells resistant to the treatment. Furthermore, the use of vectors with self-inactivating LTRs leads to an increased sensitivity to treatment, a result compatible with a relief of the transcriptional interference exerted by the U3 promoter on the internal promoter that drives the expression of M36. Importantly, a remarkable effect is also observed in treatments with the anticancer compound cytarabine (AraC), for which a 10,000 fold decrease in IC50 occurred. By triggering the sensitisation of various cancer cell types with poor prognosis to two commonly used anticancer compounds M36 is a promising candidate for suicide gene approaches.
Collapse
|
16
|
Bunimovich YL, Nair-Gill E, Riedinger M, McCracken MN, Cheng D, McLaughlin J, Radu CG, Witte ON. Deoxycytidine kinase augments ATM-Mediated DNA repair and contributes to radiation resistance. PLoS One 2014; 9:e104125. [PMID: 25101980 PMCID: PMC4125169 DOI: 10.1371/journal.pone.0104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Efficient and adequate generation of deoxyribonucleotides is critical to successful DNA repair. We show that ataxia telangiectasia mutated (ATM) integrates the DNA damage response with DNA metabolism by regulating the salvage of deoxyribonucleosides. Specifically, ATM phosphorylates and activates deoxycytidine kinase (dCK) at serine 74 in response to ionizing radiation (IR). Activation of dCK shifts its substrate specificity toward deoxycytidine, increases intracellular dCTP pools post IR, and enhances the rate of DNA repair. Mutation of a single serine 74 residue has profound effects on murine T and B lymphocyte development, suggesting that post-translational regulation of dCK may be important in maintaining genomic stability during hematopoiesis. Using [(18)F]-FAC, a dCK-specific positron emission tomography (PET) probe, we visualized and quantified dCK activation in tumor xenografts after IR, indicating that dCK activation could serve as a biomarker for ATM function and DNA damage response in vivo. In addition, dCK-deficient leukemia cell lines and murine embryonic fibroblasts exhibited increased sensitivity to IR, indicating that pharmacologic inhibition of dCK may be an effective radiosensitization strategy.
Collapse
Affiliation(s)
- Yuri L. Bunimovich
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evan Nair-Gill
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mireille Riedinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melissa N. McCracken
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donghui Cheng
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jami McLaughlin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, California, United States of America
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|