1
|
|
2
|
Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Mol Cell Biochem 2019; 458:11-26. [PMID: 31165315 DOI: 10.1007/s11010-019-03526-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/15/2019] [Indexed: 10/26/2022]
Abstract
Dysregulation of microRNAs (miRNAs) has been found to disrupt the progression of oral cancer. However, which miRNAs are most effective against oral cancer and how these miRNAs should be delivered are major unanswered problems. We aimed at investigating if human bone marrow mesenchymal stem cells (hBMSCs)-derived exosomes affect oral cancer development, and the potential regulatory mechanism associated with COL10A1 and miR-101-3p. COL10A1 was upregulated, while miR-101-3p was downregulated in oral cancer, and miR-101-3p targeted COL10A1 as verified by dual-luciferase reporter gene assay. Meanwhile, exosomes derived from hBMSCs were isolated and then co-cultured with oral cancer cells to identify the role of exosomes, and the results suggested that hBMSCs-derived exosomes overexpressing miR-101-3p inhibited oral cancer progression. Furthermore, tumorigenicity assay in nude mice further confirmed the inhibitory effects of hBMSCs-derived exosomes, loaded with miR-101-3p, on oral cancer, which provides a new theoretical basis in the treatment of oral cancer.
Collapse
|
3
|
Mann V, Grimm D, Corydon TJ, Krüger M, Wehland M, Riwaldt S, Sahana J, Kopp S, Bauer J, Reseland JE, Infanger M, Mari Lian A, Okoro E, Sundaresan A. Changes in Human Foetal Osteoblasts Exposed to the Random Positioning Machine and Bone Construct Tissue Engineering. Int J Mol Sci 2019; 20:ijms20061357. [PMID: 30889841 PMCID: PMC6471706 DOI: 10.3390/ijms20061357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Human cells, when exposed to both real and simulated microgravity (s-µg), form 3D tissue constructs mirroring in vivo architectures (e.g., cartilage, intima constructs, cancer spheroids and others). In this study, we exposed human foetal osteoblast (hFOB 1.19) cells to a Random Positioning Machine (RPM) for 7 days and 14 days, with the purpose of investigating the effects of s-µg on biological processes and to engineer 3D bone constructs. RPM exposure of the hFOB 1.19 cells induces alterations in the cytoskeleton, cell adhesion, extra cellular matrix (ECM) and the 3D multicellular spheroid (MCS) formation. In addition, after 7 days, it influences the morphological appearance of these cells, as it forces adherent cells to detach from the surface and assemble into 3D structures. The RPM-exposed hFOB 1.19 cells exhibited a differential gene expression of the following genes: transforming growth factor beta 1 (TGFB1, bone morphogenic protein 2 (BMP2), SRY-Box 9 (SOX9), actin beta (ACTB), beta tubulin (TUBB), vimentin (VIM), laminin subunit alpha 1 (LAMA1), collagen type 1 alpha 1 (COL1A1), phosphoprotein 1 (SPP1) and fibronectin 1 (FN1). RPM exposure also induced a significantly altered release of the cytokines and bone biomarkers sclerostin (SOST), osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), interleukin 1 beta (IL-1β) and tumour necrosis factor 1 alpha (TNF-1α). After the two-week RPM exposure, the spheroids presented a bone-specific morphology. In conclusion, culturing cells in s-µg under gravitational unloading represents a novel technology for tissue-engineering of bone constructs and it can be used for investigating the mechanisms behind spaceflight-related bone loss as well as bone diseases such as osteonecrosis or bone injuries.
Collapse
Affiliation(s)
- Vivek Mann
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Daniela Grimm
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Thomas J Corydon
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stefan Riwaldt
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Jayashree Sahana
- Department for Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Johann Bauer
- Max Planck Institute of Biochemistry, Martinsried, Am Klopferspitz 18, 82152 Planegg, Germany.
| | - Janne E Reseland
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Aina Mari Lian
- Clinical Oral Research Laboratory, Institute of Clinical Dentistry, UiO, University of Oslo, Geitmyrsveien 71 0455 Oslo, Norway.
| | - Elvis Okoro
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| | - Alamelu Sundaresan
- Osteoimmunology and Integrative Physiology Laboratory, Department of Biology, Texas Southern University, Cleburne, Houston, TX 77004, USA.
| |
Collapse
|
4
|
MiR-384 induces apoptosis and autophagy of non-small cell lung cancer cells through the negative regulation of Collagen α-1(X) chain gene. Biosci Rep 2019; 39:BSR20181523. [PMID: 30442874 PMCID: PMC6356039 DOI: 10.1042/bsr20181523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aims to investigate the mechanism of miR-384 in non-small cell lung cancer (NSCLC) cell apoptosis and autophagy by regulating Collagen α-1(X) chain (COL10A1). Bioinformatics methods were applied to evaluate potential miRNAs and genes that might correlate with NSCLC. Tumor tissues and adjacent tissues from 104 NSCLC patients were collected and human NSCLC A549 cell line was selected for subsequent experiments. A549 cells were treated with miR-384 mimic, miR-384 inhibitor, or knockdown of COL10A1. Quantitative real-time PCR (qRT-PCR) and Western blotting were utilized to detect the levels of miR-384, COL10A, Survivin, Bcl-2, Bax, Bcl-xl, Beclin 1, and LC3 in tissues and cells. A series of biological assays including MTT assay, Annexin V-FITC/PI (propidium iodide) staining, immunofluorescence, monodansylcadaverine (MDC) staining were conducted to investigate the effects of miR-384 and COL10A1 on NSCLC cells. Tumorigenicity assay for nude rats was applied. Results obtained from the present study indicated that miR-384 down-regulated COL10A1 by targetting it. Compared with adjacent tissues, miR-384 expression was obviously reduced while COL10A1 expression was significantly enhanced in NSCLC tissues (all P<0.05). Outcomes in vivo and in vitro suggested that cell proliferation and tumorigenicity were inhibited while cell apoptosis and autophagy were induced in NSCLC cells treated with up-regulation of miR-384 or silence of COL10A1. In miR-384 inhibitor group, cell proliferation was improved, while cell apoptosis was reduced and cell autophagy was decreased whereas tumorigenicity of cells was strengthened. Based on the findings of our study, it was established that miR-384 could down-regulate COL10A1 levels, subsequently inhibiting cell proliferation and promoting cell apoptosis and autophagy in NSCLC cells.
Collapse
|
5
|
Ge L, Wang Y, Cao Y, Li G, Sun R, Teng P, Wang Y, Bi Y, Guo Z, Yuan Y, Yu D. MiR-429 improved the hypoxia tolerance of human amniotic cells by targeting HIF-1α. Biotechnol Lett 2018; 40:1477-1486. [PMID: 30145667 DOI: 10.1007/s10529-018-2604-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
MicroRNA-429(miR-429) plays an important role in mesenchymal stem cells. Hypoxia-inducible factor 1α (HIF-1α) is a nuclear transcription factor that regulates the proliferation, apoptosis and tolerance to hypoxia of mesenchymal stem cells. HIF-1α is also a target gene of miR-429. We investigated whether miR-429 plays a role in hypoxia tolerance with HIF-1α in human amniotic mesenchymal stem cells (hAMSCs). The expression of miR-429 was increased by hypoxia in hAMSCs. miR-429 expression resulted in decreased HIF-1α protein level, but little effect on HIF-1α mRNA. While overexpression of HIF-1α increased the survival rate and exhibited anti-apoptosis effects in hAMSCs under hypoxia, co-expression of miR-429 reduced survival and increased apoptosis. However, miR-429 silencing with HIF-1α overexpression stimulated cell survival and reduced apoptosis. Co-expression of HIF-1α and miR-429 reduced VEGF and Bcl-2 proteins and increased Bax and C-Caspase-3 levels in hAMSCs under hypoxia compared with cells expressing only HIF-1α; cells with HIF-1α overexpression and miR-429 silencing showed the opposite effects. These results indicate that HIF-1α and angomiR-429 reciprocally antagonized each other, while HIF-1α and antagomiR-429 interacted with each other to regulate survival and apoptosis in hAMSCs under hypoxia. miR-429 increased VEGF and Bcl-2 protein levels and decreased Bax and cleaved Caspase-3 protein levels by promoting the synthesis of HIF-1α. These results indicate that miR-429 negatively regulates the survival and anti-apoptosis ability of hAMSCs by mediating HIF-1α expression and improves the ability of hAMSCs to tolerate hypoxia.
Collapse
Affiliation(s)
- Lihao Ge
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuyan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Orthopedics, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, 200092, China
| | - Rui Sun
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Teng
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Deshui Yu
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
6
|
Zhou K, Liu M, Cao Y. New Insight into microRNA Functions in Cancer: Oncogene-microRNA-Tumor Suppressor Gene Network. Front Mol Biosci 2017; 4:46. [PMID: 28736730 PMCID: PMC5500619 DOI: 10.3389/fmolb.2017.00046] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Tumorigenesis is a multi-step and complex process with multi-factors involved. Deregulated oncogenes and tumor suppressor genes (TSGs) induced by genetic and epigenetic factors are considered as the driving force in the development and progression of cancer. Besides, microRNAs (miRNAs) act vital roles in tumorigenesis through regulating some oncogenes and TSGs. Interestingly, miRNAs are also regulated by oncogenes and TSGs. Considering the entangled regulation, here we propose a new insight into these regulation relationships in cancer: oncogene–miRNA–TSG network, which further emphasizes roles of miRNA, as well as highlights the network regulation among oncogene, miRNA, and TSG during tumorigenesis. The oncogene–miRNA–TSG network demonstrates that oncogenes and TSGs not only show functional synergy, but also there are regulatory relationships among oncogenes and TSGs during tumorigenesis, which could be mediated by miRNAs. In view of the oncogene–miRNA–TSG network involved in many oncogenes, miRNAs, and TSGs, as well as occurring in various tumor types, the anomaly of this network may be a common event in cancers and participates in tumorigenesis. This hypothesis broadens horizons of molecular mechanisms underlying tumorigenesis, and may provide a new promising venue for the prediction, diagnosis, and even therapy of cancer.
Collapse
Affiliation(s)
- Kecheng Zhou
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,Kunming College of Life Science, University of Chinese Academy of SciencesKunming, China
| | - Minxia Liu
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China.,Kunming College of Life Science, University of Chinese Academy of SciencesKunming, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, China
| |
Collapse
|
7
|
Yao Y, Deng Q, Sun C, Song W, Liu H, Zhou Y. A genome-wide analysis of the gene expression profiles and alternative splicing events during the hypoxia-regulated osteogenic differentiation of human cartilage endplate-derived stem cells. Mol Med Rep 2017; 16:1991-2001. [PMID: 28656244 PMCID: PMC5562021 DOI: 10.3892/mmr.2017.6846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
It has been hypothesized that intervertebral disc degeneration is initiated by degeneration of the cartilage endplate (CEP), which is characterized by cartilage ossification. CEP‑derived stem cells (CESCs), with the potential for chondro‑osteogenic differentiation, may be responsible for the balance between chondrification and ossification in the CEP. The CEP remains in an avascular and hypoxic microenvironment; the present study observed that hypoxia was able to markedly inhibit the osteogenic differentiation of CESCs. This tissue‑specific CESC differentiation in response to a hypoxic microenvironment was physiologically important for the prevention of ossification in the CEP. In order to study the hypoxia‑regulated mechanisms underlying osteogenic differentiation of CESCs, a Human Transcriptome Array 2.0 was used to detect differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) during the osteogenic differentiation of CESCs under hypoxia, compared with those induced under normoxia. High‑throughput analysis of DEGs and ASGs demonstrated that genes in the complement pathway were enriched, which may be a potential mechanism underlying hypoxia inhibition of CESCs osteogenesis. The results of the present study may provide a basis for future mechanistic studies regarding gene expression levels and alternative splicing events during the hypoxia‑regulated inhibition of osteogenesis, which may be helpful in identifying targets for CEP degeneration therapy.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qiyue Deng
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Weiling Song
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
8
|
Amirkhah R, Farazmand A, Wolkenhauer O, Schmitz U. RNA Systems Biology for Cancer: From Diagnosis to Therapy. Methods Mol Biol 2016; 1386:305-30. [PMID: 26677189 DOI: 10.1007/978-1-4939-3283-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| |
Collapse
|
9
|
Shang J, Wang H, Fan X, Shangguan L, Liu H. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells. Mol Med Rep 2016; 14:1389-96. [PMID: 27278552 DOI: 10.3892/mmr.2016.5359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/12/2016] [Indexed: 11/06/2022] Open
Abstract
Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases.
Collapse
Affiliation(s)
- Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Honggang Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Fan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Lei Shangguan
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Yao Y, Shang J, Song W, Deng Q, Liu H, Zhou Y. Global profiling of the gene expression and alternative splicing events during hypoxia-regulated chondrogenic differentiation in human cartilage endplate-derived stem cells. Genomics 2016; 107:170-7. [PMID: 26996146 DOI: 10.1016/j.ygeno.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/09/2016] [Accepted: 03/16/2016] [Indexed: 01/08/2023]
Abstract
The intervertebral disc (IVD) degeneration is initiated by cartilage endplate (CEP) degeneration and is characterised by reduced chondrification. Cartilage endplate-derived stem cells (CESCs) with chondrogenic differentiation abilities are responsible for the restoration of cartilage. CEP remains in an avascular and hypoxic microenvironment. In this study, we observed that the physiological hypoxia greatly promotes the chondrogenic differentiation of CESCs. This tissue specificity of the differentiation fate of CESCs in response to the hypoxic microenvironment was physiologically significant for the CEP to maintain the chondrification status. To investigate the mechanisms underlying the hypoxia-regulated chondrogenic differentiation of CESCs, we adopted a high-throughput scanning technology to detect the global profiling of gene expression and alternative splicing (AS) event changes during chondrogenic differentiation under hypoxia in CESCs compared to those induced under normoxia. An Affymetrix Human Transcriptome Array 2.0 was used to identify the differentially expressed genes (DEGs) and alternatively spliced genes (ASGs). After RT-PCR validation, GO and KEGG pathway analyses of both the DEGs and ASGs were performed. The enrichment of the GO functional terms and signalling pathways provided referential direction of the mechanism to study the gene expression and AS in the hypoxia-regulated chondrogenesis promotion, which could be helpful in understanding this physiological phenomenon, and it could also be instrumental in finding targets for CEP degeneration therapy.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Weilin Song
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qiyue Deng
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
11
|
Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:604972. [PMID: 26649308 PMCID: PMC4662983 DOI: 10.1155/2015/604972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.
Collapse
|
12
|
Aleshcheva G, Wehland M, Sahana J, Bauer J, Corydon TJ, Hemmersbach R, Frett T, Egli M, Infanger M, Grosse J, Grimm D. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9. FASEB J 2015; 29:2303-14. [PMID: 25681461 DOI: 10.1096/fj.14-268151] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Real and simulated microgravity induce a variety of changes in human cells. Most importantly, changes in the cytoskeleton have been noted, and studies on microtubules have shown that they are gravisensitive. This study focuses on the effects of short-term real microgravity on gene expression, protein content, and cytoskeletal structure of human chondrocytes. We cultivated human chondrocytes, took them along a parabolic flight during the 24th Deutsches Zentrum für Luft- und Raumfahrt Parabolic (DLR) Flight Campaign, and fixed them after the 1st and the 31st parabola. Immunofluorescence microscopy revealed no changes after the 1st parabola, but disruptions of β-tubulin, vimentin, and cytokeratin networks after the 31st parabola. No F-actin stress fibers were detected even after 31 parabolas. Furthermore, mRNA and protein quantifications after the 31st parabola showed a clear up-regulation of cytoskeletal genes and proteins. The mRNAs were significantly up-regulated as follows: TUBB, 2-fold; VIM, 1.3-fold; KRT8, 1.8-fold; ACTB, 1.9-fold; ICAM1, 4.8-fold; OPN, 7-fold; ITGA10, 1.5-fold; ITGB1, 1.2-fold; TGFB1, 1.5-fold; CAV1, 2.6-fold; SOX9, 1.7-fold; BMP-2, 5.3-fold. However, SOX5 (-25%) and SOX6 (-28%) gene expression was decreased. Contrary, no significant changes in gene expression levels were observed during vibration and hypergravity experiments. These data suggest that short-term microgravity affects the gene expression of distinct proteins. In contrast to poorly differentiated follicular thyroid cancer cells or human endothelial cells, chondrocytes only exert moderate cytoskeletal alterations. The up-regulation of BMP-2, TGF-β1, and SOX9 in chondrocytes may play a key role in preventing cytoskeletal alterations.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Markus Wehland
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Jayashree Sahana
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Johann Bauer
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Thomas J Corydon
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Ruth Hemmersbach
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Timo Frett
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Marcel Egli
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Manfred Infanger
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Jirka Grosse
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| | - Daniela Grimm
- *Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany; Department of Biomedicine, Aarhus University, Aarhus C, Denmark; Max-Planck-Institute for Biochemistry, Martinsried, Germany; DLR German Aerospace Center, Biomedical Research, Gravitational Biology, Cologne, Germany; Aerospace Biomedical Science and Technology, Space Biology Group, Luzerne University of Applied Sciences and Arts, Hergiswil, Switzerland; and Department of Nuclear Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2015; 39:1013-9. [PMID: 25634249 DOI: 10.1007/s00264-015-2683-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to investigate the differential expression and putative function of long noncoding RNAs (lncRNAs) during the osteogenic differentiation of human bone marrow mesenchymal stem cells (MSCs). METHODS The differential lncRNAs expression profiles of undifferentiated and differentiated cells during osteogenic differentiation were established by lncRNA microarray. Microarray data were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Bioinformatic analyses (gene ontology, pathway and co-expression network analysis) were applied for further study of these differentially expressed lncRNAs. RESULTS A total of 1,206 differentially expressed lncRNAs were identified during the process of osteogenic differentiation. Among these lncRNAs, 687 were up-regulated and 519 were down-regulated more than two-fold. Bioinformatic analyses were applied for further study of these differentially expressed lncRNAs. Further analysis found 48 regulated enhancer-like lncRNA and 14 lincRNA. The dynamic expression trends H19 and uc022axw.1 were then observed using qRT-PCR. The results showed that the two up-regulated lncRNAs are likely to play important roles in osteogenic differentiation process. CONCLUSIONS Taken together, our study first revealed the expression profiles of lncRNAs in osteogenic differentiation of human bone marrow MSCs. It provides an experimental basis for further research on lncRNAs functions during osteogenic differentiation of human bone marrow MSCs.
Collapse
|
14
|
Wang L, Li Z, Li Z, Yu B, Wang Y. Long noncoding RNAs expression signatures in chondrogenic differentiation of human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2014; 456:459-64. [PMID: 25482444 DOI: 10.1016/j.bbrc.2014.11.106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/30/2014] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been established to participate in various biological processes that are crucial for development and differentiation. However, the roles of lncRNAs in the mechanisms of human bone marrow mesenchymal stem cells (MSCs) differentiation are not completely understood. The purpose of the study was to investigate the expression profiles of lncRNAs during the chondrogenic differentiation of human bone marrow MSCs, with a view to studying the biological function of lncRNAs and their involvement in the mechanism of differentiation. We compared the lncRNAs expression profiles of undifferentiated and differentiated cells during chondrogenic differentiation by microarray. 3638 differentially expressed lncRNAs were identified (fold-change >2.0 or <-2.0, P<0.05), consisting of 2166 up-regulated and 1472 down-regulated. Microarray data were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Bioinformatic analyses were applied for further study of these differentially expressed lncRNAs. Among these lncRNAs, ZBED3-AS1 and CTA-941F9.9 were further analyzed with co-expression network and target prediction analysis. The results showed that the two up-regulated lncRNAs are likely to play important roles in chondrogenic differentiation process. In conclusion, the expression profile of lncRNAs was significantly altered during differentiation process. It provided a new insight on complicated regulation mechanisms of human bone marrow MSCs chondrogenic differentiation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan Hutong, Beijing 100730, China
| | - Zhengyao Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan Hutong, Beijing 100730, China
| | - Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan Hutong, Beijing 100730, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan Hutong, Beijing 100730, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan Hutong, Beijing 100730, China.
| |
Collapse
|