1
|
Woicik A, Zhang M, Xu H, Mostafavi S, Wang S. Gemini: memory-efficient integration of hundreds of gene networks with high-order pooling. Bioinformatics 2023; 39:i504-i512. [PMID: 37387142 DOI: 10.1093/bioinformatics/btad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION The exponential growth of genomic sequencing data has created ever-expanding repositories of gene networks. Unsupervised network integration methods are critical to learn informative representations for each gene, which are later used as features for downstream applications. However, these network integration methods must be scalable to account for the increasing number of networks and robust to an uneven distribution of network types within hundreds of gene networks. RESULTS To address these needs, we present Gemini, a novel network integration method that uses memory-efficient high-order pooling to represent and weight each network according to its uniqueness. Gemini then mitigates the uneven network distribution through mixing up existing networks to create many new networks. We find that Gemini leads to more than a 10% improvement in F1 score, 15% improvement in micro-AUPRC, and 63% improvement in macro-AUPRC for human protein function prediction by integrating hundreds of networks from BioGRID, and that Gemini's performance significantly improves when more networks are added to the input network collection, while Mashup and BIONIC embeddings' performance deteriorates. Gemini thereby enables memory-efficient and informative network integration for large gene networks and can be used to massively integrate and analyze networks in other domains. AVAILABILITY AND IMPLEMENTATION Gemini can be accessed at: https://github.com/MinxZ/Gemini.
Collapse
Affiliation(s)
- Addie Woicik
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Mingxin Zhang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Hanwen Xu
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, United States
| | - Sheng Wang
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
2
|
Zhang W, Wei H, Liu B. idenMD-NRF: a ranking framework for miRNA-disease association identification. Brief Bioinform 2022; 23:6604995. [PMID: 35679537 DOI: 10.1093/bib/bbac224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
Identifying miRNA-disease associations is an important task for revealing pathogenic mechanism of complicated diseases. Different computational methods have been proposed. Although these methods obtained encouraging performance for detecting missing associations between known miRNAs and diseases, how to accurately predict associated diseases for new miRNAs is still a difficult task. In this regard, a ranking framework named idenMD-NRF is proposed for miRNA-disease association identification. idenMD-NRF treats the miRNA-disease association identification as an information retrieval task. Given a novel query miRNA, idenMD-NRF employs Learning to Rank algorithm to rank associated diseases based on high-level association features and various predictors. The experimental results on two independent test datasets indicate that idenMD-NRF is superior to other compared predictors. A user-friendly web server of idenMD-NRF predictor is freely available at http://bliulab.net/idenMD-NRF/.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hang Wei
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Wu X, Zeng W, Lin F, Zhou X. NeuRank: learning to rank with neural networks for drug-target interaction prediction. BMC Bioinformatics 2021; 22:567. [PMID: 34836495 PMCID: PMC8620576 DOI: 10.1186/s12859-021-04476-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug-target interactions (DTIs) has intensified. RESULTS We treat the prediction of DTIs as a ranking problem and propose a neural network architecture, NeuRank, to address it. Also, we assume that similar drug compounds are likely to interact with similar target proteins. Thus, in our model, we add drug and target similarities, which are very effective at improving the prediction of DTIs. Then, we develop NeuRank from a point-wise to a pair-wise, and further to list-wise model. CONCLUSION Finally, results from extensive experiments on five public data sets (DrugBank, Enzymes, Ion Channels, G-Protein-Coupled Receptors, and Nuclear Receptors) show that, in identifying DTIs, our models achieve better performance than other state-of-the-art methods.
Collapse
Affiliation(s)
- Xiujin Wu
- School of Informatics, Xiamen University, Xiamen, China
| | - Wenhua Zeng
- School of Informatics, Xiamen University, Xiamen, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiuze Zhou
- Shuye Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
4
|
Zhou C, Guo H, Cao S. Gene Network Analysis of Alzheimer's Disease Based on Network and Statistical Methods. ENTROPY 2021; 23:e23101365. [PMID: 34682089 PMCID: PMC8535014 DOI: 10.3390/e23101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Gene network associated with Alzheimer’s disease (AD) is constructed from multiple data sources by considering gene co-expression and other factors. The AD gene network is divided into modules by Cluster one, Markov Clustering (MCL), Community Clustering (Glay) and Molecular Complex Detection (MCODE). Then these division methods are evaluated by network structure entropy, and optimal division method, MCODE. Through functional enrichment analysis, the functional module is identified. Furthermore, we use network topology properties to predict essential genes. In addition, the logical regression algorithm under Bayesian framework is used to predict essential genes of AD. Based on network pharmacology, four kinds of AD’s herb-active compounds-active compound targets network and AD common core network are visualized, then the better herbs and herb compounds of AD are selected through enrichment analysis.
Collapse
|
5
|
Luo P, Chen B, Liao B, Wu F. Predicting disease‐associated genes: Computational methods, databases, and evaluations. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2021; 11. [DOI: 10.1002/widm.1383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 06/13/2020] [Indexed: 09/09/2024]
Abstract
AbstractComplex diseases are associated with a set of genes (called disease genes), the identification of which can help scientists uncover the mechanisms of diseases and develop new drugs and treatment strategies. Due to the huge cost and time of experimental identification techniques, many computational algorithms have been proposed to predict disease genes. Although several review publications in recent years have discussed many computational methods, some of them focus on cancer driver genes while others focus on biomolecular networks, which only cover a specific aspect of existing methods. In this review, we summarize existing methods and classify them into three categories based on their rationales. Then, the algorithms, biological data, and evaluation methods used in the computational prediction are discussed. Finally, we highlight the limitations of existing methods and point out some future directions for improving these algorithms. This review could help investigators understand the principles of existing methods, and thus develop new methods to advance the computational prediction of disease genes.This article is categorized under:Technologies > Machine LearningTechnologies > PredictionAlgorithmic Development > Biological Data Mining
Collapse
Affiliation(s)
- Ping Luo
- Division of Biomedical Engineering University of Saskatchewan Saskatoon Canada
- Princess Margaret Cancer Centre University Health Network Toronto Canada
| | - Bolin Chen
- School of Computer Science and Technology Northwestern Polytechnical University China
| | - Bo Liao
- School of Mathematics and Statistics Hainan Normal University Haikou China
| | - Fang‐Xiang Wu
- Department of Mechanical Engineering and Department of Computer Science University of Saskatchewan Saskatoon Canada
| |
Collapse
|
6
|
Ding Y, Chen B, Lei X, Liao B, Wu FX. Predicting novel CircRNA-disease associations based on random walk and logistic regression model. Comput Biol Chem 2020; 87:107287. [PMID: 32446243 DOI: 10.1016/j.compbiolchem.2020.107287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs), a large group of small endogenous noncoding RNA molecules, have been proved to modulate protein-coding genes in the human genome. In recent years, many experimental studies have demonstrated that circRNAs are dysregulated in a number of diseases, and they can serve as biomarkers for disease diagnosis and prognosis. However, it is expensive and time-consuming to identify circRNA-disease associations by biological experiments and few computational models have been proposed for novel circRNA-disease association prediction. In this study, we develop a computational model based on the random walk and the logistic regression (RWLR) to predict circRNA-disease associations. Firstly, a circRNA-circRNA similarity network is constructed by calculating their functional similarity of circRNA based on circRNA-related gene ontology. Then, a random walk with restart is implemented on the circRNA similarity network, and the features of each pair of circRNA-disease are extracted based on the results of the random walk and the circRNA-disease association matrix. Finally, a logistic regression model is used to predict novel circRNA-disease associations. Leave one out validation (LOOCV), five-fold cross validation (5CV) and ten-fold cross validation (10CV) are adopted to evaluate the prediction performance of RWLR, by comparing with the latest two methods PWCDA and DWNN-RLS. The experiment results show that our RWLR has higher AUC values of LOOCV, 5CV and 10CV than the other two latest methods, which demonstrates that RWLR has a better performance than other computational methods. What's more, case studies also illustrate the reliability and effectiveness of RWLR for circRNA-disease association prediction.
Collapse
Affiliation(s)
- Yulian Ding
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 1L5, Canada
| | - Bolin Chen
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 1L5, Canada; Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| |
Collapse
|
7
|
Tran VD, Sperduti A, Backofen R, Costa F. Heterogeneous networks integration for disease-gene prioritization with node kernels. Bioinformatics 2020; 36:2649-2656. [PMID: 31990289 DOI: 10.1093/bioinformatics/btaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 01/03/2025] Open
Abstract
MOTIVATION The identification of disease-gene associations is a task of fundamental importance in human health research. A typical approach consists in first encoding large gene/protein relational datasets as networks due to the natural and intuitive property of graphs for representing objects' relationships and then utilizing graph-based techniques to prioritize genes for successive low-throughput validation assays. Since different types of interactions between genes yield distinct gene networks, there is the need to integrate different heterogeneous sources to improve the reliability of prioritization systems. RESULTS We propose an approach based on three phases: first, we merge all sources in a single network, then we partition the integrated network according to edge density introducing a notion of edge type to distinguish the parts and finally, we employ a novel node kernel suitable for graphs with typed edges. We show how the node kernel can generate a large number of discriminative features that can be efficiently processed by linear regularized machine learning classifiers. We report state-of-the-art results on 12 disease-gene associations and on a time-stamped benchmark containing 42 newly discovered associations. AVAILABILITY AND IMPLEMENTATION Source code: https://github.com/dinhinfotech/DiGI.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
| | | | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Ni P, Wang J, Zhong P, Li Y, Wu FX, Pan Y. Constructing Disease Similarity Networks Based on Disease Module Theory. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:906-915. [PMID: 29993782 DOI: 10.1109/tcbb.2018.2817624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantifying the associations between diseases is now playing an important role in modern biology and medicine. Actually discovering associations between diseases could help us gain deeper insights into pathogenic mechanisms of complex diseases, thus could lead to improvements in disease diagnosis, drug repositioning, and drug development. Due to the growing body of high-throughput biological data, a number of methods have been developed for computing similarity between diseases during the past decade. However, these methods rarely consider the interconnections of genes related to each disease in protein-protein interaction network (PPIN). Recently, the disease module theory has been proposed, which states that disease-related genes or proteins tend to interact with each other in the same neighborhood of a PPIN. In this study, we propose a new method called ModuleSim to measure associations between diseases by using disease-gene association data and PPIN data based on disease module theory. The experimental results show that by considering the interactions between disease modules and their modularity, the disease similarity calculated by ModuleSim has a significant correlation with disease classification of Disease Ontology (DO). Furthermore, ModuleSim outperforms other four popular methods which are all using disease-gene association data and PPIN data to measure disease-disease associations. In addition, the disease similarity network constructed by MoudleSim suggests that ModuleSim is capable of finding potential associations between diseases.
Collapse
|
9
|
Abstract
BACKGROUND Disease gene prediction is a critical and challenging task. Many computational methods have been developed to predict disease genes, which can reduce the money and time used in the experimental validation. Since proteins (products of genes) usually work together to achieve a specific function, biomolecular networks, such as the protein-protein interaction (PPI) network and gene co-expression networks, are widely used to predict disease genes by analyzing the relationships between known disease genes and other genes in the networks. However, existing methods commonly use a universal static PPI network, which ignore the fact that PPIs are dynamic, and PPIs in various patients should also be different. RESULTS To address these issues, we develop an ensemble algorithm to predict disease genes from clinical sample-based networks (EdgCSN). The algorithm first constructs single sample-based networks for each case sample of the disease under study. Then, these single sample-based networks are merged to several fused networks based on the clustering results of the samples. After that, logistic models are trained with centrality features extracted from the fused networks, and an ensemble strategy is used to predict the finial probability of each gene being disease-associated. EdgCSN is evaluated on breast cancer (BC), thyroid cancer (TC) and Alzheimer's disease (AD) and obtains AUC values of 0.970, 0.971 and 0.966, respectively, which are much better than the competing algorithms. Subsequent de novo validations also demonstrate the ability of EdgCSN in predicting new disease genes. CONCLUSIONS In this study, we propose EdgCSN, which is an ensemble learning algorithm for predicting disease genes with models trained by centrality features extracted from clinical sample-based networks. Results of the leave-one-out cross validation show that our EdgCSN performs much better than the competing algorithms in predicting BC-associated, TC-associated and AD-associated genes. de novo validations also show that EdgCSN is valuable for identifying new disease genes.
Collapse
Affiliation(s)
- Ping Luo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| | - Li-Ping Tian
- School of Information, Beijing Wuzi University, Beijing, 101149 China
| | - Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Qianghua Xiao
- School of Mathematics and Physics, University of South China, HengYang, 421001 China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158 China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 Canada
| |
Collapse
|
10
|
Abstract
BACKGROUND A collection of disease-associated data contributes to study the association between diseases. Discovering closely related diseases plays a crucial role in revealing their common pathogenic mechanisms. This might further imply treatment that can be appropriated from one disease to another. During the past decades, a number of approaches for calculating disease similarity have been developed. However, most of them are designed to take advantage of single or few data sources, which results in their low accuracy. METHODS In this paper, we propose a novel method, called MultiSourcDSim, to calculate disease similarity by integrating multiple data sources, namely, gene-disease associations, GO biological process-disease associations and symptom-disease associations. Firstly, we establish three disease similarity networks according to the three disease-related data sources respectively. Secondly, the representation of each node is obtained by integrating the three small disease similarity networks. In the end, the learned representations are applied to calculate the similarity between diseases. RESULTS Our approach shows the best performance compared to the other three popular methods. Besides, the similarity network built by MultiSourcDSim suggests that our method can also uncover the latent relationships between diseases. CONCLUSIONS MultiSourcDSim is an efficient approach to predict similarity between diseases.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410075 China
| | - Danyi Ye
- School of Computer Science and Engineering, Central South University, Changsha, 410075 China
| | - Junmin Zhao
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, 467000 China
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, 467000 China
| |
Collapse
|
11
|
Zhang W, Lei Ieee Member X, Bian C. Identifying Cancer genes by combining two-rounds RWR based on multiple biological data. BMC Bioinformatics 2019; 20:518. [PMID: 31760937 PMCID: PMC6876101 DOI: 10.1186/s12859-019-3123-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background It’s a very urgent task to identify cancer genes that enables us to understand the mechanisms of biochemical processes at a biomolecular level and facilitates the development of bioinformatics. Although a large number of methods have been proposed to identify cancer genes at recent times, the biological data utilized by most of these methods is still quite less, which reflects an insufficient consideration of the relationship between genes and diseases from a variety of factors. Results In this paper, we propose a two-rounds random walk algorithm to identify cancer genes based on multiple biological data (TRWR-MB), including protein-protein interaction (PPI) network, pathway network, microRNA similarity network, lncRNA similarity network, cancer similarity network and protein complexes. In the first-round random walk, all cancer nodes, cancer-related genes, cancer-related microRNAs and cancer-related lncRNAs, being associated with all the cancer, are used as seed nodes, and then a random walker walks on a quadruple layer heterogeneous network constructed by multiple biological data. The first-round random walk aims to select the top score k of potential cancer genes. Then in the second-round random walk, genes, microRNAs and lncRNAs, being associated with a certain special cancer in corresponding cancer class, are regarded as seed nodes, and then the walker walks on a new quadruple layer heterogeneous network constructed by lncRNAs, microRNAs, cancer and selected potential cancer genes. After the above walks finish, we combine the results of two-rounds RWR as ranking score for experimental analysis. As a result, a higher value of area under the receiver operating characteristic curve (AUC) is obtained. Besides, cases studies for identifying new cancer genes are performed in corresponding section. Conclusion In summary, TRWR-MB integrates multiple biological data to identify cancer genes by analyzing the relationship between genes and cancer from a variety of biological molecular perspective.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | | | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| |
Collapse
|
12
|
Prioritizing complex disease risk genes by integrating multiple data. Genomics 2019; 111:590-597. [DOI: 10.1016/j.ygeno.2018.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
|
13
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
14
|
Predicting disease-genes based on network information loss and protein complexes in heterogeneous network. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Luo P, Li Y, Tian LP, Wu FX. Enhancing the prediction of disease–gene associations with multimodal deep learning. Bioinformatics 2019; 35:3735-3742. [DOI: 10.1093/bioinformatics/btz155] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Motivation
Computationally predicting disease genes helps scientists optimize the in-depth experimental validation and accelerates the identification of real disease-associated genes. Modern high-throughput technologies have generated a vast amount of omics data, and integrating them is expected to improve the accuracy of computational prediction. As an integrative model, multimodal deep belief net (DBN) can capture cross-modality features from heterogeneous datasets to model a complex system. Studies have shown its power in image classification and tumor subtype prediction. However, multimodal DBN has not been used in predicting disease–gene associations.
Results
In this study, we propose a method to predict disease–gene associations by multimodal DBN (dgMDL). Specifically, latent representations of protein-protein interaction networks and gene ontology terms are first learned by two DBNs independently. Then, a joint DBN is used to learn cross-modality representations from the two sub-models by taking the concatenation of their obtained latent representations as the multimodal input. Finally, disease–gene associations are predicted with the learned cross-modality representations. The proposed method is compared with two state-of-the-art algorithms in terms of 5-fold cross-validation on a set of curated disease–gene associations. dgMDL achieves an AUC of 0.969 which is superior to the competing algorithms. Further analysis of the top-10 unknown disease–gene pairs also demonstrates the ability of dgMDL in predicting new disease–gene associations.
Availability and implementation
Prediction results and a reference implementation of dgMDL in Python is available on https://github.com/luoping1004/dgMDL.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ping Luo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Yuanyuan Li
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- School of Mathematics and Physics, Wuhan Institute of Technology, Wuhan, China
| | - Li-Ping Tian
- School of Information, Beijing Wuzi University, Beijing, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinform 2019; 19:325-340. [PMID: 28011753 DOI: 10.1093/bib/bbw113] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.
Collapse
Affiliation(s)
- Yifeng Li
- Information and Communications Technologies, National Research Council Canada, Ottawa, Ontario, Canada
| | - Fang-Xiang Wu
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alioune Ngom
- School of Computer Science, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
17
|
Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics 2019; 20:59. [PMID: 30691413 PMCID: PMC6350368 DOI: 10.1186/s12859-019-2640-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various analysis methodologies, up until recently, some computational models have been developed to predict human disease related miRNAs, efficiently and quickly. Results In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent experimental reports. To simulate new disease without known related miRNAs, the information of known Breast cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of RWBRMDA based on the association records in HMDD v1.0 database. Conclusions We anticipated that RWBRMDA could benefit the future experimental investigations about the relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and significantly reducing the effort and cost of identification works. Electronic supplementary material The online version of this article (10.1186/s12859-019-2640-9) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Luo P, Tian LP, Ruan J, Wu FX. Disease Gene Prediction by Integrating PPI Networks, Clinical RNA-Seq Data and OMIM Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:222-232. [PMID: 29990218 DOI: 10.1109/tcbb.2017.2770120] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Disease gene prediction is a challenging task that has a variety of applications such as early diagnosis and drug development. The existing machine learning methods suffer from the imbalanced sample issue because the number of known disease genes (positive samples) is much less than that of unknown genes which are typically considered to be negative samples. In addition, most methods have not utilized clinical data from patients with a specific disease to predict disease genes. In this study, we propose a disease gene prediction algorithm (called dgSeq) by combining protein-protein interaction (PPI) network, clinical RNA-Seq data, and Online Mendelian Inheritance in Man (OMIN) data. Our dgSeq constructs differential networks based on rewiring information calculated from clinical RNA-Seq data. To select balanced sets of non-disease genes (negative samples), a disease-gene network is also constructed from OMIM data. After features are extracted from the PPI networks and differential networks, the logistic regression classifiers are trained. Our dgSeq obtains AUC values of 0.88, 0.83, and 0.80 for identifying breast cancer genes, thyroid cancer genes, and Alzheimer's disease genes, respectively, which indicates its superiority to other three competing methods. Both gene set enrichment analysis and predicted results demonstrate that dgSeq can effectively predict new disease genes.
Collapse
|
19
|
Zhang W, Lei X. Two-step Random Walk Algorithm to Identify Cancer Genes Based on Various Biological Data. 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2018:1296-1301. [DOI: 10.1109/bibm.2018.8621448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Lan W, Wang J, Li M, Liu J, Wu FX, Pan Y. Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1774-1782. [PMID: 27392365 DOI: 10.1109/tcbb.2016.2586190] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are a type of non-coding RNAs with about ∼22nt nucleotides. Increasing evidences have shown that miRNAs play critical roles in many human diseases. The identification of human disease-related miRNAs is helpful to explore the underlying pathogenesis of diseases. More and more experimental validated associations between miRNAs and diseases have been reported in the recent studies, which provide useful information for new miRNA-disease association discovery. In this study, we propose a computational framework, KBMF-MDI, to predict the associations between miRNAs and diseases based on their similarities. The sequence and function information of miRNAs are used to measure similarity among miRNAs while the semantic and function information of disease are used to measure similarity among diseases, respectively. In addition, the kernelized Bayesian matrix factorization method is employed to infer potential miRNA-disease associations by integrating these data sources. We applied this method to 6,084 known miRNA-disease associations and utilized 5-fold cross validation to evaluate the performance. The experimental results demonstrate that our method can effectively predict unknown miRNA-disease associations.
Collapse
|
21
|
An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7538204. [PMID: 30228989 PMCID: PMC6136508 DOI: 10.1155/2018/7538204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/17/2018] [Accepted: 07/29/2018] [Indexed: 11/18/2022]
Abstract
The application of gene expression data to the diagnosis and classification of cancer has become a hot issue in the field of cancer classification. Gene expression data usually contains a large number of tumor-free data and has the characteristics of high dimensions. In order to select determinant genes related to breast cancer from the initial gene expression data, we propose a new feature selection method, namely, support vector machine based on recursive feature elimination and parameter optimization (SVM-RFE-PO). The grid search (GS) algorithm, the particle swarm optimization (PSO) algorithm, and the genetic algorithm (GA) are applied to search the optimal parameters in the feature selection process. Herein, the new feature selection method contains three kinds of algorithms: support vector machine based on recursive feature elimination and grid search (SVM-RFE-GS), support vector machine based on recursive feature elimination and particle swarm optimization (SVM-RFE-PSO), and support vector machine based on recursive feature elimination and genetic algorithm (SVM-RFE-GA). Then the selected optimal feature subsets are used to train the SVM classifier for cancer classification. We also use random forest feature selection (RFFS), random forest feature selection and grid search (RFFS-GS), and minimal redundancy maximal relevance (mRMR) algorithm as feature selection methods to compare the effects of the SVM-RFE-PO algorithm. The results showed that the feature subset obtained by feature selection using SVM-RFE-PSO algorithm results has a better prediction performance of Area Under Curve (AUC) in the testing data set. This algorithm not only is time-saving, but also is capable of extracting more representative and useful genes.
Collapse
|
22
|
Kumar AA, Van Laer L, Alaerts M, Ardeshirdavani A, Moreau Y, Laukens K, Loeys B, Vandeweyer G. pBRIT: gene prioritization by correlating functional and phenotypic annotations through integrative data fusion. Bioinformatics 2018; 34:2254-2262. [PMID: 29452392 PMCID: PMC6022555 DOI: 10.1093/bioinformatics/bty079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Motivation Computational gene prioritization can aid in disease gene identification. Here, we propose pBRIT (prioritization using Bayesian Ridge regression and Information Theoretic model), a novel adaptive and scalable prioritization tool, integrating Pubmed abstracts, Gene Ontology, Sequence similarities, Mammalian and Human Phenotype Ontology, Pathway, Interactions, Disease Ontology, Gene Association database and Human Genome Epidemiology database, into the prediction model. We explore and address effects of sparsity and inter-feature dependencies within annotation sources, and the impact of bias towards specific annotations. Results pBRIT models feature dependencies and sparsity by an Information-Theoretic (data driven) approach and applies intermediate integration based data fusion. Following the hypothesis that genes underlying similar diseases will share functional and phenotype characteristics, it incorporates Bayesian Ridge regression to learn a linear mapping between functional and phenotype annotations. Genes are prioritized on phenotypic concordance to the training genes. We evaluated pBRIT against nine existing methods, and on over 2000 HPO-gene associations retrieved after construction of pBRIT data sources. We achieve maximum AUC scores ranging from 0.92 to 0.96 against benchmark datasets and of 0.80 against the time-stamped HPO entries, indicating good performance with high sensitivity and specificity. Our model shows stable performance with regard to changes in the underlying annotation data, is fast and scalable for implementation in routine pipelines. Availability and implementation http://biomina.be/apps/pbrit/; https://bitbucket.org/medgenua/pbrit. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ajay Anand Kumar
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Maaike Alaerts
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Amin Ardeshirdavani
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Belgium
- imec, Leuven, Belgium
| | - Yves Moreau
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Belgium
- imec, Leuven, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
- ADReM Data Laboratory, University of Antwerp, Antwerp, Belgium
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Tran Van D, Sperduti A, Costa F. The conjunctive disjunctive graph node kernel for disease gene prioritization. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Zampieri G, Tran DV, Donini M, Navarin N, Aiolli F, Sperduti A, Valle G. Scuba: scalable kernel-based gene prioritization. BMC Bioinformatics 2018; 19:23. [PMID: 29370760 PMCID: PMC5785908 DOI: 10.1186/s12859-018-2025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/15/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. RESULTS We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. CONCLUSIONS Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .
Collapse
Affiliation(s)
- Guido Zampieri
- CRIBI Biotechnology Center, University of Padova, viale G. Colombo, 3, Padova, Italy.,Department of Women's and Children's Health, University of Padova, via Giustiniani, 3, Padova, Italy
| | - Dinh Van Tran
- Department of Mathematics, University of Padova, via Trieste, 63, Padova, Italy
| | - Michele Donini
- Istituto Italiano di Tecnologia, Via Morego, 30, Genoa, Italy
| | - Nicolò Navarin
- Department of Mathematics, University of Padova, via Trieste, 63, Padova, Italy
| | - Fabio Aiolli
- Department of Mathematics, University of Padova, via Trieste, 63, Padova, Italy
| | - Alessandro Sperduti
- Department of Mathematics, University of Padova, via Trieste, 63, Padova, Italy
| | - Giorgio Valle
- CRIBI Biotechnology Center, University of Padova, viale G. Colombo, 3, Padova, Italy. .,Department of Biology, University of Padova, viale G. Colombo, 3, Padova, Italy.
| |
Collapse
|
25
|
Luo P, Tian LP, Chen B, Xiao Q, Wu FX. Predicting Gene-Disease Associations with Manifold Learning. BIOINFORMATICS RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-3-319-94968-0_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Shi JY, Li JX, Gao K, Lei P, Yiu SM. Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features. BMC Bioinformatics 2017; 18:409. [PMID: 29072137 PMCID: PMC5657064 DOI: 10.1186/s12859-017-1818-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Background Drug Combination is one of the effective approaches for treating complex diseases. However, determining combinative drug pairs in clinical trials is still costly. Thus, computational approaches are used to identify potential drug pairs in advance. Existing computational approaches have the following shortcomings: (i) the lack of an effective integration of heterogeneous features leads to a time-consuming training and even results in an over-fitted classifier; and (ii) the narrow consideration of predicting potential drug combinations only among known drugs having known combinations cannot meet the demand of realistic screenings, which pay more attention to potential combinative pairs among newly-coming drugs that have no approved combination with other drugs at all. Results In this paper, to tackle the above two problems, we propose a novel drug-driven approach for predicting potential combinative pairs on a large scale. We define four new features based on heterogeneous data and design an efficient fusion scheme to integrate these feature. Moreover importantly, we elaborate appropriate cross-validations towards realistic screening scenarios of drug combinations involving both known drugs and new drugs. In addition, we perform an extra investigation to show how each kind of heterogeneous features is related to combinative drug pairs. The investigation inspires the design of our approach. Experiments on real data demonstrate the effectiveness of our fusion scheme for integrating heterogeneous features and its predicting power in three scenarios of realistic screening. In terms of both AUC and AUPR, the prediction among known drugs achieves 0.954 and 0.821, that between known drugs and new drugs achieves 0.909 and 0.635, and that among new drugs achieves 0.809 and 0.592 respectively. Conclusions Our approach provides not only an effective tool to integrate heterogeneous features but also the first tool to predict potential combinative pairs among new drugs.
Collapse
Affiliation(s)
- Jian-Yu Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Jia-Xin Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ke Gao
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Peng Lei
- Department of Chinese Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Siu-Ming Yiu
- Department of Computer Science, the University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Tian Z, Guo M, Wang C, Xing L, Wang L, Zhang Y. Constructing an integrated gene similarity network for the identification of disease genes. J Biomed Semantics 2017; 8:32. [PMID: 29297379 PMCID: PMC5763299 DOI: 10.1186/s13326-017-0141-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Discovering novel genes that are involved human diseases is a challenging task in biomedical research. In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks contain false positives and only cover less half of known human genes, their reliability and coverage are very low. Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and then infer disease genes on the whole genomic scale. RESULTS We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer's disease and predict some novel disease genes that supported by literature. CONCLUSIONS RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/ .
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, 150001 People’s Republic of China
| | - Maozu Guo
- School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, 150001 People’s Republic of China
| | - Chunyu Wang
- School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, 150001 People’s Republic of China
| | - LinLin Xing
- School of Computer Science and Engineering, Harbin Institute of Technology, Harbin, 150001 People’s Republic of China
| | - Lei Wang
- Institute of Health Service and Medical Information Academy of Military Medical Sciences Beijing, Beijing, 100850 China
| | - Yin Zhang
- Institute of Health Service and Medical Information Academy of Military Medical Sciences Beijing, Beijing, 100850 China
| |
Collapse
|
28
|
Abstract
Background Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. However, none of the existing computational approaches is able to integrate the huge amount of omics data into a weighted integrated network and utilize it to enhance disease related gene discovery. Results We propose a new network-based disease gene prediction method called SLN-SRW (Simplified Laplacian Normalization-Supervised Random Walk) to generate and model the edge weights of a new biomedical network that integrates biomedical data from heterogeneous sources, thus far enhancing the disease related gene discovery. Conclusions The experiment results show that SLN-SRW significantly improves the performance of disease gene prediction on both the real and the synthetic data sets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3263-4) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Ping Luo, Li-Ping Tian, Jishou Ruan, Wu FX. Identifying disease genes from PPI networks weighted by gene expression under different conditions. 2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2016:1259-1264. [DOI: 10.1109/bibm.2016.7822699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
|
31
|
Chen B, Shang X, Li M, Wang J, Wu FX. Identifying Individual-Cancer-Related Genes by Rebalancing the Training Samples. IEEE Trans Nanobioscience 2016; 15:309-315. [PMID: 27093705 DOI: 10.1109/tnb.2016.2553119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The identification of individual-cancer-related genes typically is an imbalanced classification issue. The number of known cancer-related genes is far less than the number of all unknown genes, which makes it very hard to detect novel predictions from such imbalanced training samples. A regular machine learning method can either only detect genes related to all cancers or add clinical knowledge to circumvent this issue. In this study, we introduce a training sample rebalancing strategy to overcome this issue by using a two-step logistic regression and a random resampling method. The two-step logistic regression is to select a set of genes that related to all cancers. While the random resampling method is performed to further classify those genes associated with individual cancers. The issue of imbalanced classification is circumvented by randomly adding positive instances related to other cancers at first, and then excluding those unrelated predictions according to the overall performance at the following step. Numerical experiments show that the proposed resampling method is able to identify cancer-related genes even when the number of known genes related to it is small. The final predictions for all individual cancers achieve AUC values around 0.93 by using the leave-one-out cross validation method, which is very promising, compared with existing methods.
Collapse
|
32
|
Chen B, Shang X, Li M, Wang J, Wu FX. A two-step logistic regression algorithm for identifying individual-cancer-related genes. 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) 2015:195-200. [DOI: 10.1109/bibm.2015.7359680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|