1
|
Misumi K, Sun J, Kinomura A, Miyata Y, Okada M, Tashiro S. Enhanced gefitinib-induced repression of the epidermal growth factor receptor pathway by ataxia telangiectasia-mutated kinase inhibition in non-small-cell lung cancer cells. Cancer Sci 2016; 107:444-51. [PMID: 26825989 PMCID: PMC4832868 DOI: 10.1111/cas.12899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase signaling pathways regulate cellular activities. The EGFR tyrosine kinase inhibitors (EGFR‐TKIs) repress the EGFR pathway constitutively activated by somatic EGFR gene mutations and have drastically improved the prognosis of non‐small‐cell lung cancer (NSCLC) patients. However, some problems, including resistance, remain to be solved. Recently, combination therapy with EGFR‐TKIs and cytotoxic agents has been shown to improve the prognosis of NSCLC patients. To enhance the anticancer effects of EGFR‐TKIs, we examined the cross‐talk of the EGFR pathways with ataxia telangiectasia‐mutated (ATM) signaling pathways. ATM is a key protein kinase in the DNA damage response and is known to phosphorylate Akt, an EGFR downstream factor. We found that the combination of an ATM inhibitor, KU55933, and an EGFR‐TKI, gefitinib, resulted in synergistic cell growth inhibition and induction of apoptosis in NSCLC cell lines carrying the sensitive EGFR mutation. We also found that KU55933 enhanced the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors. ATM inhibition may facilitate the gefitinib‐dependent repression of the phosphorylation of EGFR and/or its downstream factors, to exert anticancer effects against NSCLC cells with the sensitive EGFR mutation.
Collapse
Affiliation(s)
- Keizo Misumi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Aiko Kinomura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Park SY, Choi HK, Seo JS, Yoo JY, Jeong JW, Choi Y, Choi KC, Yoon HG. DNAJB1 negatively regulates MIG6 to promote epidermal growth factor receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2722-30. [PMID: 26239118 DOI: 10.1016/j.bbamcr.2015.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Mitogen-inducible gene 6 (MIG6) is a tumor suppressor implicated in the development of human cancers; however, the regulatory mechanisms of MIG6 remain unknown. Here, using a yeast two-hybrid screen, we identified DnaJ homolog subfamily B member I (DNAJB1) as a novel MIG6-interacting protein. We found that DNAJB1 binds to and decreases MIG6 protein, but not mRNA, levels. DNAJB1 overexpression dosage-dependently decreased MIG6 protein levels. Conversely, DNAJB1 knockdown increased MIG6 protein levels. DNAJB1 destabilizes MIG6 by enhancing K48-linked ubiquitination of MIG6. However, knocking-down of DNAJB1 reduced the ubiquitination of MIG6. DNAJB1 positively regulates the epidermal growth factor receptors (EGFR) signaling pathway via destabilization of MIG6; however, DNAJB1 knockdown diminishes activation of EGFR signaling as well as elevation of MIG6. Importantly, the increased levels of MIG6 by DNAJB1 knockdown greatly enhanced the gefitinib sensitivity in A549 cells. Thus, our study provides a new molecular mechanism to regulate EGFR signaling through modulation of MIG6 by DNAJB1 as a negative regulator.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Kyoung Choi
- Division of Nutrition and Metabolism Research Group, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Jae Sung Seo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, MI, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, MI, USA
| | - Youngsok Choi
- Fertility Center of CHA General Hospital, CHA Research Institute, CHA University, Seoul, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Identifying Determinants of EGFR-Targeted Therapeutic Biochemical Efficacy Using Computational Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e141. [PMID: 25317724 PMCID: PMC4474171 DOI: 10.1038/psp.2014.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
We modeled cellular epidermal growth factor receptor (EGFR) tyrosine phosphorylation dynamics in
the presence of receptor-targeting kinase inhibitors (e.g., gefitinib) or antibodies (e.g.,
cetuximab) to identify systematically the factors that contribute most to the ability of the
therapeutics to antagonize EGFR phosphorylation, an effect we define here as biochemical efficacy.
Our model identifies distinct processes as controlling gefitinib or cetuximab biochemical efficacy,
suggests biochemical efficacy is favored in the presence of certain EGFR ligands, and suggests new
drug design principles. For example, the model predicts that gefitinib biochemical efficacy is
preferentially sensitive to perturbations in the activity of tyrosine phosphatases regulating EGFR,
but that cetuximab biochemical efficacy is preferentially sensitive to perturbations in ligand
binding. Our results highlight numerous other considerations that determine biochemical efficacy
beyond those reflected by equilibrium affinities. By integrating these considerations, our model
also predicts minimum therapeutic combination concentrations to maximally reduce receptor
phosphorylation.
Collapse
|
4
|
Li ZX, Qu LY, Wen H, Zhong HS, Xu K, Qiu XS, Wang EH. Mig-6 overcomes gefitinib resistance by inhibiting EGFR/ERK pathway in non-small cell lung cancer cell lines. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7304-7311. [PMID: 25400829 PMCID: PMC4230080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Non small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and is the most common cause of lung cancer death. Currently, the epidermal growth factor receptor inhibitor gefitinib is widely used for patients with advanced NSCLC. However, drug resistance is a major obstacle. Mig-6 is a feedback inhibitor of EGFR and its down-stream pathway; it has been shown to play a role in gefitinib sensitivity. There is neither systematical research on the relationship between Mig-6 expression and gefitinib sensitivity, nor has the contribution of up-regulated Mig-6 on the gefitinib-resistant cell lines. In the present work, four NSCLC cell lines (H1299, A549, PC-9, and PC-9/AB11) with different sensitivities to gefitinib were subjected to analysis of the expression of Mig-6. We found that Mig-6 is over-expressed in gefitinib-sensitive NSCLC cell lines, but is low in gefitinib-resistant NSCLC cell lines. Further analysis revealed that over-expression of Mig-6 increased cell apoptosis and inhibited proliferation of gefitinib-resistant NSCLC cells treated with gefitinib, whereas lowering the expression of Mig-6 decreased cell apoptosis and promoted cell proliferation after treatment with gefitinib in gefitinib-sensitive NSCLC cell lines. These results suggest that Mig-6 is involved in mediating the response to gefitinib in NSCLC cell lines. Additionally we demonstrated that Mig-6 could reverse gefitinib resistance through inhibition of EGFR/ERK pathway in NSCLC cells. Our work uncovered that Mig-6 may be an effective therapeutic target in gefitinib-resistant lung cancer patients.
Collapse
Affiliation(s)
- Zi-Xuan Li
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, P. R. China
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical UniversityShenyang 110001, P. R. China
| | - Lian-Yue Qu
- Department of Pharmacy, The First Affiliated Hospital of China Medical UniversityShenyang 110001, P. R. China
| | - Hi Wen
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical UniversityShenyang 110001, P. R. China
- Shiyan Taihe HospitalShiyan 442000, P. R. China
| | - Hong-Shan Zhong
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, P. R. China
| | - Ke Xu
- Department of Radiology and Key Laboratory of Diagnostic Imaging and Interventional Radiology, The First Affiliated Hospital of China Medical UniversityShenyang 110001, P. R. China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical UniversityShenyang 110001, P. R. China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, China Medical UniversityShenyang 110001, P. R. China
| |
Collapse
|
5
|
Zahonero C, Sánchez-Gómez P. EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci 2014; 71:3465-88. [PMID: 24671641 PMCID: PMC11113227 DOI: 10.1007/s00018-014-1608-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Glioblastoma is a particularly resilient cancer, and while therapies may be able to reach the brain by crossing the blood-brain barrier, they then have to deal with a highly invasive tumor that is very resistant to DNA damage. It seems clear that in order to kill aggressive glioma cells more efficiently and with fewer side effects on normal tissue, there must be a shift from classical cytotoxic chemotherapy to more targeted therapies. Since the epidermal growth factor receptor (EGFR) is altered in almost 50% of glioblastomas, it currently represents one of the most promising therapeutic targets. In fact, it has been associated with several distinct steps in tumorigenesis, from tumor initiation to tumor growth and survival, and also with the regulation of cell migration and angiogenesis. However, inhibitors of the EGFR kinase have produced poor results with this type of cancer in clinical trials, with no clear explanation for the tumor resistance observed. Here we will review what we know about the expression and function of EGFR in cancer and in particular in gliomas. We will also evaluate which are the possible molecular and cellular escape mechanisms. As a result, we hope that this review will help improve the design of future EGFR-targeted therapies for glioblastomas.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | |
Collapse
|
6
|
Hampton KK, Craven RJ. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 2014; 1:504-12. [PMID: 25594057 PMCID: PMC4278327 DOI: 10.18632/oncoscience.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is activated through changes in expression or mutations in a number of tumors and is a driving force in cancer progression. EGFR is targeted by numerous inhibitors, including chimeric antibodies targeting the extracellular domain and small molecule kinase domain inhibitors. The kinase domain inhibitors are particularly active against mutant forms of the receptor, and subsequent mutations drive resistance to the inhibitors. Here, we review recent developments on the trafficking of wild-type and mutant EGFR, focusing on the roles of MIG6, SPRY2, ITSN, SHP2, S2RPGRMC1 and RAK. Some classes of EGFR regulators affect wild-type and mutant EGFR equally, while others are specific for either the wild-type or mutant form of the receptor. Below we summarize multiple signaling-associated pathways that are important in trafficking wild-type and mutant EGFR with the goal being stimulation of new approaches for targeting the distinct forms of the receptor.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
7
|
Yoon YK, Kim HP, Song SH, Han SW, Oh DY, Im SA, Bang YJ, Kim TY. Down-regulation of mitogen-inducible gene 6, a negative regulator of EGFR, enhances resistance to MEK inhibition in KRAS mutant cancer cells. Cancer Lett 2012; 316:77-84. [PMID: 22082529 DOI: 10.1016/j.canlet.2011.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/15/2022]
Abstract
Previously, we found that KRAS mutant cancer cells showed variable response to AZD6244, a MEK inhibitor through differential activation of EGFR/AKT. To investigate its mechanism, we performed cDNA microarray using four KRAS mutant cancer cells. We found that treatment with AZD6244 reduced the expression of mitogen-inducible gene 6 (MIG6), a negative feedback regulator for EGFR, in AZD6244-resistant cells, while activity of EGFR and AKT was increased in these cells. Reconstitution or knockdown of MIG6 expression affected cancer cell responses to AZD6244. Treatment with a combination of EGFR inhibitor and AZD6244 inhibited cell proliferation synergistically without activation of AKT in AZD6244-resistant cells. Our study provides a mechanism of differential response to MEK inhibition in KRAS mutant cancer.
Collapse
Affiliation(s)
- Young-Kwang Yoon
- Cancer Research Institute, Seoul National University College of Medicine, South Korea
| | | | | | | | | | | | | | | |
Collapse
|