1
|
Devi NB, Pakshirajan K. Diversifying product portfolio of syngas fermentation in addition to ethanol production by using Clostridium species. BIORESOURCE TECHNOLOGY 2025; 427:132401. [PMID: 40090495 DOI: 10.1016/j.biortech.2025.132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
This study explores the impact of syngas, a mixture of CO (carbon monoxide), CO2 (carbon dioxide) and H2 (hydrogen), composition on production of ethanol and other metabolites by using various Clostridia. Clostridium carboxidivorans, Clostridium ljungdahlii, and Clostridium ragsdalei were examined to convert CO-rich syngas into ethanol and other valuable products, and C. carboxidivorans was shown to produce maximum ethanol at a high initial CO concentration (80 % CO: 10 % CO2: 10 % H2). In addition, other C2-C6 compounds, viz. lactate, propionate, butyrate, 2,3-butanediol, butanol, isovalerate, hexanol, were produced by C. carboxidivorans, C. ljungdahlii, and C. ragsdalei, indicating diversified product formation through the Wood-Ljungdahl pathway. Modified Gompertz and Logistic models were successfully applied to describe the kinetics of cell growth and ethanol production by Clostridia via syngas fermentation. The findings emphasize optimization of syngas composition for maximum production of ethanol and other valuable biochemicals, providing a sustainable approach to biofuels and bioproduct production.
Collapse
Affiliation(s)
- Naorem Bela Devi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
2
|
Zhang JZ, Li YZ, Xi ZN, Zhang Y, Liu ZY, Ma XQ, Li FL. Inducible promoters of bacterial microcompartments improve the CRISPR/Cas9 tools for efficient metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 2025; 91:e0218324. [PMID: 40135905 PMCID: PMC12016505 DOI: 10.1128/aem.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Clostridium ljungdahlii, as a model acetogen strain, represents a novel platform for biotechnological production for CO2 fixation. The genome of C. ljungdahlii harbors two gene loci associated with glycyl radical enzyme-associated microcompartments (GRMs), which are predicted to play essential roles in choline and 1,2-propanediol (1,2-PD) metabolism. This study validated the functions of these GRM loci and identified two inducible promoters, of which Pcholine1 was induced by choline, while P1,2-PD was induced by 1,2-PD. Subsequently, the highly expressed P1,2-PD and tightly controlled Pcholine1 were applied to improve CRISPR/Cas9 gene editing tools. Specifically, P1,2-PD was used to develop a highly efficient gene knockout tool based on an all-in-one plasmid, achieving 100% deletion efficiency for multiple genes, including pyrE, pduS, aor2, and eutT. On the other hand, the cas9 gene was integrated downstream of Pcholine1 into the genome. The integrated cas9 efficiently mediated gene editing in C. ljungdahlii by introducing plasmids containing a gRNA cassette along with the relevant homology arms. This was exemplified by the construction of the Δbdh::pdc strain, where the 2,3-butanediol dehydrogenase gene was replaced with a pyruvate decarboxylase gene from Zymomonas mobilis and the 3-HB Syn KI strain, in which an artificial 3-hydroxybutyric acid synthesis pathway was inserted into the genome. This study highlights the effectiveness and convenience of the inducible CRISPR/Cas9 gene editing systems, thereby enriching the CRISPR/Cas toolkit in acetogens. IMPORTANCE A CRISPR/Cas9 genetic tool controlled by a constitutive promoter has been developed for precise gene deletion in Clostridium ljungdahlii. However, its efficiency was hindered by the toxicity resulting from the constitutive expression of cas9 and the large plasmids, leading to a low overall success rate. Inducible promoters, which allow for the transcription of target genes to be switched on and off in the presence or absence of inducers, have a broad range of applications. In this study, we identify two inducible promoters and apply them to enhance the CRISPR/Cas9 tools. The improved CRISPR/Cas9 tools facilitate gene editing with high efficiency, potentially playing significant roles in advancing genetic research and metabolic engineering of C. ljungdahlii.
Collapse
Affiliation(s)
- Jun-Zhe Zhang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Zhen Li
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ning Xi
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yue Zhang
- Haide College, Ocean University of China, Qingdao, China
| | - Zi-Yong Liu
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Qing Ma
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fu-Li Li
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong C1 Refinery Engineering Research Center, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
3
|
Ingelman H, Heffernan JK, Valgepea K. Adaptive laboratory evolution for improving acetogen gas fermentation. Curr Opin Biotechnol 2025; 93:103305. [PMID: 40267600 DOI: 10.1016/j.copbio.2025.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Gas fermentation using acetogens can help humankind transition from petroleum-based industries to more sustainable alternatives. Acetogens are a unique set of organisms that efficiently convert carbon oxide waste gases into chemicals, such as ethanol and acetate. While acetogens are already used in commercially operated bioprocess facilities, the field is still affected by challenging genetic manipulation workflows and a developing knowledge of acetogen metabolism. Adaptive laboratory evolution (ALE) can uniquely contribute here, through evolution of organisms guided by synthetically created niches, which delivers strains with industrially relevant phenotypes and helps to resolve genotype-phenotype relationships. Here, we review the expanding use of ALE for acetogens, showcasing results regarding fundamental understanding of acetogens and improvement of phenotypes - faster growth/substrate utilisation, elimination of media components, improving stress tolerance, and improving growth and robustness in bioreactor cultures. These works provide the field with opportunities to further engineer and manipulate acetogen traits for industrial bioprocesses and improve the understanding of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Henri Ingelman
- Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia; ARC Centre of Excellence in Synthetic Biology (CoESB), The University of Queensland, 4072 St. Lucia, Australia
| | - Kaspar Valgepea
- Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
4
|
Alsaiari AA. Recent advances in the methods and clinical applications of next-generation sequencing in genomic profiling and precision cancer therapy. EXCLI JOURNAL 2025; 24:15-33. [PMID: 39967910 PMCID: PMC11830917 DOI: 10.17179/excli2024-7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 02/20/2025]
Abstract
Cancer is a major cause of death worldwide. Next-generation sequencing (NGS) has dramatically increased the sequencing data output and transformed biomedical investigations. NGS enables the generations of genetic data specific to patients from tumor tissue samples so that targeted therapies can be used. The obtained data further allows the prioritization of effective therapies based on the tumor-specific genotype. Practitioners in the field of clinical genomics can make the best use of testing facilities while lessening the possible off-targets by choosing a priori gene set. Therefore, targeted sequencing has arisen as a more affordable technique for the genomic profiling of tumors. Drug resistance is commonly observed in cancer because of mutations. Thus, precise genetic and molecular profiling of tumors ought to be routinely done prior to the use of targeted therapy or precision cancer therapy. NGS already has the capacity to ameliorate genetic screening in families with previous histories of the high occurrence of various cancer-associated genes, including TP53, APC, BRCA2, and BRCA1. By using NGS system, researchers detected increased variants in cancer cells with greater specificity and sensitivity than conventional diagnostic approaches, which suggest the potential of NGS in diagnosis. The field of precision cancer therapy is continuously growing and because of their specificity at the molecular level has improved the management and treatment of numerous cancers. These therapies are less toxic and more efficient compared to conventional chemotherapies used in cancer treatment. The field of precision cancer therapy is likely to significantly expand as NGS system advances. This review provides extensive information regarding current advances in the NGS field in terms of methods, clinical applications, genomic profiling, and the role of NGS of precision cancer therapy.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Ingelman H, Heffernan JK, Harris A, Brown SD, Shaikh KM, Saqib AY, Pinheiro MJ, de Lima LA, Martinez KR, Gonzalez-Garcia RA, Hawkins G, Daleiden J, Tran L, Zeleznik H, Jensen RO, Reynoso V, Schindel H, Jänes J, Simpson SD, Köpke M, Marcellin E, Valgepea K. Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness. N Biotechnol 2024; 83:1-15. [PMID: 38871051 DOI: 10.1016/j.nbt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
Collapse
Affiliation(s)
- Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - James K Heffernan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | - Asfand Yar Saqib
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Marina J Pinheiro
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia
| | - Karen Rodriguez Martinez
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | - Ricardo A Gonzalez-Garcia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia
| | | | | | | | | | | | | | | | - Jürgen Jänes
- Institute of Molecular Systems Biology, ETH Zürich, 8049 Zürich, Switzerland
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 St. Lucia, Australia.
| | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Bioengineering, University of Tartu, 50411 Tartu, Estonia.
| |
Collapse
|
6
|
Im C, Kim M, Kim JR, Valgepea K, Modin O, Nygård Y, Franzén CJ. Low electric current in a bioelectrochemical system facilitates ethanol production from CO using CO-enriched mixed culture. Front Microbiol 2024; 15:1438758. [PMID: 39268540 PMCID: PMC11390636 DOI: 10.3389/fmicb.2024.1438758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Fossil resources must be replaced by renewable resources in production systems to mitigate green-house gas emissions and combat climate change. Electro-fermentation utilizes a bioelectrochemical system (BES) to valorize industrial and municipal waste. Current electro-fermentation research is mainly focused on microbial electrosynthesis using CO2 for producing commodity chemicals and replacing petroleum-based infrastructures. However, slow production rates and low titers of metabolites during CO2-based microbial electrosynthesis impede its implementation to the real application in the near future. On the other hand, CO is a highly reactive gas and an abundant feedstock discharged from fossil fuel-based industry. Here, we investigated CO and CO2 electro-fermentation, using a CO-enriched culture. Fresh cow fecal waste was enriched under an atmosphere of 50% CO and 20% CO2 in N2 using serial cultivation. The CO-enriched culture was dominated by Clostridium autoethanogenum (≥89%) and showed electro-activity in a BES reactor with CO2 sparging. When 50% CO was included in the 20% CO2 gas with 10 mA applied current, acetate and ethanol were produced up to 12.9 ± 2.7 mM and 2.7 ± 1.1 mM, respectively. The coulombic efficiency was estimated to 148% ± 8% without an electron mediator. At 25 mA, the culture showed faster initial growth and acetate production but no ethanol production, and only at 86% ± 4% coulombic efficiency. The maximum optical density (OD) of 10 mA and 25 mA reactors were 0.29 ± 0.07 and 0.41 ± 0.03, respectively, whereas it was 0.77 ± 0.19 without electric current. These results show that CO electro-fermentation at low current can be an alternative way of valorizing industrial waste gas using a bioelectrochemical system.
Collapse
Affiliation(s)
- Chaeho Im
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Minsoo Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Kaspar Valgepea
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
7
|
Feng R, Wang H, Zhang X, Li T, Huang C, Zhang S, Sun M, Shi C, Hu J, Gou J. Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis. Sci Rep 2024; 14:18326. [PMID: 39112526 PMCID: PMC11306238 DOI: 10.1038/s41598-024-67510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.
Collapse
Affiliation(s)
- Ruichao Feng
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China.
| | - Xinghong Zhang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550081, People's Republic of China
| | - Tong Li
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Chunyang Huang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Meili Sun
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jingrong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China.
| |
Collapse
|
8
|
Wan S, Lai M, Gao X, Zhou M, Yang S, Li Q, Li F, Xia L, Tan Y. Recent progress in engineering Clostridium autoethanogenum to synthesize the biochemicals and biocommodities. Synth Syst Biotechnol 2024; 9:19-25. [PMID: 38205027 PMCID: PMC10776380 DOI: 10.1016/j.synbio.2023.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Excessive mining and utilization fossil fuels has led to drastic environmental consequences, which will contribute to global warming and cause further climate change with severe consequences for the human population. The magnitude of these challenges requires several approaches to develop sustainable alternatives for chemicals and fuels production. In this context, biological processes, mainly microbial fermentation, have gained particular interest. For example, autotrophic gas-fermenting acetogenic bacteria are capable of converting CO, CO2 and H2 into biomass and multiple metabolites through Wood-Ljungdahl pathway, which can be exploited for large-scale fermentation processes to sustainably produce bulk biochemicals and biofuels (e.g. acetate and ethanol) from syngas. Clostridium autoethanogenum is one representative of these chemoautotrophic bacteria and considered as the model for the gas fermentation. Recently, the development of synthetic biology toolbox for this strain has enabled us to study and genetically improve their metabolic capability in gas fermentation. In this review, we will summarize the recent progress involved in the understanding of physiological mechanism and strain engineering for C. autoethanogenum, and provide our perspectives on the future development about the basic biology and engineering biology of this strain.
Collapse
Affiliation(s)
- Sai Wan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Mingchi Lai
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xinyu Gao
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Mingxin Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China
- Shenzhen Powered Carbon Biotechnology Co., Ltd, Shenzhen, 518055, China
| | - Song Yang
- School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Fuli Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Lin Xia
- Shenzhen Powered Carbon Biotechnology Co., Ltd, Shenzhen, 518055, China
| | - Yang Tan
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| |
Collapse
|
9
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Nwaokorie UJ, Reinmets K, de Lima LA, Pawar PR, Shaikh KM, Harris A, Köpke M, Valgepea K. Deletion of genes linked to the C 1-fixing gene cluster affects growth, by-products, and proteome of Clostridium autoethanogenum. Front Bioeng Biotechnol 2023; 11:1167892. [PMID: 37265994 PMCID: PMC10230548 DOI: 10.3389/fbioe.2023.1167892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Gas fermentation has emerged as a sustainable route to produce fuels and chemicals by recycling inexpensive one-carbon (C1) feedstocks from gaseous and solid waste using gas-fermenting microbes. Currently, acetogens that utilise the Wood-Ljungdahl pathway to convert carbon oxides (CO and CO2) into valuable products are the most advanced biocatalysts for gas fermentation. However, our understanding of the functionalities of the genes involved in the C1-fixing gene cluster and its closely-linked genes is incomplete. Here, we investigate the role of two genes with unclear functions-hypothetical protein (hp; LABRINI_07945) and CooT nickel binding protein (nbp; LABRINI_07950)-directly adjacent and expressed at similar levels to the C1-fixing gene cluster in the gas-fermenting model-acetogen Clostridium autoethanogenum. Targeted deletion of either the hp or nbp gene using CRISPR/nCas9, and phenotypic characterisation in heterotrophic and autotrophic batch and autotrophic bioreactor continuous cultures revealed significant growth defects and altered by-product profiles for both ∆hp and ∆nbp strains. Variable effects of gene deletion on autotrophic batch growth on rich or minimal media suggest that both genes affect the utilisation of complex nutrients. Autotrophic chemostat cultures showed lower acetate and ethanol production rates and higher carbon flux to CO2 and biomass for both deletion strains. Additionally, proteome analysis revealed that disruption of either gene affects the expression of proteins of the C1-fixing gene cluster and ethanol synthesis pathways. Our work contributes to a better understanding of genotype-phenotype relationships in acetogens and offers engineering targets to improve carbon fixation efficiency in gas fermentation.
Collapse
Affiliation(s)
- Ugochi Jennifer Nwaokorie
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Pratik Rajendra Pawar
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
11
|
Allaart MT, Diender M, Sousa DZ, Kleerebezem R. Overflow metabolism at the thermodynamic limit of life: How carboxydotrophic acetogens mitigate carbon monoxide toxicity. Microb Biotechnol 2023; 16:697-705. [PMID: 36632026 PMCID: PMC10034630 DOI: 10.1111/1751-7915.14212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Carboxydotrophic metabolism is gaining interest due to its applications in gas fermentation technology, enabling the conversion of carbon monoxide to fuels and commodities. Acetogenic carboxydotrophs play a central role in current gas fermentation processes. In contrast to other energy-rich microbial substrates, CO is highly toxic, which makes it a challenging substrate to utilize. Instantaneous scavenging of CO upon entering the cell is required to mitigate its toxicity. Experiments conducted with Clostridium autoethanogenum at different biomass-specific growth rates show that elevated ethanol production occurs at increasing growth rates. The increased allocation of electrons towards ethanol at higher growth rates strongly suggests that C. autoethanogenum employs a form of overflow metabolism to cope with high dissolved CO concentrations. We argue that this overflow branch enables acetogens to efficiently use CO at highly variable substrate influxes by increasing the conversion rate almost instantaneously when required to remove toxic substrate and promote growth. In this perspective, we will address the case study of C. autoethanogenum grown solely on CO and syngas mixtures to assess how it employs acetate reduction to ethanol as a form of overflow metabolism.
Collapse
Affiliation(s)
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
12
|
de Lima LA, Reinmets K, Nielsen LK, Marcellin E, Harris A, Köpke M, Valgepea K. RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium. Microbiol Spectr 2022; 10:e0230322. [PMID: 35894617 PMCID: PMC9431689 DOI: 10.1128/spectrum.02303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Transcriptome analysis via RNA sequencing (RNA-seq) has become a standard technique employed across various biological fields of study. The rapid adoption of the RNA-seq approach has been mediated, in part, by the development of different commercial RNA-seq library preparation kits compatible with standard next-generation sequencing (NGS) platforms. Generally, the essential steps of library preparation, such as rRNA depletion and first-strand cDNA synthesis, are tailored to a specific group of organisms (e.g., eukaryotes versus prokaryotes) or genomic GC content. Therefore, the selection of appropriate commercial products is of crucial importance to capture the transcriptome of interest as closely to the native state as possible without introduction of technical bias. However, researchers rarely have the resources and time to test various commercial RNA-seq kits for their samples. This work reports a side-by-side comparison of RNA-seq data from Clostridium autoethanogenum obtained using three commercial rRNA removal and strand-specific library construction products of NuGEN Technologies, Qiagen, and Zymo Research and assesses their performance relative to published data. While all three vendors advertise their products as suitable for prokaryotes, we found significant differences in their performance regarding rRNA removal, strand specificity, and most importantly, transcript abundance distribution profiles. Notably, RNA-seq data obtained with Qiagen products were most similar to published data and delivered the best results in terms of library strandedness and transcript abundance distribution range. Our results highlight the importance of finding appropriate organism-specific workflows and library preparation products for RNA-seq studies. IMPORTANCE RNA-seq is a powerful technique for transcriptome profiling while involving elaborate sample processing before library sequencing. We show that RNA-seq library preparation kits can strongly affect the outcome of an RNA-seq experiment. Although library preparation benefits from the availability of various commercial kits, choosing appropriate products for the specific samples can be challenging for new users or for users working with unconventional organisms. Evaluating the performance of different commercial products requires significant financial and time investments infeasible for most researchers. Therefore, users are often guided in their choice of kits by published data involving similar input samples. We conclude that important consideration should be given to selecting sample processing workflows for any given organism.
Collapse
Affiliation(s)
- Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, St. Lucia, Australia
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology, The University of Queensland, St. Lucia, Australia
| | | | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Nogle R, Nagaraju S, Utturkar SM, Giannone RJ, Reynoso V, Leang C, Hettich RL, Mitchell WP, Simpson SD, Jewett MC, Köpke M, Brown SD. Clostridium autoethanogenum isopropanol production via native plasmid pCA replicon. Front Bioeng Biotechnol 2022; 10:932363. [PMID: 36032736 PMCID: PMC9413188 DOI: 10.3389/fbioe.2022.932363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Clostridium autoethanogenum is a model gas-fermenting acetogen for commercial ethanol production. It is also a platform organism being developed for the carbon-negative production of acetone and isopropanol by gas fermentation. We have assembled a 5.5 kb pCA plasmid for type strain DSM10061 (JA1-1) using three genome sequence datasets. pCA is predicted to encode seven open-reading frames and estimated to be a low-copy number plasmid present at approximately 12 copies per chromosome. RNA-seq analyses indicate that pCA genes are transcribed at low levels and two proteins, CAETHG_05090 (putative replication protein) and CAETHG_05115 (hypothetical, a possible Mob protein), were detected at low levels during batch gas fermentations. Thiolase (thlA), CoA-transferase (ctfAB), and acetoacetate decarboxylase (adc) genes were introduced into a vector for isopropanol production in C. autoethanogenum using the native plasmid origin of replication. The availability of the pCA sequence will facilitate studies into its physiological role and could form the basis for genetic tool optimization.
Collapse
Affiliation(s)
| | | | - Sagar M. Utturkar
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | | | | | | | | | | | | | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Simpson Querrey Institute, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
| | | | - Steven D. Brown
- LanzaTech Inc., Skokie, IL, United States
- *Correspondence: Steven D. Brown,
| |
Collapse
|
14
|
Genome-Scale Mining of Acetogens of the Genus Clostridium Unveils Distinctive Traits in [FeFe]- and [NiFe]-Hydrogenase Content and Maturation. Microbiol Spectr 2022; 10:e0101922. [PMID: 35735976 PMCID: PMC9431212 DOI: 10.1128/spectrum.01019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Knowledge of the organizational and functional properties of hydrogen metabolism is pivotal to the construction of a framework supportive of a hydrogen-fueled low-carbon economy. Hydrogen metabolism relies on the mechanism of action of hydrogenases. In this study, we investigated the genomes of several industrially relevant acetogens of the genus Clostridium (C. autoethanogenum, C. ljungdahlii, C. carboxidivorans, C. drakei, C. scatologenes, C. coskatii, C. ragsdalei, C. sp. AWRP) to systematically identify their intriguingly diversified hydrogenases’ repertoire. An entirely computational annotation pipeline unveiled common and strain-specific traits in the functional content of [NiFe]- and [FeFe]-hydrogenases. Hydrogenases were identified and categorized into functionally distinct classes by the combination of sequence homology, with respect to a database of curated nonredundant hydrogenases, with the analysis of sequence patterns characteristic of the mode of action of [FeFe]- and [NiFe]-hydrogenases. The inspection of the genes in the neighborhood of the catalytic subunits unveiled a wide agreement between their genomic arrangement and the gene organization templates previously developed for the predicted hydrogenase classes. Subunits’ characterization of the identified hydrogenases allowed us to glean some insights on the redox cofactor-binding determinants in the diaphorase subunits of the electron-bifurcating [FeFe]-hydrogenases. Finally, the reliability of the inferred hydrogenases was corroborated by the punctual analysis of the maturation proteins necessary for the biosynthesis of [NiFe]- and [FeFe]-hydrogenases. IMPORTANCE Mastering hydrogen metabolism can support a sustainable carbon-neutral economy. Of the many microorganisms metabolizing hydrogen, acetogens of the genus Clostridium are appealing, with some of them already in usage as industrial workhorses. Having provided detailed information on the hydrogenase content of an unprecedented number of clostridial acetogens at the gene level, our study represents a valuable knowledge base to deepen our understanding of hydrogenases’ functional specificity and/or redundancy and to develop a large array of biotechnological processes. We also believe our study could serve as a basis for future strain-engineering approaches, acting at the hydrogenases’ level or at the level of their maturation proteins. On the other side, the wealth of functional elements discussed in relation to the identified hydrogenases is worthy of further investigation by biochemical and structural studies to ultimately lead to the usage of these enzymes as valuable catalysts.
Collapse
|
15
|
Lee H, Bae J, Jin S, Kang S, Cho BK. Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Front Microbiol 2022; 13:865168. [PMID: 35615514 PMCID: PMC9124964 DOI: 10.3389/fmicb.2022.865168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
C1 gases, including carbon dioxide (CO2) and carbon monoxide (CO), are major contributors to climate crisis. Numerous studies have been conducted to fix and recycle C1 gases in order to solve this problem. Among them, the use of microorganisms as biocatalysts to convert C1 gases to value-added chemicals is a promising solution. Acetogenic bacteria (acetogens) have received attention as high-potential biocatalysts owing to their conserved Wood–Ljungdahl (WL) pathway, which fixes not only CO2 but also CO. Although some metabolites have been produced via C1 gas fermentation on an industrial scale, the conversion of C1 gases to produce various biochemicals by engineering acetogens has been limited. The energy limitation of acetogens is one of the challenges to overcome, as their metabolism operates at a thermodynamic limit, and the low solubility of gaseous substrates results in a limited supply of cellular energy. This review provides strategies for developing efficient platform strains for C1 gas conversion, focusing on engineering the WL pathway. Supplying liquid C1 substrates, which can be obtained from CO2, or electricity is introduced as a strategy to overcome the energy limitation. Future prospective approaches on engineering acetogens based on systems and synthetic biology approaches are also discussed.
Collapse
Affiliation(s)
- Hyeonsik Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seulgi Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Byung-Kwan Cho,
| |
Collapse
|
16
|
de Lima LA, Ingelman H, Brahmbhatt K, Reinmets K, Barry C, Harris A, Marcellin E, Köpke M, Valgepea K. Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation. Front Bioeng Biotechnol 2022; 10:879578. [PMID: 35497340 PMCID: PMC9039284 DOI: 10.3389/fbioe.2022.879578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Gas fermentation offers both fossil carbon-free sustainable production of fuels and chemicals and recycling of gaseous and solid waste using gas-fermenting microbes. Bioprocess development, systems-level analysis of biocatalyst metabolism, and engineering of cell factories are advancing the widespread deployment of the commercialised technology. Acetogens are particularly attractive biocatalysts but effects of the key physiological parameter–specific growth rate (μ)—on acetogen metabolism and the gas fermentation bioprocess have not been established yet. Here, we investigate the μ-dependent bioprocess performance of the model-acetogen Clostridium autoethanogenum in CO and syngas (CO + CO2+H2) grown chemostat cultures and assess systems-level metabolic responses using gas analysis, metabolomics, transcriptomics, and metabolic modelling. We were able to obtain steady-states up to μ ∼2.8 day−1 (∼0.12 h−1) and show that faster growth supports both higher yields and productivities for reduced by-products ethanol and 2,3-butanediol. Transcriptomics data revealed differential expression of 1,337 genes with increasing μ and suggest that C. autoethanogenum uses transcriptional regulation to a large extent for facilitating faster growth. Metabolic modelling showed significantly increased fluxes for faster growing cells that were, however, not accompanied by gene expression changes in key catabolic pathways for CO and H2 metabolism. Cells thus seem to maintain sufficient “baseline” gene expression to rapidly respond to CO and H2 availability without delays to kick-start metabolism. Our work advances understanding of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst improves the gas fermentation bioprocess.
Collapse
Affiliation(s)
- Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kush Brahmbhatt
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
- *Correspondence: Kaspar Valgepea,
| |
Collapse
|
17
|
Abstract
Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model acetogen Clostridium autoethanogenum grown autotrophically on three gas mixtures (CO, CO+H2, or CO+CO2+H2). We detect the prioritization of proteome allocation for C1 fixation and the significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are likely relevant in vivo for CO oxidation, H2 metabolism, and ethanol production. The integration of proteomic and metabolic flux data demonstrated that enzymes catalyze high fluxes with high concentrations and high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied by changing enzyme catalytic rates rather than concentrations. IMPORTANCE Acetogen bacteria are important for maintaining biosustainability as they can recycle gaseous C1 waste feedstocks (e.g., industrial waste gases and syngas from gasified biomass or municipal solid waste) into fuels and chemicals. Notably, the acetogen Clostridium autoethanogenum is being used as a cell factory in industrial-scale gas fermentation. Here, we perform reliable absolute proteome quantification for the first time in an acetogen. This is important as our work advances both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of their phenotypes. Furthermore, this absolute proteomics data set serves as a reference toward a better systems-level understanding of the ancient metabolism of acetogens.
Collapse
|
18
|
Metabolic Engineering Interventions for Sustainable 2,3-Butanediol Production in Gas-Fermenting Clostridium autoethanogenum. mSystems 2022; 7:e0111121. [PMID: 35323044 PMCID: PMC9040633 DOI: 10.1128/msystems.01111-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gas fermentation provides a promising platform to turn low-cost and readily available single-carbon waste gases into commodity chemicals, such as 2,3-butanediol. Clostridium autoethanogenum is usually used as a robust and flexible chassis for gas fermentation. Here, we leveraged constraint-based stoichiometric modeling and kinetic ensemble modeling of the C. autoethanogenum metabolic network to provide a systematic in silico analysis of metabolic engineering interventions for 2,3-butanediol overproduction and low carbon substrate loss in dissipated CO2. Our analysis allowed us to identify and to assess comparatively the expected performances for a wide range of single, double, and triple interventions. Our analysis managed to individuate bottleneck reactions in relevant metabolic pathways when suggesting intervening strategies. Besides recapitulating intuitive and/or previously attempted genetic modifications, our analysis neatly outlined that interventions-at least partially-impinging on by-products branching from acetyl coenzyme A (acetyl-CoA) and pyruvate (acetate, ethanol, amino acids) offer valuable alternatives to the interventions focusing directly on the specific branch from pyruvate to 2,3-butanediol. IMPORTANCE Envisioning value chains inspired by environmental sustainability and circularity in economic models is essential to counteract the alterations in the global natural carbon cycle induced by humans. Recycling carbon-based waste gas streams into chemicals by devising gas fermentation bioprocesses mediated by acetogens of the genus Clostridium is one component of the solution. Carbon monoxide originates from multiple biogenic and abiogenic sources and bears a significant environmental impact. This study aims at identifying metabolic engineering interventions for increasing 2,3-butanediol production and avoiding carbon loss in CO2 dissipation via C. autoethanogenum fermenting a substrate comprising CO and H2. 2,3-Butanediol is a valuable biochemical by-product since, due to its versatility, can be transformed quite easily into chemical compounds such as butadiene, diacetyl, acetoin, and methyl ethyl ketone. These compounds are usable as building blocks to manufacture a vast range of industrially produced chemicals.
Collapse
|
19
|
Abstract
The majority of the genes present in bacterial genomes remain poorly characterized, with up to one-third of those that are protein encoding having no definitive function. Transposon insertion sequencing represents a high-throughput technique that can help rectify this deficiency. The technology, however, can only be realistically applied to those species in which high rates of DNA transfer can be achieved. Here, we have developed a number of approaches that overcome this barrier in the autotrophic species Clostridium autoethanogenum by using a mariner-based transposon system. The inherent instability of such systems in the Escherichia coli conjugation donor due to transposition events was counteracted through the incorporation of a conditionally lethal codA marker on the plasmid backbone. Relatively low frequencies of transformation of the plasmid into C. autoethanogenum were circumvented through the use of a plasmid that is conditional for replication coupled with the routine implementation of an Illumina library preparation protocol that eliminates plasmid-based reads. A transposon library was then used to determine the essential genes needed for growth using carbon monoxide as the sole carbon and energy source. IMPORTANCE Although microbial genome sequences are relatively easily determined, assigning gene function remains a bottleneck. Consequently, relatively few genes are well characterized, leaving the function of many as either hypothetical or entirely unknown. High-throughput transposon sequencing can help remedy this deficiency, but is generally only applicable to microbes with efficient DNA transfer procedures. These exclude many microorganisms of importance to humankind either as agents of disease or as industrial process organisms. Here, we developed approaches to facilitate transposon insertion sequencing in the acetogen Clostridium autoethanogenum, a chassis being exploited to convert single-carbon waste gases CO and CO2 into chemicals and fuels at an industrial scale. This allowed the determination of gene essentiality under heterotrophic and autotrophic growth, providing insights into the utilization of CO as a sole carbon and energy source. The strategies implemented are translatable and will allow others to apply transposon insertion sequencing to other microbes where DNA transfer has until now represented a barrier to progress.
Collapse
|
20
|
Piatek P, Humphreys C, Raut MP, Wright PC, Simpson S, Köpke M, Minton NP, Winzer K. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum. Sci Rep 2022; 12:411. [PMID: 35013405 PMCID: PMC8748961 DOI: 10.1038/s41598-021-03999-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
Acetogenic bacteria are capable of fermenting CO2 and carbon monoxide containing waste-gases into a range of platform chemicals and fuels. Despite major advances in genetic engineering and improving these biocatalysts, several important physiological functions remain elusive. Among these is quorum sensing, a bacterial communication mechanism known to coordinate gene expression in response to cell population density. Two putative agr systems have been identified in the genome of Clostridium autoethanogenum suggesting bacterial communication via autoinducing signal molecules. Signal molecule-encoding agrD1 and agrD2 genes were targeted for in-frame deletion. During heterotrophic growth on fructose as a carbon and energy source, single deletions of either gene did not produce an observable phenotype. However, when both genes were simultaneously inactivated, final product concentrations in the double mutant shifted to a 1.5:1 ratio of ethanol:acetate, compared to a 0.2:1 ratio observed in the wild type control, making ethanol the dominant fermentation product. Moreover, CO2 re-assimilation was also notably reduced in both hetero- and autotrophic growth conditions. These findings were supported through comparative proteomics, which showed lower expression of carbon monoxide dehydrogenase, formate dehydrogenase A and hydrogenases in the ∆agrD1∆agrD2 double mutant, but higher levels of putative alcohol and aldehyde dehydrogenases and bacterial micro-compartment proteins. These findings suggest that Agr quorum sensing, and by inference, cell density play a role in carbon resource management and use of the Wood-Ljungdahl pathway as an electron sink.
Collapse
Affiliation(s)
- Pawel Piatek
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Christopher Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Mahendra P Raut
- Department of Chemical and Biological Engineering, The ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Phillip C Wright
- University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Sean Simpson
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Ave, Suite 400, Skokie, IL, 60077, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of anaerobic digestion and thermochemical processes combination. Biotechnol Adv 2021; 58:107886. [PMID: 34915147 DOI: 10.1016/j.biotechadv.2021.107886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023]
Abstract
Waste biomass is considered a promising renewable energy feedstock that can be converted by anaerobic digestion. However, anaerobic digestion application can be challenging due to the structural complexity of several waste biomass kinds. Therefore, coupling anaerobic digestion with thermochemical processes can offset the limitations and convert the hardly biodegradable waste biomass, including digestate residue, into value-added products: syngas and pyrogas (gaseous mixtures consisting mainly of H2, CO, CO2), bio-oil, and biochar for further valorisation. In this review, the utilisation boundaries and benefits of the aforementioned products by anaerobic culture are discussed. First, thermochemical process parameters for an enhanced yield of desired products are summarised. Particularly, the microbiology of CO and H2 mixture biomethanation and fermentation in anaerobic digestion is presented. Finally, the state-of-the-art biological conversion of syngas and pyrogas to CH4 mediated by anaerobic culture is adequately described. Extensive research shows the successful selective biological conversion of CO and H2 to CH4, acetic acid, and alcohols. The main bottleneck is the gas-liquid mass transfer which can be enhanced appropriately by bioreactors' configurations. A few research groups focus on bio-oil and biochar addition into anaerobic digesters. However, according to the literature review, there has been no research for utilising all value-added products at once in anaerobic digestion published so far. Although synergic effects of such can be expected. In summary, the combination of anaerobic digestion and thermochemical processes is a promising alternative for wide-scale waste biomass utilisation in practice.
Collapse
|
22
|
Screening of Gas Substrate and Medium Effects on 2,3-Butanediol Production with C. ljungdahlii and C. autoethanogenum Aided by Improved Autotrophic Cultivation Technique. FERMENTATION 2021. [DOI: 10.3390/fermentation7040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gas fermentation by acetogens of the genus Clostridium is an attractive technology since it affords the production of biochemicals and biofuels from industrial waste gases while contributing to mitigate the carbon cycle alterations. The acetogenic model organisms C. ljungdahlii and C. autoethanogenum have already been used in large scale industrial fermentations. Among the natural products, ethanol production has already attained industrial scale. However, some acetogens are also natural producers of 2,3-butanediol (2,3-BDO), a platform chemical of relevant industrial interest. Here, we have developed a lab-scale screening campaign with the aim of enhancing 2,3-BDO production. Our study generated comparable data on growth and 2,3-BDO production of several batch gas fermentations using C. ljungdahlii and C. autoethanogenum grown on different gas substrates of primary applicative interest (CO2 · H2, CO · CO2, syngas) and on different media featuring different compositions as regards trace metals, mineral elements and vitamins. CO · CO2 fermentation was found to be preferable for the production of 2,3-BDO, and a fair comparison of the strains cultivated in comparable conditions revealed that C. ljungdahlii produced 3.43-fold higher titer of 2,3-BDO compared to C. autoethanogenum. Screening of different medium compositions revealed that mineral elements, Zinc and Iron exert a major positive influence on 2,3-BDO titer and productivity. Moreover, the CO2 influence on CO fermentation was explored by characterizing C. ljungdahlii response with respect to different gas ratios in the CO · CO2 gas mixtures. The screening strategies undertaken in this study led to the production of 2.03 ± 0.05 g/L of 2,3-BDO, which is unprecedented in serum bottle experiments.
Collapse
|
23
|
Debabov VG. Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
24
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
25
|
Zhong Y, Xu F, Wu J, Schubert J, Li MM. Application of Next Generation Sequencing in Laboratory Medicine. Ann Lab Med 2021; 41:25-43. [PMID: 32829577 PMCID: PMC7443516 DOI: 10.3343/alm.2021.41.1.25] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The rapid development of next-generation sequencing (NGS) technology, including advances in sequencing chemistry, sequencing technologies, bioinformatics, and data interpretation, has facilitated its wide clinical application in precision medicine. This review describes current sequencing technologies, including short- and long-read sequencing technologies, and highlights the clinical application of NGS in inherited diseases, oncology, and infectious diseases. We review NGS approaches and clinical diagnosis for constitutional disorders; summarize the application of U.S. Food and Drug Administration-approved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in clinical oncology; and consider epidemiological surveillance, identification of pathogens, and the importance of host microbiome in infectious diseases. Finally, we discuss the challenges and future perspectives of clinical NGS tests.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Feng Xu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jinhua Wu
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Jeffrey Schubert
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| | - Marilyn M. Li
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA,
USA
| |
Collapse
|
26
|
Lemaire ON, Wagner T. Gas channel rerouting in a primordial enzyme: Structural insights of the carbon-monoxide dehydrogenase/acetyl-CoA synthase complex from the acetogen Clostridium autoethanogenum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148330. [PMID: 33080205 DOI: 10.1016/j.bbabio.2020.148330] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Clostridium autoethanogenum, the bacterial model for biological conversion of waste gases into biofuels, grows under extreme carbon-monoxide (CO) concentrations. The strictly anaerobic bacterium derives its entire cellular energy and carbon from this poisonous gas, therefore requiring efficient molecular machineries for CO-conversion. Here, we structurally and biochemically characterized the key enzyme of the CO-converting metabolism: the CO-dehydrogenase/Acetyl-CoA synthase (CODH/ACS). We obtained crystal structures of natively isolated complexes from fructose-grown and CO-grown C. autoethanogenum cultures. Both contain the same isoforms and if the overall structure adopts the classic α2β2 architecture, comparable to the model enzyme from Moorella thermoacetica, the ACS binds a different position on the CODH core. The structural characterization of a proteolyzed complex and the conservation of the binding interface in close homologs rejected the possibility of a crystallization artefact. Therefore, the internal CO-channeling system, critical to transfer CO generated at the C-cluster to the ACS active site, drastically differs in the complex from C. autoethanogenum. The 1.9-Å structure of the CODH alone provides an accurate picture of the new CO-routes, leading to the ACS core and reaching the surface. Increased gas accessibility would allow the simultaneous CO-oxidation and acetyl-CoA production. Biochemical experiments showed higher flexibility of the ACS subunit from C. autoethanogenum compared to M. thermoacetica, albeit monitoring similar CO-oxidation and formation rates. These results show a reshuffling of internal CO-tunnels during evolution of these Firmicutes, putatively leading to a bidirectional complex that ensure a high flux of CO-conversion toward energy conservation, acting as the main cellular powerplant.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| |
Collapse
|
27
|
Benito-Vaquerizo S, Diender M, Parera Olm I, Martins Dos Santos VAP, Schaap PJ, Sousa DZ, Suarez-Diez M. Modeling a co-culture of Clostridium autoethanogenum and Clostridium kluyveri to increase syngas conversion to medium-chain fatty-acids. Comput Struct Biotechnol J 2020; 18:3255-3266. [PMID: 33240469 PMCID: PMC7658664 DOI: 10.1016/j.csbj.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
We model a co-culture of C. autoethanogenum and C. kluyveri for syngas fermentation. Biomass species ratio affects ethanol and acetate profiles in the co-culture. The model predicts that addition of succinate increases caproate production. Genetic interventions in C. autoethanogenum could increase caproate production.
Microbial fermentation of synthesis gas (syngas) is becoming more attractive for sustainable production of commodity chemicals. To date, syngas fermentation focuses mainly on the use of Clostridium species for the production of small organic molecules such as ethanol and acetate. The co-cultivation of syngas-fermenting microorganisms with chain-elongating bacteria can expand the range of possible products, allowing, for instance, the production of medium-chain fatty acids (MCFA) and alcohols from syngas. To explore these possibilities, we report herein a genome-scale, constraint-based metabolic model to describe growth of a co-culture of Clostridium autoethanogenum and Clostridium kluyveri on syngas for the production of valuable compounds. Community flux balance analysis was used to gain insight into the metabolism of the two strains and their interactions, and to reveal potential strategies enabling production of butyrate and hexanoate. The model suggests that one strategy to optimize the production of medium-chain fatty-acids from syngas would be the addition of succinate. According to the prediction, addition of succinate would increase the pool of crotonyl-CoA and the ethanol/acetate uptake ratio in C. kluyveri, resulting in a flux of up to 60% of electrons into hexanoate. Another potential way to further optimize butyrate and hexanoate production would be an increase of C. autoethanogenum ethanol production. Blocking either acetaldehyde dehydrogenase or formate dehydrogenase (ferredoxin) activity or formate transport, in the C. autoethanogenum metabolic model could potentially lead to an up to 150% increase in ethanol production.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
28
|
Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. Int J Mol Sci 2020; 21:ijms21207639. [PMID: 33076477 PMCID: PMC7589590 DOI: 10.3390/ijms21207639] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bacteria (acetogens) have emerged as an alternative solution to recycle C1 gases by converting them into value-added biochemicals using the Wood-Ljungdahl pathway. Despite the advantage of utilizing acetogens as biocatalysts, it is difficult to develop industrial-scale bioprocesses because of their slow growth rates and low productivities. To solve these problems, conventional approaches to metabolic engineering have been applied; however, there are several limitations owing to the lack of required genetic bioparts for regulating their metabolic pathways. Recently, synthetic biology based on genetic parts, modules, and circuit design has been actively exploited to overcome the limitations in acetogen engineering. This review covers synthetic biology applications to design and build industrial platform acetogens.
Collapse
|
29
|
A survey on de novo assembly methods for single-molecular sequencing. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Appl Environ Microbiol 2020; 86:AEM.00730-20. [PMID: 32414802 DOI: 10.1128/aem.00730-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 01/10/2023] Open
Abstract
Bioethanol production from syngas using acetogenic bacteria has attracted considerable attention in recent years. However, low ethanol yield is the biggest challenge that prevents the commercialization of syngas fermentation into biofuels using microbial catalysts. The present study demonstrated that ethanol metabolism plays an important role in recycling NADH/NAD+ during autotrophic growth. Deletion of bifunctional aldehyde/alcohol dehydrogenase (adhE) genes leads to significant growth deficiencies in gas fermentation. Using specific fermentation technology in which the gas pressure and pH were constantly controlled at 0.1 MPa and 6.0, respectively, we revealed that ethanol was formed during the exponential phase, closely accompanied by biomass production. Then, ethanol was oxidized to acetate via the aldehyde ferredoxin oxidoreductase pathway in Clostridium ljungdahlii A metabolic experiment using 13C-labeled ethanol and acetate, redox balance analysis, and comparative transcriptomic analysis demonstrated that ethanol production and reuse shared the metabolic pathway but occurred at different growth phases.IMPORTANCE Ethanol production from carbon monoxide (CO) as a carbon and energy source by Clostridium ljungdahlii and "Clostridium autoethanogenum" is currently being commercialized. During gas fermentation, ethanol synthesis is NADH-dependent. However, ethanol oxidation and its regulatory mechanism remain incompletely understood. Energy metabolism analysis demonstrated that reduced ferredoxin is the sole source of NADH formation by the Rnf-ATPase system, which provides ATP for cell growth during CO fermentation. Therefore, ethanol production is tightly linked to biomass production (ATP production). Clarification of the mechanism of ethanol oxidation and biosynthesis can provide an important reference for generating high-ethanol-yield strains of C. ljungdahlii in the future.
Collapse
|
31
|
Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways. Metab Eng 2020; 62:95-105. [PMID: 32540392 DOI: 10.1016/j.ymben.2020.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/07/2020] [Indexed: 02/04/2023]
Abstract
Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 μg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.
Collapse
|
32
|
Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, Olson DG, Eckert CA. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun 2020; 10:e00116. [PMID: 31890588 PMCID: PMC6926293 DOI: 10.1016/j.mec.2019.e00116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
The robust lignocellulose-solubilizing activity of C. thermocellum makes it a top candidate for consolidated bioprocessing for biofuel production. Genetic techniques for C. thermocellum have lagged behind model organisms thus limiting attempts to improve biofuel production. To improve our ability to engineer C. thermocellum, we characterized a native Type I-B and heterologous Type II Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)/cas (CRISPR associated) systems. We repurposed the native Type I-B system for genome editing. We tested three thermophilic Cas9 variants (Type II) and found that GeoCas9, isolated from Geobacillus stearothermophilus, is active in C. thermocellum. We employed CRISPR-mediated homology directed repair to introduce a nonsense mutation into pyrF. For both editing systems, homologous recombination between the repair template and the genome appeared to be the limiting step. To overcome this limitation, we tested three novel thermophilic recombinases and demonstrated that exo/beta homologs, isolated from Acidithiobacillus caldus, are functional in C. thermocellum. For the Type I-B system an engineered strain, termed LL1586, yielded 40% genome editing efficiency at the pyrF locus and when recombineering machinery was expressed this increased to 71%. For the Type II GeoCas9 system, 12.5% genome editing efficiency was observed and when recombineering machinery was expressed, this increased to 94%. By combining the thermophilic CRISPR system (either Type I-B or Type II) with the recombinases, we developed a new tool that allows for efficient CRISPR editing. We are now poised to enable CRISPR technologies to better engineer C. thermocellum for both increased lignocellulose degradation and biofuel production.
Collapse
Key Words
- 5-FOA, 5-fluoroorotic acid
- CFU, colony forming unit
- CRISPR
- CRISPR/Cas, Clustered Regularly-Interspaced Short Palindromic Repeat/CRISPR associated
- Cas9
- Cas9n, nickase Cas9
- Clostridium thermocellum
- HDR, homology-directed repair
- HR, homologous recombination
- PAM, protospacer adjacent motif
- RNP, Cas9-sgRNA ribonucleoprotein
- Thermophilic recombineering
- Tm, thiamphenicol
- Type I–B
- sgRNA, single guide RNA
Collapse
Affiliation(s)
- Julie E. Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Anthony A. Lanahan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyong Zheng
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Camilo Toruno
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Lee R. Lynd
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jeffrey C. Cameron
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Biochemistry, University of Colorado, Boulder, CO, 80303, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| | - Daniel G. Olson
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80303, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Renewable Energy Laboratory, Biosciences Center, Golden, USA
| |
Collapse
|
33
|
Klask CM, Kliem-Kuster N, Molitor B, Angenent LT. Nitrate Feed Improves Growth and Ethanol Production of Clostridium ljungdahlii With CO 2 and H 2, but Results in Stochastic Inhibition Events. Front Microbiol 2020; 11:724. [PMID: 32435236 PMCID: PMC7219301 DOI: 10.3389/fmicb.2020.00724] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The pH-value in fermentation broth is a critical factor for the metabolic flux and growth behavior of acetogens. A decreasing pH level throughout time due to undissociated acetic acid accumulation is anticipated under uncontrolled pH conditions such as in bottle experiments. As a result, the impact of changes in the metabolism (e.g., due to a genetic modification) might remain unclear or even unrevealed. In contrast, pH-controlled conditions can be achieved in bioreactors. Here, we present a self-built, comparatively cheap, and user-friendly multiple-bioreactor system (MBS) consisting of six pH-controlled bioreactors at a 1-L scale. We tested the functionality of the MBS by cultivating the acetogen Clostridium ljungdahlii with CO2 and H2 at steady-state conditions (=chemostat). The experiments (total of 10 bioreactors) were addressing the two questions: (1) does the MBS provide replicable data for gas-fermentation experiments?; and (2) does feeding nitrate influence the product spectrum under controlled pH conditions with CO2 and H2? We applied four different periods in each experiment ranging from pH 6.0 to pH 4.5. On the one hand, our data showed high reproducibility for gas-fermentation experiments with C. ljungdahlii under standard cultivation conditions using the MBS. On the other hand, feeding nitrate as sole N-source improved growth by up to 62% and ethanol production by 2-3-fold. However, we observed differences in growth, and acetate and ethanol production rates between all nitrate bioreactors. We explained the different performances with a pH-buffering effect that resulted from the interplay between undissociated acetic acid production and ammonium production and because of stochastic inhibition events, which led to complete crashes at different operating times.
Collapse
Affiliation(s)
- Christian-Marco Klask
- Environmental Biotechnology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Nicolai Kliem-Kuster
- Environmental Biotechnology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Bastian Molitor
- Environmental Biotechnology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Center for Applied Geoscience, University of Tübingen, Tübingen, Germany.,Max Planck Fellow Groups, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
34
|
Xu H, Liang C, Chen X, Xu J, Yu Q, Zhang Y, Yuan Z. Impact of exogenous acetate on ethanol formation and gene transcription for key enzymes in Clostridium autoethanogenum grown on CO. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Utturkar S, Dassanayake A, Nagaraju S, Brown SD. Bacterial Differential Expression Analysis Methods. Methods Mol Biol 2020; 2096:89-112. [PMID: 32720149 DOI: 10.1007/978-1-0716-0195-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-Seq examines global gene expression to provide insights into cellular processes, and it can be particularly informative when comparing contrasting physiological states or strains. Although relatively routine in many laboratories, there are many steps involved in performing a transcriptomics experiment to ensure representative and high-quality results are generated for analysis. In this chapter, we present the application of widely used bioinformatic methodologies to assess, trim, and filter RNA-seq reads for quality using FastQC and Trim Galore, respectively. High-quality reads are mapped using Bowtie2 and differentially expressed genes across different groups were estimated using the DEseq2 R-Bioconductor package. In addition, we describe the various steps to perform the sample-wise data quality assessment by generating exploratory plots through the DESeq2 package. Simple steps to calculate the significant differentially expressed genes, up- and down-regulated genes, and exporting the data and images are also included. A Venn diagram is a useful method to compare the differentially expressed genes across various comparisons and steps to generate the Venn diagram from DESeq2 results are provided. Finally, the output from DESeq2 is compared to published results from EdgeR. The Clostridium autoethanogenum data are published and publicly available.
Collapse
Affiliation(s)
- Sagar Utturkar
- Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
36
|
Liyanage DS, Oh M, Omeka WKM, Wan Q, Jin CN, Shin GH, Kang BC, Nam BH, Lee J. First Draft Genome Assembly of Redlip Mullet ( Liza haematocheila) From Family Mugilidae. Front Genet 2019; 10:1246. [PMID: 31850083 PMCID: PMC6902644 DOI: 10.3389/fgene.2019.01246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Dileepa S Liyanage
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea
| | - Minyoung Oh
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea
| | - Welivitiye K M Omeka
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea
| | - Qiang Wan
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea
| | - Chang Nam Jin
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea
| | - Ga-Hee Shin
- Research and Development Center, Insilicogen Inc., Yongin-Si, South Korea
| | - Byeong-Chul Kang
- Research and Development Center, Insilicogen Inc., Yongin-Si, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju-si, South Korea.,Marine Science Institute, Jeju National University, Jeju-si, South Korea
| |
Collapse
|
37
|
Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic microbiota plays a role not only in supplying plants with the basic nutrients indispensable for their growth, but also helps them in the mechanisms of adaptation to various environmental stresses (i.e., salinity, drought), which is important in the aspect of crop yields. From the agricultural and biotechnological points of view, the knowledge of endophytes and their roles in increasing crop yields, plant resistance to diseases, and helping to survive environmental stress is extremely desirable. This paper reviews some of the beneficial plant–microbe interactions that might be potentially used in both agriculture (plant growth stimulation effect, adaptation of host organisms in salinity and drought conditions, and support of defense mechanisms in plants), and in biotechnology (bioactive metabolites, application of endophytes for bioremediation and biotransformation processes, and production of biofertilizers and biopreparations). Importantly, relatively recent reports on endophytes from the last 10 years are summarized in this paper.
Collapse
|
38
|
de Souza Pinto Lemgruber R, Valgepea K, Gonzalez Garcia RA, de Bakker C, Palfreyman RW, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. A TetR-Family Protein (CAETHG_0459) Activates Transcription From a New Promoter Motif Associated With Essential Genes for Autotrophic Growth in Acetogens. Front Microbiol 2019; 10:2549. [PMID: 31803150 PMCID: PMC6873888 DOI: 10.3389/fmicb.2019.02549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/22/2019] [Indexed: 01/08/2023] Open
Abstract
Acetogens can fix carbon (CO or CO2) into acetyl-CoA via the Wood-Ljungdahl pathway (WLP) that also makes them attractive cell factories for the production of fuels and chemicals from waste feedstocks. Although most biochemical details of the WLP are well understood and systems-level characterization of acetogen metabolism has recently improved, key transcriptional features such as promoter motifs and transcriptional regulators are still unknown in acetogens. Here, we use differential RNA-sequencing to identify a previously undescribed promoter motif associated with essential genes for autotrophic growth of the model-acetogen Clostridium autoethanogenum. RNA polymerase was shown to bind to the new promoter motif using a DNA-binding protein assay and proteomics enabled the discovery of four candidates to potentially function directly in control of transcription of the WLP and other key genes of C1 fixation metabolism. Next, in vivo experiments showed that a TetR-family transcriptional regulator (CAETHG_0459) and the housekeeping sigma factor (σA) activate expression of a reporter protein (GFP) in-frame with the new promoter motif from a fusion vector in Escherichia coli. Lastly, a protein-protein interaction assay with the RNA polymerase (RNAP) shows that CAETHG_0459 directly binds to the RNAP. Together, the data presented here advance the fundamental understanding of transcriptional regulation of C1 fixation in acetogens and provide a strategy for improving the performance of gas-fermenting bacteria by genetic engineering.
Collapse
Affiliation(s)
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | | | - Christopher de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Robin William Palfreyman
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
- Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology. Sci Rep 2019; 9:16350. [PMID: 31704961 PMCID: PMC6841976 DOI: 10.1038/s41598-019-52424-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
U.S. public health agencies have employed next-generation sequencing (NGS) as a tool to quickly identify foodborne pathogens during outbreaks. Although established short-read NGS technologies are known to provide highly accurate data, long-read sequencing is still needed to resolve highly-repetitive genomic regions and genomic arrangement, and to close the sequences of bacterial chromosomes and plasmids. Here, we report the use of long-read nanopore sequencing to simultaneously sequence the entire chromosome and plasmid of Salmonella enterica subsp. enterica serovar Bareilly and Escherichia coli O157:H7. We developed a rapid and random sequencing approach coupled with de novo genome assembly within a customized data analysis workflow that uses publicly-available tools. In sequencing runs as short as four hours, using the MinION instrument, we obtained full-length genomes with an average identity of 99.87% for Salmonella Bareilly and 99.89% for E. coli in comparison to the respective MiSeq references. These nanopore-only assemblies provided readily available information on serotype, virulence factors, and antimicrobial resistance genes. We also demonstrate the potential of nanopore sequencing assemblies for rapid preliminary phylogenetic inference. Nanopore sequencing provides additional advantages as very low capital investment and footprint, and shorter (10 hours library preparation and sequencing) turnaround time compared to other NGS technologies.
Collapse
|
40
|
Haghshenas E, Sahinalp SC, Hach F. lordFAST: sensitive and Fast Alignment Search Tool for LOng noisy Read sequencing Data. Bioinformatics 2019; 35:20-27. [PMID: 30561550 DOI: 10.1093/bioinformatics/bty544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/28/2018] [Indexed: 02/01/2023] Open
Abstract
Motivation Recent advances in genomics and precision medicine have been made possible through the application of high throughput sequencing (HTS) to large collections of human genomes. Although HTS technologies have proven their use in cataloging human genome variation, computational analysis of the data they generate is still far from being perfect. The main limitation of Illumina and other popular sequencing technologies is their short read length relative to the lengths of (common) genomic repeats. Newer (single molecule sequencing - SMS) technologies such as Pacific Biosciences and Oxford Nanopore are producing longer reads, making it theoretically possible to overcome the difficulties imposed by repeat regions. Unfortunately, because of their high sequencing error rate, reads generated by these technologies are very difficult to work with and cannot be used in many of the standard downstream analysis pipelines. Note that it is not only difficult to find the correct mapping locations of such reads in a reference genome, but also to establish their correct alignment so as to differentiate sequencing errors from real genomic variants. Furthermore, especially since newer SMS instruments provide higher throughput, mapping and alignment need to be performed much faster than before, maintaining high sensitivity. Results We introduce lordFAST, a novel long-read mapper that is specifically designed to align reads generated by PacBio and potentially other SMS technologies to a reference. lordFAST not only has higher sensitivity than the available alternatives, it is also among the fastest and has a very low memory footprint. Availability and implementation lordFAST is implemented in C++ and supports multi-threading. The source code of lordFAST is available at https://github.com/vpc-ccg/lordfast. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ehsan Haghshenas
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - S Cenk Sahinalp
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.,School of Informatics and Computing, Indiana University, Bloomington, IN, USA
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Cantos-Parra E, Ramió-Pujol S, Colprim J, Puig S, Bañeras L. Specific detection of "Clostridium autoethanogenum", Clostridium ljungdahlii and Clostridium carboxidivorans in complex bioreactor samples. FEMS Microbiol Lett 2019; 365:5062789. [PMID: 30084932 DOI: 10.1093/femsle/fny191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
The high genetic similarity between some carboxydotrophic bacteria does not allow for the use of common sequencing techniques targeting the 16S rRNA gene for species identification. 16S rRNA sequencing fails to discriminate among Clostridium ljungdahlii and 'Clostridium autoethanogenum', despite this two species exhibit significant differences in CO2 assimilation and alcohol production. In this work we designed PCR primers targeting for the DNA gyrase subunit A (gyrA) and a putative formate/nitrite transporter (fnt) to specifically detect the presence of 'C. autoethanogenum', C. ljungdahlii or Clostridium carboxidivorans. We could confirm the simultaneous presence of C. ljungdahlii and 'C. autoethanogenum' in different bioreactors, and a preference of the latter for high CO2 content.
Collapse
Affiliation(s)
- Ester Cantos-Parra
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology (IEA), University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 40, E-17003 Girona, Catalonia, Spain
| | - Sara Ramió-Pujol
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology (IEA), University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 40, E-17003 Girona, Catalonia, Spain.,GoodGut, Centre d'Empreses Giroemprèn, Parc Científic i Tecnològic UdG, Carrer Pic de Peguera, 11, E-17003 Girona, Catalonia, Spain
| | - Jesús Colprim
- LEQUiA, Institute of the Environment. University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment. University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Lluís Bañeras
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology (IEA), University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 40, E-17003 Girona, Catalonia, Spain
| |
Collapse
|
42
|
Abstract
The genus Clostridium is composed of bioproducers, which are important for the industrial production of chemicals, as well as pathogens, which are a significant burden to the patients and on the health care industry. Historically, even though these bacteria are well known and are commonly studied, the genetic technologies to advance our understanding of these microbes have lagged behind other systems. New tools would continue the advancement of our understanding of clostridial physiology. The genetic modification systems available in several clostridia are not as refined as in other organisms and each exhibit their own drawbacks. With the advent of the repurposing of the CRISPR-Cas systems for genetic modification, the tools available for clostridia have improved significantly over the past four years. Several CRISPR-Cas systems such as using wild-type Cas9, Cas9n, dCas9/CRISPR interference (CRISPRi) and a newly studied Cpf1/Cas12a, are reported. These have the potential to greatly advance the study of clostridial species leading to future therapies or the enhanced production of industrially relevant compounds. Here we discuss the details of the CRISPR-Cas systems as well as the advances and current issues in the developed clostridial systems.
Collapse
|
43
|
Forde BM, McAllister LJ, Paton JC, Paton AW, Beatson SA. SMRT sequencing reveals differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic syndrome outbreak in Australia. Sci Rep 2019; 9:9436. [PMID: 31263188 PMCID: PMC6602927 DOI: 10.1038/s41598-019-45760-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/23/2019] [Indexed: 11/21/2022] Open
Abstract
In 1995 a severe haemolytic-uremic syndrome (HUS) outbreak in Adelaide occurred. A recent genomic analysis of Shiga toxigenic Escherichia coli (STEC) O111:H- strains 95JB1 and 95NR1 from this outbreak found that the more virulent isolate, 95NR1, harboured two additional copies of the Shiga toxin 2 (Stx2) genes encoded within prophage regions. The structure of the Stx2-converting prophages could not be fully resolved using short-read sequence data alone and it was not clear if there were other genomic differences between 95JB1 and 95NR1. In this study we have used Pacific Biosciences (PacBio) single molecule real-time (SMRT) sequencing to characterise the genome and methylome of 95JB1 and 95NR1. We completely resolved the structure of all prophages including two, tandemly inserted, Stx2-converting prophages in 95NR1 that were absent from 95JB1. Furthermore we defined all insertion sequences and found an additional IS1203 element in the chromosome of 95JB1. Our analysis of the methylome of 95NR1 and 95JB1 identified hemi-methylation of a novel motif (5′-CTGCm6AG-3′) in more than 4000 sites in the 95NR1 genome. These sites were entirely unmethylated in the 95JB1 genome, and included at least 177 potential promoter regions that could contribute to regulatory differences between the strains. IS1203 mediated deactivation of a novel type IIG methyltransferase in 95JB1 is the likely cause of the observed differential patterns of methylation between 95NR1 and 95JB1. This study demonstrates the capability of PacBio SMRT sequencing to resolve complex prophage regions and reveal the genetic and epigenetic heterogeneity within a clonal population of bacteria.
Collapse
Affiliation(s)
- Brian M Forde
- Australian Infectious Diseases Centre, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren J McAllister
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Centre, The University of Queensland, Brisbane, QLD, Australia. .,Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
44
|
Norman RO, Millat T, Schatschneider S, Henstra AM, Breitkopf R, Pander B, Annan FJ, Piatek P, Hartman HB, Poolman MG, Fell DA, Winzer K, Minton NP, Hodgman C. Genome‐scale model of
C. autoethanogenum
reveals optimal bioprocess conditions for high‐value chemical production from carbon monoxide. ENGINEERING BIOLOGY 2019. [DOI: 10.1049/enb.2018.5003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rupert O.J. Norman
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, Sutton BoningtonLeicestershireLE12 5RDUK
| | - Thomas Millat
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Sarah Schatschneider
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- Evonik Nutrition and Care GmbHKantstr. 233798Halle‐KinsbeckGermany
| | - Anne M. Henstra
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Ronja Breitkopf
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Bart Pander
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Florence J. Annan
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Pawel Piatek
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Hassan B. Hartman
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
- Public Health England61 Colindale AvenueLondonNW9 5EQUK
| | - Mark G. Poolman
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - David A. Fell
- Department of Biology and Medical SciencesOxford Brookes UniversityOxfordOX3 0BPUK
| | - Klaus Winzer
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Nigel P. Minton
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Charlie Hodgman
- Synthetic Biology Research CentreUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, Sutton BoningtonLeicestershireLE12 5RDUK
| |
Collapse
|
45
|
Annan FJ, Al-Sinawi B, Humphreys CM, Norman R, Winzer K, Köpke M, Simpson SD, Minton NP, Henstra AM. Engineering of vitamin prototrophy in Clostridium ljungdahlii and Clostridium autoethanogenum. Appl Microbiol Biotechnol 2019; 103:4633-4648. [PMID: 30972463 PMCID: PMC6505512 DOI: 10.1007/s00253-019-09763-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 11/30/2022]
Abstract
Clostridium autoethanogenum and Clostridium ljungdahlii are physiologically and genetically very similar strict anaerobic acetogens capable of growth on carbon monoxide as sole carbon source. While exact nutritional requirements have not been reported, we observed that for growth, the addition of vitamins to media already containing yeast extract was required, an indication that these are fastidious microorganisms. Elimination of complex components and individual vitamins from the medium revealed that the only organic compounds required for growth were pantothenate, biotin and thiamine. Analysis of the genome sequences revealed that three genes were missing from pantothenate and thiamine biosynthetic pathways, and five genes were absent from the pathway for biotin biosynthesis. Prototrophy in C. autoethanogenum and C. ljungdahlii for pantothenate was obtained by the introduction of plasmids carrying the heterologous gene clusters panBCD from Clostridium acetobutylicum, and for thiamine by the introduction of the thiC-purF operon from Clostridium ragsdalei. Integration of panBCD into the chromosome through allele-coupled exchange also conveyed prototrophy. C. autoethanogenum was converted to biotin prototrophy with gene sets bioBDF and bioHCA from Desulfotomaculum nigrificans strain CO-1-SRB, on plasmid and integrated in the chromosome. The genes could be used as auxotrophic selection markers in recombinant DNA technology. Additionally, transformation with a subset of the genes for pantothenate biosynthesis extended selection options with the pantothenate precursors pantolactone and/or beta-alanine. Similarly, growth was obtained with the biotin precursor pimelate combined with genes bioYDA from C. acetobutylicum. The work raises questions whether alternative steps exist in biotin and thiamine biosynthesis pathways in these acetogens.
Collapse
Affiliation(s)
- Florence J Annan
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Bakir Al-Sinawi
- University of New-South Wales (UNSW) Sydney, Kensington, Australia
| | - Christopher M Humphreys
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rupert Norman
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michael Köpke
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Sean D Simpson
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anne M Henstra
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
46
|
de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 2019; 53:14-23. [DOI: 10.1016/j.ymben.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 11/26/2022]
|
47
|
Efficiency of PacBio long read correction by 2nd generation Illumina sequencing. Genomics 2019; 111:43-49. [DOI: 10.1016/j.ygeno.2017.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
|
48
|
Shin J, Song Y, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA (NEW YORK, N.Y.) 2018; 24:1839-1855. [PMID: 30249742 PMCID: PMC6239172 DOI: 10.1261/rna.068239.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/20/2018] [Indexed: 05/09/2023]
Abstract
Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5'-untranslated regions (5'-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5'-UTR were found. Interestingly, acetogenesis genes contained longer 5'-UTR with lower RNA-folding free energy than other genes, revealing that the 5'-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5'-UTRs is necessary for cold-adaptive acetogenesis.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoseb Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
49
|
Song Y, Shin J, Jin S, Lee JK, Kim DR, Kim SC, Cho S, Cho BK. Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics 2018; 19:837. [PMID: 30470174 PMCID: PMC6260860 DOI: 10.1186/s12864-018-5238-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/09/2018] [Indexed: 11/11/2022] Open
Abstract
Background Acetogenic bacteria constitute promising biocatalysts for the conversion of CO2/H2 or synthesis gas (H2/CO/CO2) into biofuels and value-added biochemicals. These microorganisms are naturally capable of autotrophic growth via unique acetogenesis metabolism. Despite their biosynthetic potential for commercial applications, a systemic understanding of the transcriptional and translational regulation of the acetogenesis metabolism remains unclear. Results By integrating genome-scale transcriptomic and translatomic data, we explored the regulatory logic of the acetogenesis to convert CO2 into biomass and metabolites in Eubacterium limosum. The results indicate that majority of genes associated with autotrophic growth including the Wood-Ljungdahl pathway, the reduction of electron carriers, the energy conservation system, and gluconeogenesis were transcriptionally upregulated. The translation efficiency of genes in cellular respiration and electron bifurcation was also highly enhanced. In contrast, the transcriptionally abundant genes involved in the carbonyl branch of the Wood-Ljungdahl pathway, as well as the ion-translocating complex and ATP synthase complex in the energy conservation system, showed decreased translation efficiency. The translation efficiencies of genes were regulated by 5′UTR secondary structure under the autotrophic growth condition. Conclusions The results illustrated that the acetogenic bacteria reallocate protein synthesis, focusing more on the translation of genes for the generation of reduced electron carriers via electron bifurcation, rather than on those for carbon metabolism under autotrophic growth. Electronic supplementary material The online version of this article (10.1186/s12864-018-5238-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jongoh Shin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Rip Kim
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
50
|
Maikova A, Severinov K, Soutourina O. New Insights Into Functions and Possible Applications of Clostridium difficile CRISPR-Cas System. Front Microbiol 2018; 9:1740. [PMID: 30108577 PMCID: PMC6079278 DOI: 10.3389/fmicb.2018.01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Over the last decades the enteric bacterium Clostridium difficile (novel name Clostridioides difficile) - has emerged as an important human nosocomial pathogen. It is a leading cause of hospital-acquired diarrhea and represents a major challenge for healthcare providers. Many aspects of C. difficile pathogenesis and its evolution remain poorly understood. Efficient defense systems against phages and other genetic elements could have contributed to the success of this enteropathogen in the phage-rich gut communities. Recent studies demonstrated the presence of an active CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) subtype I-B system in C. difficile. In this mini-review, we will discuss the recent advances in characterization of original features of the C. difficile CRISPR-Cas system in laboratory and clinical strains, as well as interesting perspectives for our understanding of this defense system function and regulation in this important enteropathogen. This knowledge will pave the way for the development of promising biotechnological and therapeutic tools in the future. Possible applications for the C. difficile strain monitoring and genotyping, as well as for CRISPR-based genome editing and antimicrobials are also discussed.
Collapse
Affiliation(s)
- Anna Maikova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Microbiology, Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Konstantin Severinov
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Olga Soutourina
- Microbiology, Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut Pasteur, Paris, France
| |
Collapse
|