1
|
Horsman S, Zaugg J, Meler E, Mikkelsen D, Soares Magalhães RJ, Gibson JS. Molecular Epidemiological Characteristics of Staphylococcus pseudintermedius, Staphylococcus coagulans, and Coagulase-Negative Staphylococci Cultured from Clinical Canine Skin and Ear Samples in Queensland. Antibiotics (Basel) 2025; 14:80. [PMID: 39858366 PMCID: PMC11761246 DOI: 10.3390/antibiotics14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Infections in dogs caused by methicillin-resistant staphylococci (MRS) present limited treatment options. This study's objective was to investigate the molecular epidemiology of Staphylococcus spp. cultured exclusively from clinical canine skin and ear samples in Queensland, Australia, using whole-genome sequencing (WGS). Methods: Forty-two Staphylococcus spp. isolated from clinical canine skin and ear samples, from an unknown number of dogs, were sourced from two veterinary diagnostic laboratories between January 2022 and May 2023. These isolates underwent matrix-assisted laser desorption ionisation- time of flight bacterial identification, minimum inhibitory concentration testing using SensititreTM plates and WGS. Phylogenetic trees and core genome multilocus sequence typing (cgMLST) minimum spanning trees (MSTs) were constructed. Results: The isolates included methicillin-resistant and -sensitive S. pseudintermedius (MRSP: 57.1%, 24/42; and MSSP: 19.1%, 8/42), methicillin-resistant and -sensitive S. coagulans (MRSC: 14.3%, 6/42; and MSSC: 2.4%, 1/42) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS: 7.1%, 3/42). Thirty-nine isolates were included after WGS, where all MRS harboured the mecA gene. Eighteen sequence types (STs) were identified, including three novel MRSP and six novel MSSP STs. MRSP ST496-V-VII (23%; 9/39) and MRSP ST749-IV-(IVg) (12.8%; 5/39) were commonly isolated. Phylogenetic analysis of single nucleotide polymorphisms showed that MRSP, MRSC and MSSC were similar to globally isolated staphylococci from canine skin and ear infections. Using cgMLST MSTs, MRSP isolates were not closely related to global strains. Conclusions: Our findings revealed a genotypically diverse geographical distribution and phylogenetic relatedness of staphylococci cultured from clinical canine skin and ear samples across Queensland. This highlights the importance of ongoing surveillance to aid in evidence-based treatment decisions and antimicrobial stewardship.
Collapse
Affiliation(s)
- Sara Horsman
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Erika Meler
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| | - Deirdre Mikkelsen
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD 4072, Australia;
| | | | - Justine S. Gibson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (E.M.); (J.S.G.)
| |
Collapse
|
2
|
Azzariti S, Bond R, Loeffler A, Zendri F, Timofte D, Chang YM, Pelligand L. Investigation of In Vitro Susceptibility and Resistance Mechanisms in Skin Pathogens: Perspectives for Fluoroquinolone Therapy in Canine Pyoderma. Antibiotics (Basel) 2022; 11:antibiotics11091204. [PMID: 36139982 PMCID: PMC9494949 DOI: 10.3390/antibiotics11091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones (FQ) are commonly used in dogs with bacterial skin infections. Their use as first choice, along with the increased incidence of FQ-resistance, represents a risk to animal and public health. Our study determined minimum inhibitory (MIC) and bactericidal (MBC) concentrations of five FQs in Staphylococcus aureus, Staphylococcus pseudintermedius, and Escherichia coli, together with FQ-resistance mechanisms. MICs, efflux pump (EP) overexpression and MBCs were measured in 249 skin infection isolates following CLSI guidelines (CLSI VET01-A4, CLSI M26-A). Chromosomal and plasmid-mediated resistance genes were investigated after DNA extraction and sequencing. FQ-resistance was detected in 10% of methicillin-susceptible (MS), 90% of methicillin-resistant (MR) staphylococci and in 36% of E. coli. Bactericidal effect was observed except in 50% of MRSA/P for ciprofloxacin and in 20% of MRSPs for enrofloxacin. Highest MICs were associated with double mutation in gyrA (Ser83Leu + Asp87Asn), efflux pumps and three PMQR genes in E. coli, and grlA (Ser80Phe + Glu84Lys) in S. aureus. EP overexpression was high among E. coli (96%), low in S. aureus (1%) and absent in S. pseudintermedius. Pradofloxacin and moxifloxacin showed low MICs with bactericidal effect. Since in vitro FQ resistance was associated with MR, FQ use should be prudently guided by susceptibility testing.
Collapse
Affiliation(s)
- Stefano Azzariti
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
| | - Flavia Zendri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Dorina Timofte
- Institute of Infection, Veterinary and Ecological Sciences, Department of Veterinary Anatomy, Physiology and Pathology, Veterinary Microbiology Diagnostic, University of Liverpool Leahurst Campus, Neston CH64 7TE, UK
| | - Yu-Mei Chang
- Research Support Office, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Ludovic Pelligand
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK
- Correspondence:
| |
Collapse
|
3
|
Costa M, Meirinhos C, Cunha E, Gomes D, Pereira M, Dias R, Tavares L, Oliveira M. Nisin Mutant Prevention Concentration and the Role of Subinhibitory Concentrations on Resistance Development by Diabetic Foot Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11070972. [PMID: 35884226 PMCID: PMC9311964 DOI: 10.3390/antibiotics11070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants, correct drug therapeutic doses must be established, being also important to understand if nisin subinhibitory concentrations (subMIC) can potentiate resistant genes transfer between clinical isolates or mutations in genes associated with nisin resistance. The mutant selection window (MSW) of nisin was determined for 23 DFI S. aureus isolates; a protocol aiming to prompt vanA horizontal transfer between enterococci to clinical S. aureus was performed; and nisin subMIC effect on resistance evolution was assessed through whole-genome sequencing (WGS) applied to isolates subjected to a MEGA-plate assay. MSW ranged from 5–360 μg/mL for two isolates, from 5–540 μg/mL for three isolates, and from 5–720 μg/mL for one isolate. In the presence of nisin subMIC values, no transconjugants were obtained, indicating that nisin does not seem to promote vanA transfer. Finally, WGS analysis showed that incubation in the presence of nisin subMIC did not promote the occurrence of significant mutations in genes related to nisin resistance, supporting nisin application to DFI treatment.
Collapse
Affiliation(s)
- Margarida Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Cláudia Meirinhos
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| | - Diana Gomes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Marcelo Pereira
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.P.); (R.D.)
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (M.P.); (R.D.)
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal; (M.C.); (C.M.); (D.G.); (L.T.); (M.O.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
4
|
Park NH, Lee SJ, Lee EB, Birhanu BT, Park SC. Colistin Induces Resistance through Biofilm Formation, via Increased phoQ Expression, in Avian Pathogenic Escherichia coli. Pathogens 2021; 10:pathogens10111525. [PMID: 34832681 PMCID: PMC8620993 DOI: 10.3390/pathogens10111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to optimize the colistin-based antibacterial therapy to prevent antimicrobial resistance related to biofilm formation in avian pathogenic Escherichia coli (APEC) in chicken. Of all the bacterial isolates (n = 136), 69 were identified as APEC by polymerase chain reaction (PCR). Through a series of antibiotic susceptibility tests, susceptibility to colistin (<2 μg/mL) was confirmed in all isolates. Hence, a mutant selection window (MSW) was determined to obtain colistin-induced resistant bacteria. The minimum inhibitory concentration (MIC) of colistin against the colistin-induced resistant APEC strains ranged from 8 to 16 μg/mL. To identify the inhibitory activity of colistin against the resistant strains, the mutant prevention concentration (MPC) was investigated for 72 h, and the single and multi-dose colistin activities were determined through the time-kill curve against APEC strains. Bacterial regrowth occurred after 12 h at a double MIC50 concentration (1.00 μg/mL), and regrowth was not inhibited even during multiple exposures. However, upon exposure to 8 μg/mL—a concentration that was close to the MPC—the growth of APEC was inhibited, including in the resistant strains. Additionally, colistin-induced resistant strains showed a slower growth compared with the susceptible ones. Colistin-induced resistant APEC strains did not show colistin resistance gene (mcr-1). However, the expression of higher mgrB and phoQ levels was observed in the resistant strains. Furthermore, these strains showed increased formation of biofilm. Hence, the present study indicated that colistin could induce resistance through the increased formation of biofilm in APEC strains by enhancing the expression of phoQ.
Collapse
Affiliation(s)
- Na-Hye Park
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - Seung-Jin Lee
- Reproductive and Developmental Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| |
Collapse
|
5
|
Cunha E, Janela R, Costa M, Tavares L, Veiga AS, Oliveira M. Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics (Basel) 2020; 9:antibiotics9120890. [PMID: 33321973 PMCID: PMC7763880 DOI: 10.3390/antibiotics9120890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease (PD) is one of the most common diseases in dogs. Although previous studies have shown the potential of the antimicrobial peptide nisin for PD control, there is no information regarding its influence in the development of antimicrobial resistance or horizontal gene transfer (HGT). Nisin's mutant prevention concentration (MPC) and selection window (MSW) were determined for a collection of canine oral enterococci. Isolates recovered after the determination of the MPC values were characterized for their antimicrobial profile and its nisin minimum inhibitory and bactericidal concentrations. The potential of vanA HGT between Enterococcus faecium CCGU36804 and nine clinical canine staphylococci and enterococci was evaluated. Nisin MPC values ranged from 400 to more than 600 μg/mL. In comparison with the original enterococci collection, the isolates recovered after the determination of the nisin MPC showed increased resistance towards amoxicillin/clavulanate (5%), vancomycin (5%), enrofloxacin (10%), gentamicin (10%) and imipenem (15%). The HGT of vanA gene was not observed. This work showed that nisin selective pressure may induce changes in the bacteria's antimicrobial resistance profile but does not influence horizontal transfer of vanA gene. To our knowledge, this is the first report of nisin's MPC and MSW determination regarding canine enterococci.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Rita Janela
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Margarida Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
- Correspondence: ; Tel.: +351-213652800
| |
Collapse
|
6
|
Loiacono M, Martino PA, Albonico F, Dell'Orco F, Ferretti M, Zanzani S, Mortarino M. High-resolution melting analysis of gyrA codon 84 and grlA codon 80 mutations conferring resistance to fluoroquinolones in Staphylococcus pseudintermedius isolates from canine clinical samples. J Vet Diagn Invest 2017; 29:711-715. [PMID: 28578596 DOI: 10.1177/1040638717712330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen of dogs and cats. A high-resolution melting analysis (HRMA) protocol was designed and tested on 42 clinical isolates with known fluoroquinolone (FQ) susceptibility and gyrA codon 84 and grlA codon 80 mutation status. The HRMA approach was able to discriminate between FQ-sensitive and FQ-resistant strains and confirmed previous reports that the main mutation site associated with FQ resistance in S. pseudintermedius is located at position 251 (Ser84Leu) of gyrA. Routine, HRMA-based FQ susceptibility profiles may be a valuable tool to guide therapy. The FQ resistance-predictive power of the assay should be tested in a significantly larger number of isolates.
Collapse
Affiliation(s)
- Monica Loiacono
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| | - Piera A Martino
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| | - Francesca Albonico
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| | | | - Manuela Ferretti
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| | - Sergio Zanzani
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| | - Michele Mortarino
- Department of Veterinary Medicine, State University of Milan, Milan, Italy
| |
Collapse
|
7
|
Lorenzutti AM, Litterio NJ, Himelfarb MA, Zarazaga MDP, San Andrés MI, De Lucas JJ. Pharmacokinetics, milk penetration and PK/PD analysis by Monte Carlo simulation of marbofloxacin, after intravenous and intramuscular administration to lactating goats. J Vet Pharmacol Ther 2017; 40:629-640. [PMID: 28470723 DOI: 10.1111/jvp.12409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/22/2017] [Indexed: 11/27/2022]
Abstract
The main objectives of this study were (i) to evaluate the serum pharmacokinetic behaviour and milk penetration of marbofloxacin (MFX; 5 mg/kg), after intravenous (IV) and intramuscular (IM) administration in lactating goats and simulate a multidose regimen on steady-state conditions, (ii) to determine the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of coagulase negative staphylococci (CNS) isolated from caprine mastitis in Córdoba, Argentina and (iii) to make a PK/PD analysis by Monte Carlo simulation from steady-state pharmacokinetic parameters of MFX by IV and IM routes to evaluate the efficacy and risk of the emergence of resistance. The study was carried out with six healthy, female, adult Anglo Nubian lactating goats. Marbofloxacin was administered at 5 mg/kg bw by IV and IM route. Serum and milk concentrations of MFX were determined with HPLC/uv. From 106 regional strains of CNS isolated from caprine mastitis in herds from Córdoba, Argentina, MICs and MPCs were determined. MIC90 and MPC90 were 0.4 and 6.4 μg/ml, respectively. MIC and MPC-based PK/PD analysis by Monte Carlo simulation indicates that IV and IM administration of MFX in lactating goats may not be adequate to recommend it as an empirical therapy against CNS, because the most exigent endpoints were not reached. Moreover, this dose regimen could increase the probability of selecting mutants and resulting in emergence of resistance. Based on the results of Monte Carlo simulation, the optimal dose of MFX to achieve an adequate antimicrobial efficacy should be 10 mg/kg, but it is important take into account that fluoroquinolones are substrates of efflux pumps, and this fact may determine that assumption of linear pharmacokinetics at high doses of MFX may be incorrect.
Collapse
Affiliation(s)
- A M Lorenzutti
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - N J Litterio
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M A Himelfarb
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M D P Zarazaga
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M I San Andrés
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - J J De Lucas
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Application of PK/PD Modeling in Veterinary Field: Dose Optimization and Drug Resistance Prediction. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5465678. [PMID: 26989688 PMCID: PMC4771886 DOI: 10.1155/2016/5465678] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/21/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022]
Abstract
Among veterinary drugs, antibiotics are frequently used. The true mean of antibiotic treatment is to administer dose of drug that will have enough high possibility of attaining the preferred curative effect, with adequately low chance of concentration associated toxicity. Rising of antibacterial resistance and lack of novel antibiotic is a global crisis; therefore there is an urgent need to overcome this problem. Inappropriate antibiotic selection, group treatment, and suboptimal dosing are mostly responsible for the mentioned problem. One approach to minimizing the antibacterial resistance is to optimize the dosage regimen. PK/PD model is important realm to be used for that purpose from several years. PK/PD model describes the relationship between drug potency, microorganism exposed to drug, and the effect observed. Proper use of the most modern PK/PD modeling approaches in veterinary medicine can optimize the dosage for patient, which in turn reduce toxicity and reduce the emergence of resistance. The aim of this review is to look at the existing state and application of PK/PD in veterinary medicine based on in vitro, in vivo, healthy, and disease model.
Collapse
|
9
|
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 2015; 10:1683-706. [PMID: 26439366 DOI: 10.2217/fmb.15.48] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Asmaa A Al Thani
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02018, USA.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed E El Zowalaty
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.,Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL 32611, USA
| | - Gheyath K Nasrallah
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hany E Marei
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Hossam M Ashour
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Harada K, Sasaki A, Shimizu T. Effects of oral orbifloxacin on fecal coliforms in healthy cats: a pilot study. J Vet Med Sci 2015; 78:83-9. [PMID: 26311787 PMCID: PMC4751121 DOI: 10.1292/jvms.15-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study objective was to determine the effect of oral orbifloxacin (ORB) on antimicrobial susceptibility and composition of fecal coliforms in cats. Nine cats were randomized to two groups administered a daily oral dose of 2.5 and 5.0 mg ORB/kg for 7 days and a control group (three cats per group). Coliforms were isolated from stool samples and were tested for susceptibilities to ORB and 5 other drugs. ORB concentration in feces was measured using high-performance liquid chromatography (HPLC). The coliforms were undetectable after 2 days of ORB administration, and their number increased in most cats after termination of the administration. Furthermore, only isolates of Escherichia coli were detected in all cats before administration, and those of Citrobacter freundii were detected after termination of the administration. E. coli isolates exhibited high ORB susceptibility [Minimum inhibitory concentration (MIC), ≤0.125 µg/ml] or relatively low susceptibility (MIC, 1-2 µg/ml) with a single gyrA mutation. C. freundii isolates largely exhibited intermediate ORB susceptibility (MIC, 4 µg/ml), in addition to resistance to ampicillin and cefazolin, and harbored qnrB, but not a gyrA mutation. HPLC revealed that the peaks of mean concentration were 61.3 and 141.0 µg/g in groups receiving 2.5 and 5.0 mg/kg, respectively. Our findings suggest that oral ORB may alter the total counts and composition of fecal coliform, but is unlikely to yield highly fluoroquinolone-resistant mutants of E. coli and C. freundii in cats, possibly because of the high drug concentration in feces.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, 4-101 Minami, Koyama-Cho, Tottori-Shi, Tottori 680-8553, Japan
| | | | | |
Collapse
|