1
|
Juarez-Vignon Whaley JJ, Afkhami M, Onyshchenko M, Massarelli E, Sampath S, Amini A, Bell D, Villaflor VM. Recurrent/Metastatic Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Heading? Curr Treat Options Oncol 2023; 24:1138-1166. [PMID: 37318724 PMCID: PMC10477128 DOI: 10.1007/s11864-023-01101-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/16/2023]
Abstract
OPINION STATEMENT Nasopharyngeal carcinoma (NPC) is distinct in its anatomic location and biology from other epithelial head and neck cancer (HNC). There are 3 WHO subtypes, which considers the presence of Epstein-Barr virus (EBV) and other histopathology features. Despite the survival benefit obtained from modern treatment modalities and techniques specifically in the local and locally advanced setting, a number of patients with this disease will recur and subsequently die of distant metastasis, locoregional relapse, or both. In the recurrent setting, the ideal therapy approach continues to be a topic of discussion and current recommendations are platinum-based combination chemotherapy. Phase III clinical trials which led to the approval of pembrolizumab or nivolumab for head and neck squamous cell carcinoma (HNSCC) specifically excluded NPC. No immune checkpoint inhibitor therapy, to date, has been approved by the FDA to treat NPC although the National Comprehensive Cancer Network (NCCN) recommendations do include use of these agents. Hence, this remains the major challenge for treatment options. Nasopharyngeal carcinoma is challenging as it is really 3 different diseases, and much research is required to determine best options and sequencing of those options. This article is going to address the data to date and discuss ongoing research in EBV + and EBV - inoperable recurrent/metastatic NPC patients.
Collapse
Affiliation(s)
- Juan Jose Juarez-Vignon Whaley
- Health Science Research Center, Faculty of Health Science, Universidad Anahuac Mexico, State of Mexico, Naucalpan de Juárez, Mexico
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mykola Onyshchenko
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA
| | - Sagus Sampath
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center Duarte, Duarte, CA, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Victoria M Villaflor
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, 1500 East Duarte Road. , Duarte, CA, 91010, USA.
| |
Collapse
|
2
|
Kashyap D, Rele S, Bagde PH, Saini V, Chatterjee D, Jain AK, Pandey RK, Jha HC. Comprehensive insight into altered host cell-signaling cascades upon Helicobacter pylori and Epstein-Barr virus infections in cancer. Arch Microbiol 2023; 205:262. [PMID: 37310490 DOI: 10.1007/s00203-023-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
Cancer is characterized by mutagenic events that lead to disrupted cell signaling and cellular functions. It is one of the leading causes of death worldwide. Literature suggests that pathogens, mainly Helicobacter pylori and Epstein-Barr virus (EBV), have been associated with the etiology of human cancer. Notably, their co-infection may lead to gastric cancer. Pathogen-mediated DNA damage could be the first and crucial step in the carcinogenesis process that modulates numerous cellular signaling pathways. Altogether, it dysregulates the metabolic pathways linked with cell growth, apoptosis, and DNA repair. Modulation in these pathways leads to abnormal growth and proliferation. Several signaling pathways such RTK, RAS/MAPK, PI3K/Akt, NFκB, JAK/STAT, HIF1α, and Wnt/β-catenin are known to be altered in cancer. Therefore, this review focuses on the oncogenic roles of H. pylori, EBV, and its associated signaling cascades in various cancers. Scrutinizing these signaling pathways is crucial and may provide new insights and targets for preventing and treating H. pylori and EBV-associated cancers.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Pranit Hemant Bagde
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | | | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Solna, Sweden
| | - Hem Chandra Jha
- Lab No. POD 1B 602, Infection Bio-Engineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
- Centre for Rural Development and Technology, Indian Institute of Technology Indore, Madhya Pradesh, 453552, Indore, India.
| |
Collapse
|
3
|
Liu X, Deng Y, Huang Y, Ye J, Xie S, He Q, Chen Y, Lin Y, Liang R, Wei J, Li Y, Zhang J. Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein–Barr Virus Infection. Curr Oncol 2022; 29:6035-6052. [PMID: 36135044 PMCID: PMC9498130 DOI: 10.3390/curroncol29090475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Genomic instability facilitates the evolution of cells, tissues, organs, and species. The progression of human malignancies can be regarded as the accumulation of genomic instability, which confers a high evolutionary potential for tumor cells to adapt to continuous changes in the tumor microenvironment. Nasopharyngeal carcinoma (NPC) is a head-and-neck squamous-cell carcinoma closely associated with Epstein–Barr virus (EBV) infection. NPC progression is driven by a combination of accumulated genomic instability and persistent EBV infection. Here, we present a review of the key characteristics of genomic instability in NPC and the profound implications of EBV infection. We further discuss the significance of profiling genomic instability for the assessment of disease progression and treatment efficacy, as well as the opportunities and challenges of targeted therapies for NPC based on its unique genomic instability.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Sifang Xie
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| |
Collapse
|
4
|
Blanco R, Aguayo F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. BIOLOGY 2020; 9:biology9120461. [PMID: 33322292 PMCID: PMC7763232 DOI: 10.3390/biology9120461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary Epstein–Barr virus is a ubiquitous persistent virus, which is involved in the development of some human cancers. A licensed vaccine to prevent Epstein–Barr virus infection is lacking. BamHI-A rightward frame 1 is a viral protein specifically detected in both nasopharyngeal and Epstein–Barr virus-positive gastric cancers. It has been proposed that this viral protein confers cancer properties to infected epithelial cells and is involved in the escape of cancer cells from immune recognition. In this review, we summarize the properties of BamHI-A rightward frame 1 which confers cancer characteristics to infected epithelial cells. Thus, BamHI-A rightward frame 1 is a potential therapeutic target for the treatment of either Epstein–Barr virus (EBV)-positive nasopharyngeal or gastric cancers. Abstract Epstein–Barr virus (EBV) infection is associated with a subset of both lymphoid and epithelial malignancies. During the EBV latency program, some viral products involved in the malignant transformation of infected cells are expressed. Among them, the BamHI-A rightward frame 1 (BARF1) is consistently detected in nasopharyngeal carcinomas (NPC) and EBV-associated gastric carcinomas (EBVaGCs) but is practically undetectable in B-cells and lymphomas. Although BARF1 is an early lytic gene, it is expressed during epithelial EBV latency, mainly as a secreted protein (sBARF1). The capacity of sBARF1 to disrupt both innate and adaptive host antiviral immune responses contributes to the immune escape of infected cells. Additionally, BARF1 increases cell proliferation, shows anti-apoptotic effects, and promotes an increased hTERT activity and tumor formation in nude mice cooperating with other host proteins such as c-Myc and H-ras. These facts allow for the consideration of BARF1 as a key protein for promoting EBV-associated epithelial tumors. In this review, we focus on structural and functional aspects of BARF1, such as mechanisms involved in epithelial carcinogenesis and its capacity to modulate the host immune response.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
5
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
The Therapeutic Potential of Targeting BARF1 in EBV-Associated Malignancies. Cancers (Basel) 2020; 12:cancers12071940. [PMID: 32708965 PMCID: PMC7409022 DOI: 10.3390/cancers12071940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely linked to the development of a number of human cancers. EBV-associated malignancies are characterized by a restricted pattern of viral latent protein expression which is sufficient for the virus to both initiate and sustain cell growth and to protect virus-infected cells from immune attack. Expression of these EBV proteins in malignant cells provides an attractive target for therapeutic intervention. Among the viral proteins expressed in the EBV-associated epithelial malignancies, the protein encoded by the BamHI-A rightward frame 1 (BARF1) is of particular interest. BARF1 is a viral oncoprotein selectively expressed in latently infected epithelial cancers, nasopharyngeal carcinoma (NPC) and EBV-positive gastric cancer (EBV-GC). Here, we review the roles of BARF1 in oncogenesis and immunomodulation. We also discuss potential strategies for targeting the BARF1 protein as a novel therapy for EBV-driven epithelial cancers.
Collapse
|
7
|
Yan Y, Xue QJ, Liu A, Wang H, Zhang H, Wang S, Zhao L, Li Y, Li X, Yang Y, Chen T, Li S. EB virus-positive tumors are inhibited by rBCG expressing hGM-CSF and LMP2A. Hum Vaccin Immunother 2020; 16:654-663. [PMID: 31567046 DOI: 10.1080/21645515.2019.1670593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
For the development of safe and effective EBV (Epstein-Barr virus) vaccines, the Ag85A signal peptide from M. tuberculosis H37Rv was used to construct a recombinant secretory BCG (Bacillus Chalmette-Guérin) plasmid. The Ag85A gene, fused to the EBV LMP2A (latent membrane protein) and hGM-CSF (human granulocyte/macrophage colony-stimulating factor) genes, was inserted into the pMV261 vector (secretory BCG plasmid). The expression levels of the hGM-CSF and LMP2A proteins in rBCG (recombinant BCG) were measured by Western blot analysis. Humoral immunity, cellular immunity, and antitumor effects were determined by a series of experiments. The recombinant pMVGCA plasmid effectively expressed GCA (hGM-CSF and LMP2A fusion protein) in BCG after transformation, and the rBCG proteins were recognized by antibodies against hGM-CSF and LMP2A. Six weeks after immunization, the maximum dose of rBCG resulted in antibody titers of 1:19,800 (hGM-CSF antibody) and 1:21,800 (LMP2A antibody). When the effector:target ratio was 40:1, specific lysis was maximal and approximately two times stronger than that in mice immunized with the control. Tumorigenicity was lower in the rBCG treatment group, with a tumor inhibition rate of 0.81 ± 0.09 compared with the control groups. EB virus-positive tumors are inhibited by rBCG expressing an hGM-CSF and LMP2A fusion protein.
Collapse
Affiliation(s)
- Yingchun Yan
- School of Mental Health, Jining Medical University, Shandong, China
| | - Qing-Jie Xue
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Ang Liu
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Hui Wang
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Honghua Zhang
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Shuang Wang
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Longyu Zhao
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Yunqing Li
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Xiuzhen Li
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Yuanyuan Yang
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Ting Chen
- School of Basic Medical, Jining Medical University, Shandong, China
| | - Shigen Li
- School of Basic Medical, Jining Medical University, Shandong, China
| |
Collapse
|
8
|
Natural Variations in BRLF1 Promoter Contribute to the Elevated Reactivation Level of Epstein-Barr Virus in Endemic Areas of Nasopharyngeal Carcinoma. EBioMedicine 2018; 37:101-109. [PMID: 30420297 PMCID: PMC6286269 DOI: 10.1016/j.ebiom.2018.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background Epstein-Barr virus (EBV) infection is a crucial risk factor for nasopharyngeal carcinoma (NPC), but the mechanism for its elevated activation level in NPC endemic areas remains unclear. This study aims to identify the EBV natural variations contributed to the different reactivation potential between NPC endemic and non-endemic areas. Methods 1030 subjects were recruited in China, including 303 healthy individuals from two NPC non-endemic areas, 483 healthy people from three endemic areas and 244 NPC patients. Among which, saliva DNA samples from 244 participants were sequenced for the EBV immediate early (IE) genes of BRLF1 and BZLF1, their promoters were included; the rest 786 subjects were used for the validation of significant variations among three different populations. Haplotype and population structure analysis were conducted. Dual-luciferase assay was used to detect the promoter activity. Results A total of 246 distinct variations were detected, 29 showed significant difference in the frequencies between healthy people from NPC endemic area and non-endemic area. Population structure analysis clustered EBV strains into 9 subgroups mostly in accordance with the geographical origin of samples. Interestingly, two EBV genotypes, Rp-V1 and Rp-V2, were identified according to the linkage relationship of the variations in BRLF1 promoter (Rp). Rp-V1 has higher frequency in NPC endemic areas than in non-endemic areas (52.38% vs 18.15%, P = 2.07 × 10−14), and was associated with higher oral EBV DNA levels (adjusted OR = 1.64, 95% CI = 1.21–2.24, P = .002), suggesting a more powerful activation ability of Rp-V1 than that of the prototype Rp-of the EBV strain; On the contrary, Rp-V2 has higher frequency in NPC non-endemic areas than in endemic areas (18.48% vs 0.38%, P = 1.17 × 10−7), might represent a reduced activation potential of EBV. Further dual-luciferase assay showed Rp-V1 has higher promoter activity while compared with Rp-V2 (P < .0001). Notably, Rp-V1 impaired the transcription repression effect of YY1 while Rp-V2 strengthened the transcription repression effect of EBF1 on Rp. In addition, significant differences of Rta 393–407 CTL epitope which may influence the recognition of Rta by CD8+ T cells were detected between healthy people from NPC endemic area and non-endemic area. Conclusions This study identified natural variations in cis-acting elements (YY1 and EBF1) of EBV Rp altering Rp transcription activities, which may contribute to the elevated EBV activation level in NPC endemic areas than non-endemic areas.
Collapse
|
9
|
Liu J, Ji X, Shen Z, Wang PhD Y, Luo PhD B. Sequence variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J Med Virol 2018; 90:1629-1635. [PMID: 29797589 DOI: 10.1002/jmv.25233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The BamHI A rightward frame 1 (BARF1) gene of the Epstein-Barr virus (EBV) is involved in carcinogenesis and immunomodulation of EBV-associated malignancies. The geographical distributions and the disease associations of BARF1 variants remain unclear. In the current study, the BARF1 variants in nasopharyngeal carcinoma (NPC) cases and healthy donors from southern and northern China, the NPC endemic and non-endemic areas, as well as in 153 sequenced EBV genomes from diseased and normal people from around the world, were determined and compared among areas and populations. Only 1 consistent coding change, V29A, and several consistent silent mutations were identified. Two BARF1 types (B95-8 and V29A) and 2 B95-8 subtypes (B95-8t165545c and B95-8P ) were classified. For Chinese isolates, the B95-8 type was dominant in both southern and northern China, but the isolates from southern China showed a higher frequency of the B95-8t165545c subtype than the isolates from northern China (76.0%, 38/50 NPC cases and 50.7%, 37/73 healthy donors vs 26.4%, 24/91 NPC cases and 7.6%, 6/79 healthy donors, P < .0001). Furthermore, the B95-8t165545c subtype was more frequent in NPC cases than healthy donors in both southern China (P = .005) and northern China (P = .001). For EBV genomes, the B95-8P subtype was dominant in northern China, Europe, America, and Australia, while V29A was dominant in Africa. The B95-8t165545c subtype was only identified in Asia and demonstrated high frequency (81.2%, 26/32) in genomes from NPC cases in southern China. These results further reveal conservation and possibly geographically spread variations of BARF1 and may also indicate the preference of EBV strains with the B95-8t165545c subtype in NPC cases, without biological or pathogenic implications.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Xinqiang Ji
- Modern Educational Technology Center, Qingdao University, Qingdao, China
| | - Zhichao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China.,Department of Clinical Laboratory, The People's Liberation Army 107 Hospital, Yantai, China
| | - Yun Wang PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
10
|
Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA. J Virol 2017; 91:JVI.00375-17. [PMID: 28515295 PMCID: PMC5512239 DOI: 10.1128/jvi.00375-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known type 1/type 2 strains are demonstrated, and a novel classification of EBNA1 and the BART miRNAs is proposed.
Collapse
|
11
|
Sun L, Che K, Zhao Z, Liu S, Xing X, Luo B. Sequence analysis of Epstein-Barr virus (EBV) early genes BARF1 and BHRF1 in NK/T cell lymphoma from Northern China. Virol J 2015; 12:135. [PMID: 26337172 PMCID: PMC4558833 DOI: 10.1186/s12985-015-0368-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022] Open
Abstract
Background NK/T cell lymphoma is an aggressive lymphoma almost always associated with EBV. BamHI-A rightward open reading frame 1 (BARF1) and BamHI-H rightward open reading frame 1 (BHRF1) are two EBV early genes, which may be involved in the oncogenicity of EBV. It has been found that V29A strains, a BARF1 mutant subtype, showed higher prevalence in NPC, which may suggest the association between this variation and nasopharyngeal carcinoma (NPC). To characterize the sequence variation patterns of the Epstein-Barr virus (EBV) early genes and to elucidate their association with NK/T cell lymphoma, we analyzed the sequences of BARF1 and BHRF1 in EBV-positive NK/T cell lymphoma samples from Northern China. Methods In situ hybridization (ISH) performed for EBV-encoded small RNA1 (EBER1) with specific digoxigenin-labeled probes was used to select the EBV positive lymphoma samples. Nested-polymerase chain reaction (nested-PCR) and DNA sequence analysis technique were used to obtain the sequences of BARF1 and BHRF1. The polymorphisms of these two genes were classified according to the signature changes and compared with the known corresponding EBV gene variation data. Results Two major subtypes of BARF1 gene, designated as B95-8 and V29A subtype, were identified. B95-8 subtype was the dominant subtype. The V29A subtype had one consistent amino acid change at amino acid residue 29 (V → A). Compared with B95-8, AA change at 88 (L → V) of BHRF1 was found in the majority of the isolates, and AA79 (V → L) mutation in a few isolates. Functional domains of BARF1 and BHRF1 were highly conserved. The distributions of BARF1 and BHRF1 subtypes had no significant differences among different EBV-associated malignancies and healthy donors. Conclusion The sequences of BARF1 and BHRF1 are highly conserved which may contribute to maintain the biological function of these two genes. There is no evidence that particular EBV substrains of BARF1 or BHRF1 is region-restricted or disease-specific.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Kui Che
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266555, China.
| | - Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Song Liu
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Xiaoming Xing
- Department of Pathology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
12
|
Shen ZC, Luo B, Chen JN, Chao Y, Shao CK, Liu QQ, Wang Y. High prevalence of the EBER variant EB-8m in endemic nasopharyngeal carcinomas. PLoS One 2015; 10:e0121420. [PMID: 25807550 PMCID: PMC4373760 DOI: 10.1371/journal.pone.0121420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/01/2015] [Indexed: 01/26/2023] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are the most highly expressed transcripts in all EBV-associated tumors and are involved in both lymphoid and epithelioid carcinogenesis. Our previous study on Chinese isolates from non-endemic area of nasopharyngeal carcinoma (NPC) identified new EBER variants (EB-8m and EB-10m) which were less common but relatively more frequent in NPC cases than healthy donors. In the present study, we determined the EBER variants in NPC cases and healthy donors from endemic and non-endemic areas of NPC within China and compared the EBER variants, in relation to the genotypes at BamHI F region (prototype F and f variant), between population groups and between two areas. According to the phylogenetic tree, four EBER variants (EB-6m, EB-8m, EB-10m and B95-8) were identified. EB-6m was dominant in all population groups except for endemic NPC group, in which EB-8m was dominant. EB-8m was more common in endemic NPC cases (82.0%, 41/50) than non-endemic NPC cases (33.7%, 32/95) (p<0.0001), and it was also more frequent in healthy donors from endemic area (32.4%, 24/74) than healthy donors from non-endemic area (1.1%, 1/92) (p<0.0001). More importantly, the EB-8m was more prevalent in NPC cases than healthy donors in both areas (p<0.0001). The f variant, which has been suggested to associate with endemic NPC, demonstrated preferential linkage with EB-8m in endemic isolates, however, the EB-8m variant seemed to be more specific to NPC isolates than f variant. These results reveal high prevalence of EBER EB-8m variant in endemic NPC cases, suggesting an association between NPC development and EBV isolates carrying EB-8m variant. Our finding identified a small healthy population group that shares the same viral strain which predominates in NPC cases. It could be interesting to carry extensive cohort studies following these individuals to evaluate the risk to develop NPC.
Collapse
Affiliation(s)
- Zhi-chao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yan Chao
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qian-qian Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Yun Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma. Exp Mol Med 2015; 47:e134. [PMID: 25613731 PMCID: PMC4314585 DOI: 10.1038/emm.2014.93] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022] Open
Abstract
A small set of gastric adenocarcinomas (9%) harbor Epstein–Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
Collapse
|
14
|
Abstract
What is wild-type Epstein-Barr virus and are there genetic differences in EBV strains that contribute to some of the EBV-associated diseases? Recent progress in DNA sequencing has resulted in many new Epstein-Barr virus (EBV) genome sequences becoming available. EBV isolates worldwide can be grouped into type 1 and type 2, a classification based on the EBNA2 gene sequence. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than type 2 EBV and molecular mechanisms that may account for this difference in cell transformation are now becoming understood. Study of geographic variation of EBV strains independent of the type 1/type 2 classification and systematic investigation of the relationship between viral strains, infection and disease are now becoming possible. So we should consider more directly whether viral sequence variation might play a role in the incidence of some EBV-associated diseases.
Collapse
Affiliation(s)
- Paul J Farrell
- Section of Virology, Department of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
15
|
Xue QJ, Dai J, Li XZ, Zhu W, Si CP, Chen T. Construction of a recombinant-BCG containing the LMP2A and BZLF1 genes and its significance in the Epstein-Barr virus positive gastric carcinoma. J Med Virol 2014; 86:1780-7. [PMID: 24699993 DOI: 10.1002/jmv.23901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 01/28/2023]
Abstract
The signal peptide Ag85B of Bacillus Chalmette-Guerin (BCG) was used to construct a recombinant plasmid of BCG. The BCG-Ag85B gene and fused EBV LMP2A and BZLF1 genes were amplified and successively inserted into the Escherichia coli-BCG shuttle-vector pMV261. The recombinant plasmids were then amplified in E. coli DH5α and transformed into competent BCG. The expression of BZLF1 and LMP2A fusion proteins in recombinant-BCG (rBCG) was shown by Western blot. After the injection of recombinant-BCG into mice, antibodies against the fusion protein BZLF1 and LMP2A were measured by ELISA, and the cellular immune effects were determined by the lactate dehydrogenate (LDH) release assays. The results confirmed that the cloned genes of BCG-Ag85B and Z2A were correctly inserted into the vector pMV261. The recombinant plasmid pMVZ2A expressed Z2A in BCG effectively after transformation. The rBCG proteins were recognized by the BZLF1 (LMP2A) antibody. An ELISA demonstrated that rBCG could stimulate the generation of antibody against the fusion protein. The fusion gene was constructed successfully, and the rBCG induced humoral and cellular immune response in mice.
Collapse
Affiliation(s)
- Qing-Jie Xue
- Department of Pathogenic Biology, Provincial Key Discipline of Medical Immunology, Jining Medical University, Shandong, China
| | | | | | | | | | | |
Collapse
|
16
|
Hoebe EK, Le Large TYS, Greijer AE, Middeldorp JM. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 2013; 23:367-83. [PMID: 23996634 PMCID: PMC4272418 DOI: 10.1002/rmv.1758] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eveline K Hoebe
- VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Epstein-barr virus sequence variation-biology and disease. Pathogens 2012; 1:156-74. [PMID: 25436768 PMCID: PMC4235690 DOI: 10.3390/pathogens1020156] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 12/12/2022] Open
Abstract
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease.
Collapse
|
18
|
Hoebe EK, Le Large TYS, Tarbouriech N, Oosterhoff D, De Gruijl TD, Middeldorp JM, Greijer AE. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation. Viral Immunol 2012; 25:461-70. [PMID: 23061794 DOI: 10.1089/vim.2012.0034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinomas.
Collapse
Affiliation(s)
- Eveline K Hoebe
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang Y, Wang XF, Sun ZF, Luo B. Unique variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinoma biopsies. Virus Res 2012; 166:23-30. [PMID: 22406129 DOI: 10.1016/j.virusres.2012.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
The Epstein-Barr virus (EBV) BamHI-A rightward frame 1 (BARF1) gene is frequently expressed in EBV-associated epithelial malignancies and involves in oncogenicity and immunomodulation. To characterize the variations of BARF1 gene in different populations, the sequences of BARF1 gene in Northern Chinese nasopharyngeal carcinoma (NPC), EBV-associated gastric carcinoma (EBVaGC) and healthy donors were analyzed. The correlation of BARF1 variation with polymorphisms of BamHI F fragment (type F and f variants) and EBV-coded viral interleukin-10 (vIL-10) gene (B95-8 and SPM patterns) was also explored. Two major subtypes of BARF1 gene, designated as B95-8 and V29A, were identified. B95-8 subtype had identical amino acid sequence to B95-8 and was the dominant subtype among the EBV isolates from Northern China. V29A subtype, with one consistent amino acid change at residue 29 (V→A) and several nucleotide changes, showed higher frequency in NPC cases (25.3%, 20/79) than in EBVaGC cases (0/45) or healthy donors (4.3%, 2/46) (NPC vs. EBVaGC: P=0.0001; NPC vs. healthy donor: P=0.004). A preferential linkage between BamHI F and BARF1/vIL-10 polymorphisms was found. Type f isolates was specially correlated with the V29A/SPM genotype in NPC isolates and type f/V29A/SPM was preferentially found in NPC. BARF1/c-fms homology domain, transforming domain and cytotoxic T lymphocyte (CTL) epitopes of BARF1 were highly conserved in most isolates, suggesting the important role of BARF1 in virus infection and the potential usefulness in EBV-targeting immunotherapy of EBV-associated tumors. The relatively higher prevalence of type f/V29A/SPM strains in NPC may also suggest the association between these variations in multiple viral genes and NPC.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, China
| | | | | | | |
Collapse
|
20
|
Purified hexameric Epstein-Barr virus-encoded BARF1 protein for measuring anti-BARF1 antibody responses in nasopharyngeal carcinoma patients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:298-304. [PMID: 21123521 DOI: 10.1128/cvi.00193-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
WHO type III nasopharyngeal carcinoma (NPC) is highly prevalent in Indonesia and 100% associated with Epstein-Barr virus (EBV). NPC tumor cells express viral proteins, including BARF1, which is secreted and is considered to have oncogenic and immune-modulating properties. Recently, we found conserved mutations in the BARF1 gene in NPC isolates. This study describes the expression and purification of NPC-derived BARF1 and analyzes humoral immune responses against prototype BARF1 (B95-8) and purified native hexameric BARF1 in sera of Indonesian NPC patients (n = 155) compared to healthy EBV-positive (n = 56) and EBV-negative (n = 16) individuals. BARF1 (B95-8) expressed in Escherichia coli and baculovirus, as well as BARF1-derived peptides, did not react with IgG or IgA antibodies in NPC. Purified native hexameric BARF1 protein isolated from culture medium was used in enzyme-linked immunosorbent assay (ELISA) and revealed relatively weak IgG and IgA responses in human sera, although it had strong antibody responses to other EBV proteins. Higher IgG reactivity was found in NPC patients (P = 0.015) than in regional Indonesian controls or EBV-negative individuals (P < 0.001). IgA responses to native BARF1 were marginal. NPC sera with the highest IgG responses to hexameric BARF1 in ELISA showed detectable reactivity with denatured BARF1 by immunoblotting. In conclusion, BARF1 has low immunogenicity for humoral responses and requires native conformation for antibody binding. The presence of antibodies against native BARF1 in the blood of NPC patients provides evidence that the protein is expressed and secreted as a hexameric protein in NPC patients.
Collapse
|