1
|
Spartalis TR, Foo M, Tang X. Feed-forward loop improves the transient dynamics of an antithetic biological controller. J R Soc Interface 2025; 22:20240467. [PMID: 39837484 PMCID: PMC11750367 DOI: 10.1098/rsif.2024.0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Integral controller is widely used in industry for its capability of endowing perfect adaptation to disturbances. To harness such capability for precise gene expression regulation, synthetic biologists have endeavoured in building biomolecular (quasi-)integral controllers, such as the antithetic integral controller. Despite demonstrated successes, challenges remain with designing the controller for improved transient dynamics and adaptation. Here, we explore and investigate the design principles of alternative RNA-based biological controllers, by modifying an antithetic integral controller with prevalently found natural feed-forward loops (FFL), to improve its transient dynamics and adaptation performance. With model-based analysis, we demonstrate that while the base antithetic controller shows excellent responsiveness and adaptation to system disturbances, incorporating the type-1 incoherent FFL into the base antithetic controller could attenuate the transient dynamics caused by changes in the stimuli, especially in mitigating the undesired overshoot in the output gene expression. Further analysis on the kinetic parameters reveals similar findings to previous studies that the degradation and transcription rates of the circuit RNA species would dominate in shaping the performance of the controllers.
Collapse
Affiliation(s)
- Thales R. Spartalis
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA70803, USA
| | - Mathias Foo
- School of Engineering, University of Warwick, CoventryCV4 7AL, UK
| | - Xun Tang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA70803, USA
| |
Collapse
|
2
|
Szischik CL, Reves Szemere J, Balderrama R, Sánchez de la Vega C, Ventura AC. Transient frequency preference responses in cell signaling systems. NPJ Syst Biol Appl 2024; 10:86. [PMID: 39128915 PMCID: PMC11317535 DOI: 10.1038/s41540-024-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ligand-receptor systems, covalent modification cycles, and transcriptional networks are the fundamental components of cell signaling and gene expression systems. While their behavior in reaching a steady-state regime under step-like stimulation is well understood, their response under repetitive stimulation, particularly at early time stages is poorly characterized. Yet, early-stage responses to external inputs are arguably as informative as late-stage ones. In simple systems, a periodic stimulation elicits an initial transient response, followed by periodic behavior. Transient responses are relevant when the stimulation has a limited time span, or when the stimulated component's timescale is slow as compared to the timescales of the downstream processes, in which case the latter processes may be capturing only those transients. In this study, we analyze the frequency response of simple motifs at different time stages. We use dose-conserved pulsatile input signals and consider different metrics versus frequency curves. We show that in ligand-receptor systems, there is a frequency preference response in some specific metrics during the transient stages, which is not present in the periodic regime. We suggest this is a general system-level mechanism that cells may use to filter input signals that have consequences for higher order circuits. In addition, we evaluate how the described behavior in isolated motifs is reflected in similar types of responses in cascades and pathways of which they are a part. Our studies suggest that transient frequency preferences are important dynamic features of cell signaling and gene expression systems, which have been overlooked.
Collapse
Affiliation(s)
- Candela L Szischik
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Juliana Reves Szemere
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
- Universidad Pedagógica Nacional and Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Santa Rosa, Argentina
| | - Rocío Balderrama
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Matemática. Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS - CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina, Buenos Aires, Argentina
| | - Constanza Sánchez de la Vega
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Matemática. Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Cálculo, FCEyN, CONICET-UBA, Buenos Aires, Argentina
| | - Alejandra C Ventura
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Ciudad Universitaria, 1428, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE UBA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina-Universidad de Buenos Aires, 1428, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Sreejan A, Saxena P, Gadgil CJ. Network motifs exhibiting a differential response to spaced and massed inputs. Learn Mem 2024; 31:a054012. [PMID: 39074905 PMCID: PMC11369633 DOI: 10.1101/lm.054012.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024]
Abstract
One characteristic of long-term memory is the existence of an inverted U-shaped response to increasing intervals between training sessions, and consequently, an optimal spacing that maximizes memory formation. Current models of this spacing effect focus on specific molecular components and their interactions. Here, we computationally study the underlying network architecture, in particular, the potential of motif dynamics in qualitatively capturing the spacing effect in a manner that is independent of the animal model, biomolecular components, and the timescales involved. We define a common training and test protocol, and computationally identify network topologies that can qualitatively replicate the experimentally observed characteristics of the spacing effect. For 41 motifs derived from fundamental network architectures such as autoregulation, feedback, and feedforward motifs, we tested their capacity to manifest the spacing effect in terms of an inverted U-shaped response curve, using different combinations of stimulation protocols, response metrics, and kinetic parameters. Our findings indicate that positive feedback motifs where the stimulus enhances conversion reaction in the loop replicate the spacing effect across all response metrics, while feedforward motifs exhibit a metric-specific spacing effect. For some parameter combinations, linear cascades of activation and conversion reactions were found sufficient to qualitatively exhibit spacing effect characteristics.
Collapse
Affiliation(s)
- Ashley Sreejan
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Saxena
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
4
|
Drepanos L, Gans IM, Grendler J, Guitar S, Fuqua JH, Maki NJ, Tilden AR, Graber JH, Coffman JA. Loss of Krüppel-like factor 9 deregulates both physiological gene expression and development. Sci Rep 2023; 13:12239. [PMID: 37507475 PMCID: PMC10382561 DOI: 10.1038/s41598-023-39453-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Krüppel-like factor 9 (Klf9) is a ubiquitously expressed transcription factor that is a feedforward regulator of multiple stress-responsive and endocrine signaling pathways. We previously described how loss of Klf9 function affects the transcriptome of zebrafish larvae sampled at a single time point 5 days post-fertilization (dpf). However, klf9 expression oscillates diurnally, and the sampled time point corresponded to its expression nadir. To determine if the transcriptomic effects of the klf9-/- mutation vary with time of day, we performed bulk RNA-seq on 5 dpf zebrafish embryos sampled at three timepoints encompassing the predawn peak and midmorning nadir of klf9 expression. We found that while the major effects of the klf9-/- mutation that we reported previously are robust to time of day, the mutation has additional effects that manifest only at the predawn time point. We used a published single-cell atlas of zebrafish development to associate the effects of the klf9-/- mutation with different cell types and found that the mutation increased mRNA associated with digestive organs (liver, pancreas, and intestine) and decreased mRNA associated with differentiating neurons and blood. Measurements from confocally-imaged larvae suggest that overrepresentation of liver mRNA in klf9-/- mutants is due to development of enlarged livers.
Collapse
Affiliation(s)
| | - Ian M Gans
- MDI Biological Laboratory, Salisbury Cove, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | | | | | | | | | | | - James A Coffman
- MDI Biological Laboratory, Salisbury Cove, ME, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
5
|
Bonaguro L, Schulte-Schrepping J, Carraro C, Sun LL, Reiz B, Gemünd I, Saglam A, Rahmouni S, Georges M, Arts P, Hoischen A, Joosten LA, van de Veerdonk FL, Netea MG, Händler K, Mukherjee S, Ulas T, Schultze JL, Aschenbrenner AC. Human variation in population-wide gene expression data predicts gene perturbation phenotype. iScience 2022; 25:105328. [PMID: 36310583 PMCID: PMC9614568 DOI: 10.1016/j.isci.2022.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Population-scale datasets of healthy individuals capture genetic and environmental factors influencing gene expression. The expression variance of a gene of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function "in population" experiment. We describe here an approach, huva (human variation), taking advantage of population-scale multi-layered data to infer gene function and relationships between phenotypes and expression. Within a reference dataset, huva derives two experimental groups with LOW or HIGH expression of the GOI, enabling the subsequent comparison of their transcriptional profile and functional parameters. We demonstrate that this approach robustly identifies the phenotypic relevance of a GOI allowing the stratification of genes according to biological functions, and we generalize this concept to almost 16,000 genes in the human transcriptome. Additionally, we describe how huva predicts monocytes to be the major cell type in the pathophysiology of STAT1 mutations, evidence validated in a clinical cohort.
Collapse
Affiliation(s)
- Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Laura L. Sun
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | | | - Ioanna Gemünd
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010 VIC, Australia
| | - Adem Saglam
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
| | - Souad Rahmouni
- Unit of Animal Genomics, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-Institute, University of Liège, 4000 Liège, Belgium
| | - Peer Arts
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, 5000 SA, Australia
| | - Alexander Hoischen
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
- Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
| | - Kristian Händler
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Sach Mukherjee
- Statistics and Machine Learning, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, 53127 Bonn, Germany
| | - Anna C. Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53113 Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| |
Collapse
|
6
|
Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression. Cell Syst 2022; 13:353-364.e6. [PMID: 35298924 DOI: 10.1016/j.cels.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
Abstract
Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
Collapse
|
7
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
8
|
Szemere JR, Rotstein HG, Ventura AC. Frequency-preference response in covalent modification cycles under substrate sequestration conditions. NPJ Syst Biol Appl 2021; 7:32. [PMID: 34404807 PMCID: PMC8371027 DOI: 10.1038/s41540-021-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Covalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.
Collapse
Affiliation(s)
- Juliana Reves Szemere
- grid.482261.b0000 0004 1794 2491Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Horacio G. Rotstein
- grid.260896.30000 0001 2166 4955Federated Department of Biological Sciences, New Jersey Institute of Technology & Rutgers University, Newark, NJ United States
| | - Alejandra C. Ventura
- grid.482261.b0000 0004 1794 2491Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
9
|
Androulakis IP. Circadian rhythms and the HPA axis: A systems view. WIREs Mech Dis 2021; 13:e1518. [PMID: 33438348 DOI: 10.1002/wsbm.1518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
The circadian timing system comprises a network of time-keeping clocks distributed across a living host whose responsibility is to allocate resources and distribute functions temporally to optimize fitness. The molecular structures generating these rhythms have evolved to accommodate the rotation of the earth in an attempt to primarily match the light/dark periods during the 24-hr day. To maintain synchrony of timing across and within tissues, information from the central clock, located in the suprachiasmatic nucleus, is conveyed using systemic signals. Leading among those signals are endocrine hormones, and while the hypothalamic-pituitary-adrenal axis through the release of glucocorticoids is a major pacesetter. Interestingly, the fundamental units at the molecular and physiological scales that generate local and systemic signals share critical structural properties. These properties enable time-keeping systems to generate rhythmic signals and allow them to adopt specific properties as they interact with each other and the external environment. The purpose of this review is to provide a broad overview of these structures, discuss their functional characteristics, and describe some of their fundamental properties as these related to health and disease. This article is categorized under: Immune System Diseases > Computational Models Immune System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Biomedical Engineering Department, Chemical & Biochemical Engineering Department, Rutgers University, New Brunswick, New Jersey.,Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
10
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Krishnan J, Floros I. Adaptive information processing of network modules to dynamic and spatial stimuli. BMC SYSTEMS BIOLOGY 2019; 13:32. [PMID: 30866946 PMCID: PMC6417070 DOI: 10.1186/s12918-019-0703-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Adaptation and homeostasis are basic features of information processing in cells and seen in a broad range of contexts. Much of the current understanding of adaptation in network modules/motifs is based on their response to simple stimuli. Recently, there have also been studies of adaptation in dynamic stimuli. However a broader synthesis of how different circuits of adaptation function, and which circuits enable a broader adaptive behaviour in classes of more complex and spatial stimuli is largely missing. RESULTS We study the response of a variety of adaptive circuits to time-varying stimuli such as ramps, periodic stimuli and static and dynamic spatial stimuli. We find that a variety of responses can be seen in ramp stimuli, making this a basis for discriminating between even similar circuits. We also find that a number of circuits adapt exactly to ramp stimuli, and dissect these circuits to pinpoint what characteristics (architecture, feedback, biochemical aspects, information processing ingredients) allow for this. These circuits include incoherent feedforward motifs, inflow-outflow motifs and transcritical circuits. We find that changes in location in such circuits where a signal acts can result in non-adaptive behaviour in ramps, even though the location was associated with exact adaptation in step stimuli. We also demonstrate that certain augmentations of basic inflow-outflow motifs can alter the behaviour of the circuit from exact adaptation to non-adaptive behaviour. When subject to periodic stimuli, some circuits (inflow-outflow motifs and transcritical circuits) are able to maintain an average output independent of the characteristics of the input. We build on this to examine the response of adaptive circuits to static and dynamic spatial stimuli. We demonstrate how certain circuits can exhibit a graded response in spatial static stimuli with an exact maintenance of the spatial mean-value. Distinct features which emerge from the consideration of dynamic spatial stimuli are also discussed. Finally, we also build on these results to show how different circuits which show any combination of presence or absence of exact adaptation in ramps, exact mainenance of time average output in periodic stimuli and exact maintenance of spatial average of output in static spatial stimuli may be realized. CONCLUSIONS By studying a range of network circuits/motifs on one hand and a range of stimuli on the other, we isolate characteristics of these circuits (structural) which enable different degrees of exact adaptive and homeostatic behaviour in such stimuli, how they may be combined, and also identify cases associated with non-homeostatic behaviour. We also reveal constraints associated with locations where signals may act to enable homeostatic behaviour and constraints associated with augmentations of circuits. This consideration of multiple experimentally/naturally relevant stimuli along with circuits of adaptation of relevance in natural and engineered biology, provides a platform for deepening our understanding of adaptive and homeostatic behaviour in natural systems, bridging the gap between models of adaptation and experiments and in engineering homeostatic synthetic circuits.
Collapse
Affiliation(s)
- J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Ioannis Floros
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK.,National Centre of Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
12
|
Biswas A, Banik SK. Interplay of synergy and redundancy in diamond motif. CHAOS (WOODBURY, N.Y.) 2018; 28:103102. [PMID: 30384656 DOI: 10.1063/1.5044606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The formalism of partial information decomposition provides a number of independent components which altogether constitute the total information provided by the source variable(s) about the target variable(s). These non-overlapping terms are recognized as unique information, synergistic information, and redundant information. The metric of net synergy conceived as the difference between synergistic and redundant information is capable of detecting effective synergy, effective redundancy, and information independence among stochastic variables. The net synergy can be quantified using appropriate combinations of different Shannon mutual information terms. The utilization of the net synergy in network motifs with the nodes representing different biochemical species, involved in information sharing, uncovers rich store for exciting results. In the current study, we use this formalism to obtain a comprehensive understanding of the relative information processing mechanism in a diamond motif and two of its sub-motifs, namely, bifurcation and integration motif embedded within the diamond motif. The emerging patterns of effective synergy and effective redundancy and their contribution toward ensuring high fidelity information transmission are duly compared in the sub-motifs. Investigation on the metric of net synergy in independent bifurcation and integration motifs are also executed. In all of these computations, the crucial roles played by various systemic time scales, activation coefficients, and signal integration mechanisms at the output of the network topologies are especially emphasized. Following this plan of action, we become confident that the origin of effective synergy and effective redundancy can be architecturally justified by decomposing a diamond motif into bifurcation and integration motif. According to our conjecture, the presence of a common source of fluctuations creates effective redundancy. Our calculations reveal that effective redundancy empowers signal fidelity. Moreover, to achieve this, input signaling species avoids strong interaction with downstream intermediates. This strategy is capable of making the diamond motif noise-tolerant. Apart from the topological features, our study also puts forward the active contribution of additive and multiplicative signal integration mechanisms to nurture effective redundancy and effective synergy.
Collapse
Affiliation(s)
- Ayan Biswas
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| | - Suman K Banik
- Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India
| |
Collapse
|
13
|
Joanito I, Chu JW, Wu SH, Hsu CP. An incoherent feed-forward loop switches the Arabidopsis clock rapidly between two hysteretic states. Sci Rep 2018; 8:13944. [PMID: 30224713 PMCID: PMC6141573 DOI: 10.1038/s41598-018-32030-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
In higher plants (e.g., Arabidopsis thaliana), the core structure of the circadian clock is mostly governed by a repression process with very few direct activators. With a series of simplified models, we studied the underlying mechanism and found that the Arabidopsis clock consists of type-2 incoherent feed-forward loops (IFFLs), one of them creating a pulse-like expression in PRR9/7. The double-negative feedback loop between CCA1/LHY and PRR5/TOC1 generates a bistable, hysteretic behavior in the Arabidopsis circadian clock. We found that the IFFL involving PRR9/7 breaks the bistability and moves the system forward with a rapid pulse in the daytime, and the evening complex (EC) breaks it in the evening. With this illustration, we can intuitively explain the behavior of the clock under mutant conditions. Thus, our results provide new insights into the underlying network structures of the Arabidopsis core oscillator.
Collapse
Affiliation(s)
- Ignasius Joanito
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Jhih-Wei Chu
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Bioinformatics and System Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
14
|
Zhang C, Tsoi R, Wu F, You L. Processing Oscillatory Signals by Incoherent Feedforward Loops. PLoS Comput Biol 2016; 12:e1005101. [PMID: 27623175 PMCID: PMC5021367 DOI: 10.1371/journal.pcbi.1005101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
From the timing of amoeba development to the maintenance of stem cell pluripotency, many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression. While the networks underlying this signal decoding are diverse, many are built around a common motif, the incoherent feedforward loop (IFFL), where an input simultaneously activates an output and an inhibitor of the output. With appropriate parameters, this motif can exhibit temporal adaptation, where the system is desensitized to a sustained input. This property serves as the foundation for distinguishing input signals with varying temporal profiles. Here, we use quantitative modeling to examine another property of IFFLs—the ability to process oscillatory signals. Our results indicate that the system’s ability to translate pulsatile dynamics is limited by two constraints. The kinetics of the IFFL components dictate the input range for which the network is able to decode pulsatile dynamics. In addition, a match between the network parameters and input signal characteristics is required for optimal “counting”. We elucidate one potential mechanism by which information processing occurs in natural networks, and our work has implications in the design of synthetic gene circuits for this purpose. From circadian clocks to ultradian rhythms, oscillatory signals are found ubiquitously in nature. These oscillations are crucial in the regulation of cellular processes. While the fundamental design principles underlying the generation of these oscillations are extensively studied, the mechanisms for decoding these signals are underappreciated. With implications in both the basic understanding of how cells process temporal signals and the design of synthetic systems, we use quantitative modeling to probe one mechanism, the counting of pulses. We demonstrate the capability of an Incoherent Feedforward Loop motif for the differentiation between sustained and oscillatory input signals.
Collapse
Affiliation(s)
- Carolyn Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Ryan Tsoi
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Feilun Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
van der Kallen LR, Eggers R, Ehlert EM, Verhaagen J, Smit AB, van Kesteren RE. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo. PLoS One 2015; 10:e0127163. [PMID: 25993115 PMCID: PMC4438979 DOI: 10.1371/journal.pone.0127163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly promotes axon outgrowth in vitro. Here we tested whether genetic deletion or dominant-negative inhibition of NFIL3 could promote axon regeneration and functional recovery after peripheral nerve lesion in vivo. Contrary to our expectations, we observed no changes in the expression of regeneration-associated genes and a significant delay in functional recovery following genetic deletion of Nfil3. When NFIL3 function was inhibited specifically in dorsal root ganglia prior to sciatic nerve injury, we observed a decrease in regenerative axon growth into the distal nerve segment rather than an increase. Finally, we show that deletion of Nfil3 changes sciatic nerve lesion-induced expression in dorsal root ganglia of genes that are not typically involved in regeneration, including several olfactory receptors and developmental transcription factors. Together our findings show that removal of NFIL3 in vivo does not recapitulate the regeneration-promoting effects that were previously observed in vitro, indicating that in vivo transcriptional control of regeneration is probably more complex and more robust against perturbation than in vitro data may suggest.
Collapse
Affiliation(s)
- Loek R. van der Kallen
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Erich M. Ehlert
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - August B. Smit
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ronald E. van Kesteren
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Estrada J, Guantes R. Dynamic and structural constraints in signal propagation by regulatory networks. ACTA ACUST UNITED AC 2013; 9:268-84. [DOI: 10.1039/c2mb25243k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
de Ronde WH, Tostevin F, Ten Wolde PR. Feed-forward loops and diamond motifs lead to tunable transmission of information in the frequency domain. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021913. [PMID: 23005791 DOI: 10.1103/physreve.86.021913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/23/2012] [Indexed: 05/14/2023]
Abstract
Using a Gaussian model, we study the transmission of time-varying biochemical signals through feed-forward motifs and diamond motifs. To this end, we compute the frequency dependence of the gain, the noise, as well as their ratio, the gain-to-noise ratio, which measures how reliably a network transmits signals at different frequencies. We find that both coherent and incoherent feed-forward motifs can either act as low-pass or high-pass filters for information: The frequency dependence of the gain-to-noise ratio increases or decreases with increasing frequency, respectively. Our analysis of diamond motifs reveals that cooperative activation of the output component can increase the gain-to-noise ratio. This means that from the perspective of information transmission, it can be beneficial to split the input signal in two and recombine the two propagated signals at the output. Cooperative activation can be implemented via the formation of homo- or heteromultimers that then bind and activate the output component or via the binding of individual molecules of the intermediate species to the output component.
Collapse
Affiliation(s)
- W H de Ronde
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands.
| | | | | |
Collapse
|
18
|
Abstract
GnRH (gonadotropin-releasing hormone) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gene expression. Submaximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction, whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. In the present paper, we review recent work in this area, placing emphasis on the regulation of transcription, and showing how mathematical modelling of GnRH effects on two effectors [ERK (extracellular-signal-regulated kinase) and NFAT (nuclear factor of activated T-cells)] reveals the potential for genuine frequency decoding as an emergent feature of the GnRH signalling network, rather than an intrinsic feature of a given protein or pathway within it.
Collapse
|
19
|
Cerone L, Neufeld Z. Differential gene expression regulated by oscillatory transcription factors. PLoS One 2012; 7:e30283. [PMID: 22291930 PMCID: PMC3265475 DOI: 10.1371/journal.pone.0030283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/17/2011] [Indexed: 01/10/2023] Open
Abstract
Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.
Collapse
Affiliation(s)
- Luca Cerone
- School of Mathematical Sciences and Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|
20
|
Antony PMA, Balling R, Vlassis N. From systems biology to systems biomedicine. Curr Opin Biotechnol 2011; 23:604-8. [PMID: 22119097 DOI: 10.1016/j.copbio.2011.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/06/2011] [Indexed: 12/22/2022]
Abstract
Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine.
Collapse
Affiliation(s)
- Paul M A Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
| | | | | |
Collapse
|
21
|
Tsaneva-Atanasova K, Mina P, Caunt CJ, Armstrong SP, McArdle CA. Decoding GnRH neurohormone pulse frequency by convergent signalling modules. J R Soc Interface 2011; 9:170-82. [PMID: 21676968 DOI: 10.1098/rsif.2011.0215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gonadotrophin secretion and gene expression. Sub-maximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. Here, we consider the possibility that it is due to convergence of distinct pulsatile signals at the transcriptome. We develop a model that mirrors wet-laboratory data for activation and nuclear translocation of GnRH effectors (extracellular signal regulated kinase and nuclear factors of activated T-cells) and incorporates transcription. The model predicts genuine frequency decoding when two transcription factors (TFs) converge at a cooperative gate, and shows how optimal pulse frequency could reflect TF activation kinetics and affinities. Importantly, this behaviour is revealed as an emergent feature of the network, rather than an intrinsic feature of a given protein or pathway, and since such network topology is extremely common, may well be widespread in biological systems.
Collapse
|
22
|
de Ronde WH, Tostevin F, ten Wolde PR. Effect of feedback on the fidelity of information transmission of time-varying signals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:031914. [PMID: 21230115 DOI: 10.1103/physreve.82.031914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Indexed: 05/30/2023]
Abstract
Living cells are continually exposed to environmental signals that vary in time. These signals are detected and processed by biochemical networks, which are often highly stochastic. To understand how cells cope with a fluctuating environment, we therefore have to understand how reliably biochemical networks can transmit time-varying signals. To this end, we must understand both the noise characteristics and the amplification properties of networks. In this paper, we use information theory to study how reliably signaling cascades employing autoregulation and feedback can transmit time-varying signals. We calculate the frequency dependence of the gain-to-noise ratio, which reflects how reliably a network transmits signals at different frequencies. We find that the gain-to-noise ratio may differ qualitatively from the power spectrum of the output, showing that the latter does not directly reflect signaling performance. Moreover, we find that autoactivation and autorepression increase and decrease the gain-to-noise ratio for all of frequencies, respectively. Positive feedback specifically enhances information transmission at low frequencies, while negative feedback increases signal fidelity at high frequencies. Our analysis not only elucidates the role of autoregulation and feedback in naturally occurring biological networks, but also reveals design principles that can be used for the reliable transmission of time-varying signals in synthetic gene circuits.
Collapse
Affiliation(s)
- Wiet Hendrik de Ronde
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Guantes R, Estrada J, Poyatos JF. Trade-offs and noise tolerance in signal detection by genetic circuits. PLoS One 2010; 5:e12314. [PMID: 20865033 PMCID: PMC2928721 DOI: 10.1371/journal.pone.0012314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 07/20/2010] [Indexed: 01/14/2023] Open
Abstract
Genetic circuits can implement elaborated tasks of amplitude or frequency signal detection. What type of constraints could circuits experience in the performance of these tasks, and how are they affected by molecular noise? Here, we consider a simple detection process–a signal acting on a two-component module–to analyze these issues. We show that the presence of a feedback interaction in the detection module imposes a trade-off on amplitude and frequency detection, whose intensity depends on feedback strength. A direct interaction between the signal and the output species, in a type of feed-forward loop architecture, greatly modifies these trade-offs. Indeed, we observe that coherent feed-forward loops can act simultaneously as good frequency and amplitude noise-tolerant detectors. Alternatively, incoherent feed-forward loop structures can work as high-pass filters improving high frequency detection, and reaching noise tolerance by means of noise filtering. Analysis of experimental data from several specific coherent and incoherent feed-forward loops shows that these properties can be realized in a natural context. Overall, our results emphasize the limits imposed by circuit structure on its characteristic stimulus response, the functional plasticity of coherent feed-forward loops, and the seemingly paradoxical advantage of improving signal detection with noisy circuit components.
Collapse
Affiliation(s)
- Raúl Guantes
- Department of Condensed Matter Physics, Science Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | |
Collapse
|