1
|
Lv Y, Chen J, Zhu M, Liu Y, Wu X, Xiao X, Yuyama N, Liu F, Jing H, Cai H. Wall-associated kinase-like gene RL1 contributes to red leaves in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:135-150. [PMID: 35942607 DOI: 10.1111/tpj.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Red leaves are common in trees but rare in cereal crops. Red leaves can be used as raw materials for anthocyanin extraction and may have some adaptive significance for plants. In this study, we discovered a red leaf phenotype in the F1 hybrids derived from a cross between two sorghum accessions with green leaf. Histological analysis of red leaves and green leaves showed that red compounds accumulate in mesophyll cells and gradually spreads to the entire leaf blade. In addition, we found chloroplasts degraded more quickly in red leaves than in green leaves based on transmission electron microscopy. Metabolic analysis revealed that flavonoids including six anthocyanins are more abundant in red leaves. Moreover, transcriptome analysis revealed that expression of flavonoid biosynthesis genes was upregulated in red leaves. These observations indicate that flavonoids and anthocyanins in particular, are ideal candidates for the red compounds accumulating in red leaves. Segregation analysis of the red leaf phenotype suggested a genetic architecture consisting of three dominant genes, one (RL1 for RED LEAF1) of which we mapped to a 55-kb region on chromosome 7 containing seven genes. Sequencing, reverse transcription-polymerase chain reaction, and transcriptome analysis suggested Sobic.007G214300, encoding a wall-associated kinase, as the most likely candidate for RL1. Fine mapping the red leaf gene and identifying the metabolites that cause red leaf in sorghum provide us with a better understanding of the red leaf phenotype in the natural population of sorghum.
Collapse
Affiliation(s)
- Ya Lv
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Jun Chen
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Mengjiao Zhu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yishan Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Xiaoyuan Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin Xiao
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Nana Yuyama
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| | - Fengxia Liu
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongwei Cai
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural University; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, MOE; Beijing, 100193, China
- College of Grassland Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi, 329-2742, Japan
| |
Collapse
|
2
|
Mengistie E, Alayat AM, Sotoudehnia F, Bokros N, DeBolt S, McDonald AG. Evaluation of Cell Wall Chemistry of Della and Its Mutant Sweet Sorghum Stalks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1689-1703. [PMID: 35099962 DOI: 10.1021/acs.jafc.1c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The cell wall compositional (lignin and polysaccharides) variation of two sweet sorghum varieties, Della (D) and its variant REDforGREEN (RG), was evaluated at internodes (IN) and nodes (N) using high-performance liquid chromatography (HPLC), pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), X-ray diffraction (XRD), and two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR). The stalks were grown in 2018 (D1 and RG1) and 2019 (D2 and RG2) seasons. In RG1, Klason lignin reductions by 16-44 and 2-26% were detected in IN and N, respectively. The analyses also revealed that lignin from the sorghum stalks was enriched in guaiacyl units and the syringyl/guaiacyl ratio was increased in RG1 and RG2, respectively, by 96% and more than 2-fold at IN and 61 and 23% at N. The glucan content was reduced by 23-27% for RG1 and by 17-22% for RG2 at internodes. Structural variations due to changes in both cellulose- and hemicellulose-based sugars were detected. The nonacylated and γ-acylated β-O-4 linkages were the main interunit linkages detected in lignin. These results indicate compositional variation of stalks due to the RG variation, and the growing season could influence their mechanical and lodging behavior.
Collapse
Affiliation(s)
- Endalkachew Mengistie
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Abdulbaset M Alayat
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Farid Sotoudehnia
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| | - Norbert Bokros
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Seth DeBolt
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Armando G McDonald
- Renewable Materials Program, Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho 83844-1132, United States
| |
Collapse
|
3
|
Balasubramanian VK, Dampanaboina L, Cobos CJ, Yuan N, Xin Z, Mendu V. Induced secretion system mutation alters rhizosphere bacterial composition in Sorghum bicolor (L.) Moench. PLANTA 2021; 253:33. [PMID: 33459875 PMCID: PMC7813745 DOI: 10.1007/s00425-021-03569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
A novel inducible secretion system mutation in Sorghum named Red root has been identified. The mutant plant root exudes pigmented compounds that enriches Actinobacteria in its rhizosphere compared to BTx623. Favorable plant-microbe interactions in the rhizosphere positively influence plant growth and stress tolerance. Sorghum bicolor, a staple biomass and food crop, has been shown to selectively recruit Gram-positive bacteria (Actinobacteria) in its rhizosphere under drought conditions to enhance stress tolerance. However, the genetic/biochemical mechanism underlying the selective enrichment of specific microbial phyla in the sorghum rhizosphere is poorly known due to the lack of available mutants with altered root secretion systems. Using a subset of sorghum ethyl methanesulfonate (EMS) mutant lines, we have isolated a novel Red root (RR) mutant with an increased accumulation and secretion of phenolic compounds in roots. Genetic analysis showed that RR is a single dominant mutation. We further investigated the effect of root-specific phenolic compounds on rhizosphere microbiome composition under well-watered and water-deficit conditions. The microbiome diversity analysis of the RR rhizosphere showed that Actinobacteria were enriched significantly under the well-watered condition but showed no significant change under the water-deficit condition. BTx623 rhizosphere showed a significant increase in Actinobacteria under the water-deficit condition. Overall, the rhizosphere of RR genotype retained a higher bacterial diversity and richness relative to the rhizosphere of BTx623, especially under water-deficit condition. Therefore, the RR mutant provides an excellent genetic resource for rhizosphere-microbiome interaction studies as well as to develop drought-tolerant lines. Identification of the RR gene and the molecular mechanism through which the mutant selectively enriches microbial populations in the rhizosphere will be useful in designing strategies for improving sorghum productivity and stress tolerance.
Collapse
Affiliation(s)
- Vimal Kumar Balasubramanian
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | | | - Christopher Joseph Cobos
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Ning Yuan
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | | | - Venugopal Mendu
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| |
Collapse
|
4
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Ligaba-Osena A, DiMarco K, Richard TL, Hankoua B. The Maize Corngrass1 miRNA-Regulated Developmental Alterations Are Restored by a Bacterial ADP-Glucose Pyrophosphorylase in Transgenic Tobacco. Int J Genomics 2018; 2018:8581258. [PMID: 30356416 PMCID: PMC6178181 DOI: 10.1155/2018/8581258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Crop-based bioethanol has raised concerns about competition with food and feed supplies, and technologies for second- and third-generation biofuels are still under development. Alternative feedstocks could fill this gap if they can be converted to biofuels using current sugar- or starch-to-ethanol technologies. The aim of this study was to enhance carbohydrate accumulation in transgenic Nicotiana benthamiana by simultaneously expressing the maize Corngrass1 miRNA (Cg1) and E. coli ADP-glucose pyrophosphorylase (glgC), both of which have been reported to enhance carbohydrate accumulation in planta. Our findings revealed that expression of Cg1 alone increased shoot branching, delayed flowering, reduced flower organ size, and induced loss of fertility. These changes were fully restored by coexpressing Escherichia coli glgC. The transcript level of miRNA156 target SQUAMOSA promoter binding-like (SPL) transcription factors was suppressed severely in Cg1-expressing lines as compared to the wild type. Expression of glgC alone or in combination with Cg1 enhanced biomass yield and total sugar content per plant, suggesting the potential of these genes in improving economically important biofuel feedstocks. A possible mechanism of the Cg1 phenotype is discussed. However, a more detailed study including genome-wide transcriptome and metabolic analysis is needed to determine the underlying genetic elements and pathways regulating the observed developmental and metabolic changes.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| | - Kay DiMarco
- 2217 Earth and Engineering Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Tom L. Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 132 Land and Water Research Building, PA 16802, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
6
|
Whole-Genome Sequence Accuracy Is Improved by Replication in a Population of Mutagenized Sorghum. G3-GENES GENOMES GENETICS 2018; 8:1079-1094. [PMID: 29378822 PMCID: PMC5844295 DOI: 10.1534/g3.117.300301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accurate detection of induced mutations is critical for both forward and reverse genetics studies. Experimental chemical mutagenesis induces relatively few single base changes per individual. In a complex eukaryotic genome, false positive detection of mutations can occur at or above this mutagenesis rate. We demonstrate here, using a population of ethyl methanesulfonate (EMS)-treated Sorghum bicolor BTx623 individuals, that using replication to detect false positive-induced variants in next-generation sequencing (NGS) data permits higher throughput variant detection with greater accuracy. We used a lower sequence coverage depth (average of 7×) from 586 independently mutagenized individuals and detected 5,399,493 homozygous single nucleotide polymorphisms (SNPs). Of these, 76% originated from only 57,872 genomic positions prone to false positive variant calling. These positions are characterized by high copy number paralogs where the error-prone SNP positions are at copies containing a variant at the SNP position. The ability of short stretches of homology to generate these error-prone positions suggests that incompletely assembled or poorly mapped repeated sequences are one driver of these error-prone positions. Removal of these false positives left 1,275,872 homozygous and 477,531 heterozygous EMS-induced SNPs, which, congruent with the mutagenic mechanism of EMS, were >98% G:C to A:T transitions. Through this analysis, we generated a collection of sequence indexed mutants of sorghum. This collection contains 4035 high-impact homozygous mutations in 3637 genes and 56,514 homozygous missense mutations in 23,227 genes. Each line contains, on average, 2177 annotated homozygous SNPs per genome, including seven likely gene knockouts and 96 missense mutations. The number of mutations in a transcript was linearly correlated with the transcript length and also the G+C count, but not with the GC/AT ratio. Analysis of the detected mutagenized positions identified CG-rich patches, and flanking sequences strongly influenced EMS-induced mutation rates. This method for detecting false positive-induced mutations is generally applicable to any organism, is independent of the choice of in silico variant-calling algorithm, and is most valuable when the true mutation rate is likely to be low, such as in laboratory-induced mutations or somatic mutation detection in medicine.
Collapse
|
7
|
Ligaba-Osena A, Hankoua B, DiMarco K, Pace R, Crocker M, McAtee J, Nagachar N, Tien M, Richard TL. Reducing biomass recalcitrance by heterologous expression of a bacterial peroxidase in tobacco (Nicotiana benthamiana). Sci Rep 2017; 7:17104. [PMID: 29213132 PMCID: PMC5719049 DOI: 10.1038/s41598-017-16909-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Commercial scale production of biofuels from lignocellulosic feed stocks has been hampered by the resistance of plant cell walls to enzymatic conversion, primarily owing to lignin. This study investigated whether DypB, the lignin-degrading peroxidase from Rodococcus jostii, depolymerizes lignin and reduces recalcitrance in transgenic tobacco (Nicotiana benthamiana). The protein was targeted to the cytosol or the ER using ER-targeting and retention signal peptides. For each construct, five independent transgenic lines were characterized phenotypically and genotypically. Our findings reveal that expression of DypB in the cytosol and ER does not affect plant development. ER-targeting increased protein accumulation, and extracts from transgenic leaves showed higher activity on classic peroxidase substrates than the control. Intriguingly, in situ DypB activation and subsequent saccharification released nearly 200% more fermentable sugars from transgenic lines than controls, which were not explained by variation in initial structural and non-structural carbohydrates and lignin content. Pyrolysis-GC-MS analysis showed more reduction in the level of lignin associated pyrolysates in the transgenic lines than the control primarily when the enzyme is activated prior to pyrolysis, consistent with increased lignin degradation and improved saccharification. The findings reveal for the first time that accumulation and in situ activation of a peroxidase improves biomass digestibility.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE, 19901, USA.
| | - Kay DiMarco
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| | - Robert Pace
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Mark Crocker
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY, 40511, USA
| | - Jesse McAtee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Nivedita Nagachar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Ming Tien
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 305 South Frear Laboratory, University Park, Pennsylvania, PA, 16802, USA
| | - Tom L Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 111 Research Unit A, University Park, Pennsylvania, PA, 16802, USA
| |
Collapse
|
8
|
Prathyusha N, Kamesh R, Rani KY, Sumana C, Sridhar S, Prakasham RS, Yashwanth VVN, Sheelu G, Kumar MP. Modelling of pretreatment and saccharification with different feedstocks and kinetic modeling of sorghum saccharification. BIORESOURCE TECHNOLOGY 2016; 221:550-559. [PMID: 27686723 DOI: 10.1016/j.biortech.2016.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Experiments have been performed for pretreatment of sorghum, wheat straw and bamboo through high temperature alkali pretreatment with different alkaline loading and temperatures, and the data on extent of delignification in terms of the final compositions of cellulose, hemicellulose and lignin have been generated. Further, enzymatic saccharification has been carried out in all the cases to find the extent of conversion possible after 72h. The effect of different operating parameters on the extent of delignification and cellulose conversion are evaluated. This data is employed to develop a generalized multi-feedstock and individual feedstock based models which can be used to determine the extent of delignification and cellulose conversion for any and specific biomass respectively with alkaline pretreatment and similar enzyme conditions as considered in the present study. Also, a kinetic model is developed and validated for sorghum for cellulosic conversion.
Collapse
Affiliation(s)
- N Prathyusha
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Reddi Kamesh
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - K Yamuna Rani
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | - C Sumana
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - S Sridhar
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - R S Prakasham
- Bioengineering and Environmental Sciences Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - V V N Yashwanth
- Bioengineering and Environmental Sciences Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - G Sheelu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - M Pradeep Kumar
- Chemical Engineering Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| |
Collapse
|
9
|
Rai KM, Thu SW, Balasubramanian VK, Cobos CJ, Disasa T, Mendu V. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop. FRONTIERS IN PLANT SCIENCE 2016; 7:1287. [PMID: 27630645 PMCID: PMC5006623 DOI: 10.3389/fpls.2016.01287] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
Biomass based alternative fuels offer a solution to the world's ever-increasing energy demand. With the ability to produce high biomass in marginal lands with low inputs, sorghum has a great potential to meet second-generation biofuel needs. Despite the sorghum crop importance in biofuel and fodder industry, there is no comprehensive information available on the cell wall related genes and gene families (biosynthetic and modification). It is important to identify the cell wall related genes to understand the cell wall biosynthetic process as well as to facilitate biomass manipulation. Genome-wide analysis using gene family specific Hidden Markov Model of conserved domains identified 520 genes distributed among 20 gene families related to biosynthesis/modification of various cell wall polymers such as cellulose, hemicellulose, pectin, and lignin. Chromosomal localization analysis of these genes revealed that about 65% of cell wall related genes were confined to four chromosomes (Chr. 1-4). Further, 56 tandem duplication events involving 169 genes were identified in these gene families which could be associated with expansion of genes within families in sorghum. Additionally, we also identified 137 Simple Sequence Repeats related to 112 genes and target sites for 10 miRNAs in some important families such as cellulose synthase, cellulose synthase-like, and laccases, etc. To gain further insight into potential functional roles, expression analysis of these gene families was performed using publically available data sets in various tissues and under abiotic stress conditions. Expression analysis showed tissue specificity as well as differential expression under abiotic stress conditions. Overall, our study provides a comprehensive information on cell wall related genes families in sorghum which offers a valuable resource to develop strategies for altering biomass composition by plant breeding and genetic engineering approaches.
Collapse
Affiliation(s)
- Krishan M. Rai
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Sandi W. Thu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Vimal K. Balasubramanian
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Christopher J. Cobos
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Tesfaye Disasa
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
- National Agricultural Biotechnology Research Center, Ethiopian Institute of Agricultural ResearchAddis Ababa, Ethiopia
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
- *Correspondence: Venugopal Mendu
| |
Collapse
|
10
|
Mizuno H, Kasuga S, Kawahigashi H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:127. [PMID: 27330561 PMCID: PMC4912755 DOI: 10.1186/s13068-016-0546-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND SWEET is a newly identified family of sugar transporters. Although SWEET transporters have been characterized by using Arabidopsis and rice, very little knowledge of sucrose accumulation in the stem region is available, as these model plants accumulate little sucrose in their stems. To elucidate the expression of key SWEET genes involved in sucrose accumulation of sorghum, we performed transcriptome profiling by RNA-seq, categorization using phylogenetic trees, analysis of chromosomal synteny, and comparison of amino acid sequences between SIL-05 (a sweet sorghum) and BTx623 (a grain sorghum). RESULTS We identified 23 SWEET genes in the sorghum genome. In the leaf, SbSWEET8-1 was highly expressed and was grouped in the same clade as AtSWEET11 and AtSWEET12 that play a role in the efflux of photosynthesized sucrose. The key genes in sucrose synthesis (SPS3) and that in another step of sugar transport (SbSUT1 and SbSUT2) were also highly expressed, suggesting that sucrose is newly synthesized and actively exported from the leaf. In the stem, SbSWEET4-3 was uniquely highly expressed. SbSWEET4-1, SbSWEET4-2, and SbSWEET4-3 were categorized into the same clade, but their tissue specificities were different, suggesting that SbSWEET4-3 is a sugar transporter with specific roles in the stem. We found a putative SWEET4-3 ortholog in the corresponding region of the maize chromosome, but not the rice chromosome, suggesting that SbSWEET4-3 was copied after the branching of sorghum and maize from rice. In the panicle from the heading through to 36 days afterward, SbSWEET2-1 and SbSWEET7-1 were expressed and grouped in the same clade as rice OsSWEET11/Xa13 that is essential for seed development. SbSWEET9-3 was highly expressed in the panicle only just after heading and was grouped into the same clade as AtSWEET8/RPG1 that is essential for pollen viability. Five of 23 SWEET genes had SNPs that caused nonsynonymous amino acid substitutions between SIL-05 and BTx623. CONCLUSIONS We determined the key SWEET genes for technological improvement of sorghum in the production of biofuels: SbSWEET8-1 for efflux of sucrose from the leaf; SbSWEET4-3 for unloading sucrose from the phloem in the stem; SbSWEET2-1 and SbSWEET7-1 for seed development; SbSWEET9-3 for pollen nutrition.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- />Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- />Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Owashi, Tsukuba, Ibaraki 305-8602 Japan
| | - Shigemitsu Kasuga
- />Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Nagano, 399-4598 Japan
| | - Hiroyuki Kawahigashi
- />Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- />Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Owashi, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
11
|
Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts. ENERGIES 2015. [DOI: 10.3390/en8087654] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Anami SE, Zhang L, Xia Y, Zhang Y, Liu Z, Jing H. Sweet sorghum ideotypes: genetic improvement of the biofuel syndrome. Food Energy Secur 2015. [DOI: 10.1002/fes3.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sylvester Elikana Anami
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Institute of Biotechnology Research Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
| | - Li‐Min Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yan Xia
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yu‐Miao Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Zhi‐Quan Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Hai‐Chun Jing
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
13
|
Mizuno H, Yazawa T, Kasuga S, Sawada Y, Ogata J, Ando T, Kanamori H, Yonemaru JI, Wu J, Hirai MY, Matsumoto T, Kawahigashi H. Expression level of a flavonoid 3'-hydroxylase gene determines pathogen-induced color variation in sorghum. BMC Res Notes 2014; 7:761. [PMID: 25346182 PMCID: PMC4219097 DOI: 10.1186/1756-0500-7-761] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
Background Sorghum (Sorghum bicolor L. Moench) accumulates 3-deoxyanthocyanidins and exhibits orange to purple coloration on parts of the leaf in response to infection with the fungus Bipolaris sorghicola. We aimed to identify the key genes determining this color variation. Results Sorghum populations derived from Nakei-MS3B and M36001 accumulated apigeninidin, or both apigeninidin and luteolinidin, in different proportions in lesions caused by B. sorghicola infection, suggesting that the relative proportions of the two 3-deoxyanthocyanidins determine color variation. QTL analysis and genomic sequencing indicated that two closely linked loci on chromosome 4, containing the flavonoid 3′-hydroxylase (F3′H) and Tannin1 (Tan1) genes, were responsible for the lesion color variation. The F3′H locus in Nakei-MS3B had a genomic deletion resulting in the fusion of two tandemly arrayed F3′H genes. The recessive allele at the Tan1 locus derived from M36001 had a genomic insertion and encoded a non-functional WD40 repeat transcription factor. Whole-mRNA sequencing revealed that expression of the fused F3′H gene was conspicuously induced in purple sorghum lines. The levels of expression of F3′H matched the relative proportions of apigeninidin and luteolinidin. Conclusions Expression of F3′H is responsible for the synthesis of luteolinidin; the expression level of this gene is therefore critical in determining color variation in sorghum leaves infected with B. sorghicola. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-761) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- National Institute of Agrobiological Sciences, Agrogenomics Research Center, 1-2, Kannondai 2-chome, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
da Costa RMF, Lee SJ, Allison GG, Hazen SP, Winters A, Bosch M. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. ANNALS OF BOTANY 2014; 114:1265-77. [PMID: 24737720 PMCID: PMC4195551 DOI: 10.1093/aob/mcu054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/25/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. METHODS Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. KEY RESULTS Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. CONCLUSIONS It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass samples, and sample variability could be mostly due to varying tissue contributions to total biomass.
Collapse
Affiliation(s)
- Ricardo M F da Costa
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Scott J Lee
- Biology Department, University of Massachusetts, Amherst, MA, USA Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Gordon G Allison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, USA
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| |
Collapse
|
15
|
Chen HZ, Liu ZH, Dai SH. A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:53. [PMID: 24713041 PMCID: PMC3998520 DOI: 10.1186/1754-6834-7-53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/20/2014] [Indexed: 05/15/2023]
Abstract
BACKGROUND Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. RESULTS TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. CONCLUSIONS SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass.
Collapse
Affiliation(s)
- Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shu-Hua Dai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Petti C, Kushwaha R, Tateno M, Harman-Ware AE, Crocker M, Awika J, Debolt S. Mutagenesis breeding for increased 3-deoxyanthocyanidin accumulation in leaves of Sorghum bicolor (L.) Moench: a source of natural food pigment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1227-1232. [PMID: 24460064 DOI: 10.1021/jf405324j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Natural food colorants with functional properties are of increasing interest. Prior papers indicate the chemical suitability of sorghum leaf 3-deoxyanthocyanidins as natural food colorants. Via mutagenesis-assisted breeding, a sorghum variety that greatly overaccumulates 3-deoxyanthocyanidins of leaf tissue, named REDforGREEN (RG), has been isolated and characterized. Interestingly, RG not only caused increased 3-deoxyanthocyanidins but also caused increased tannins, chlorogenic acid, and total phenolics in the leaf tissue. Chemical composition of pigments was established through high-performance liquid chromatography (HPLC) that identified luteolinidin (LUT) and apigeninidin (APG) as the main 3-deoxyanthocianidin species. Specifically, 3-deoxyanthocianidin levels were 1768 μg g⁻¹ LUT and 421 μg g⁻¹ APG in RG leaves compared with trace amounts in wild type, representing 1000-fold greater levels in the mutant leaves. Thus, RG represents a useful sorghum mutagenesis variant to develop as a functionalized food colorant.
Collapse
Affiliation(s)
- Carloalberto Petti
- Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, Kentucky 40546, United States
| | | | | | | | | | | | | |
Collapse
|